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Orientational disorder in plastic molecular crystals
I. 2014 Group theory and ODIC description

M. Yvinec and R. M. Pick

Département de Recherches Physiques (*), Université P.-et-M.-Curie, 4, place Jussieu, 75230 Paris Cedex 05, France

(Reçu le 29 janvier 1980, révisé le 9 avril, accepté le 28 avril 1980)

Résumé. 2014 Cet article présente une méthode de théorie des groupes pour construire une base canonique (complète
et non redondante) de fonctions adaptée à la description du désordre orientationnel dans les cristaux moléculaires
plastiques (ODIC). Cette méthode prend complètement en compte les propriétés des groupes de symétrie du site
et de la molécule. En particulier, on montre que lorsque les deux groupes contiennent des rotations impropres,
la base canonique comporte certaines fonctions qui jusqu’alors n’ont pas été prises en considération.

Abstract. 2014 A group theory method for deriving a complete and non redundant canonical set of basis functions
adapted to the description of Orientational Disorder In (plastic molecular) Crystal (ODIC) is developed. The
method takes full advantage of the properties of the site and molecular symmetry groups. In particular, it is shown
that, when both groups contain improper rotations, the canonical basis includes functions which have not been
previously considered.
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1. Introduction. - Plastic crystals can be defined
as molecular crystals in which the orientational order
of the molecules melts at a lower temperature than
the translational order : below the transition tempe-
rature 7c each molecule has a given, fixed orientation,
while above T,,, this orientation changes from mole-
cule to molecule.

This high temperature phase may nevertheless vary
between two extremes. Let us define an orthonormal
axis system {X, Y, Z } attached to the crystal and
another one { x, y, z ) attached to the molecule. The
molecular orientation can be described by the rota-
tion Q which brings the crystal system { X, Y, Z }
in coincidence with the molecular system {x, y, z },
i.e. by the set [Q] = { cx, fi, y 1 of the three Eulerian
angles associated with this rotation in the crystal axes.

In the following, we shall, for brevity, call pdf
(probability density function) the function Po([Q])
which is the probability density for a molecule to
have the orientation Q.
- In one extreme case (e.g. phase 1 of CD4 [1])

the molecules are almost completely at random, i.e.
the pdf Po([Q]) is equal to 1/8 n2 whatever is Q.
- The other extreme case, represented e.g. by the

ammonium halides [2] is characterized by the fact
that, in the high temperature phase, only a discrete

set of values is available for [D]. Such crystals are
usually called disordered crystals and the n possible
orientations are labelled according to the na z states of a
(n - 1)/2 spin. The thermodynamics and dynamics
of the system in both phases are then written as func-
tions of those spin variables, the disordered state

being characterized by  u, &#x3E; = 0.
The very important intermediate cases have recently

deserved a large interest, and some measurements of
Po([Q]) or, at least, of some of its components in e.g.
phase 1 of CNNa [3] and CBr4 [4] have been performed.
As Po([D]) plays a role analogous to the spin

variable, but is, even in the plastic phase, a temperature
dependent quantity, it is necessary to express it in a

way which makes as transparent as possible its tem-
perature dependence. The purpose of this paper is to
provide, for a molecule of symmetry fl, residing
in a site of symmetry S, a systematic way of developing
the pdf Po([Q]) on a complete and non redundant basis
of functions of [Q]. The various coefficients of the
development will then appear as a priori independent
long range order parameters of the plastic phase, the
purpose of a thermodynamic treatment being of

eventually predicting their temperature dependence,
and the relationship between their values at a given
temperature.
The a priori independence of the different order

parameters lies on the non redundancy character of
the set of basic functions. This is related to the symme-(*) Laboratoire associé au C.N.R.S. n° 71.
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try properties of the pdf Po([QI) arising from both the
molecular symmetry and the site symmetry. We shall
see in this paper how the consideration of these both

types of symmetry allows to define a set of symmetry
adapted functions A/;.’([Q]) suitable for the develop-
ment of Po([Q]) :

Symmetry adapted functions have already been
introduced in several papers dealing with quantum
mechanical studies of molecular crystals (see e.g.
Refs. [5-9]). Indeed, our problem is somewhat equiva-
lent to that of finding the general form of a monomo-
lecular Hamiltonian in the framework of a molecular
field approximation. Nevertheless, we think it is

useful to recall here most of the theoretical back-

ground involved in such a development for two main
reasons. First we shall stress the compatibility relation
existing between the site symmetry group and the
molecular symmetry and the crucial role played by
improper rotations. Second, when both symmetry
groups contain improper rotations, functions which
are not usually considered appear in the develop-
ment (1.1). Group theoretical arguments explain why
the measurement of the corresponding coefficients is
not straightforward and we shall deal with this pro-
blem in a following paper.

Part 2 is devoted to a close study of the symmetry
properties of the probability PO([Q]) and we shall
derive in this part the full symmetry group S of this
function. The knowledge of this group allows a

straightforward construction of the symmetry adapt-
ed functions, however, we shall adopt in part 3 a
different way allowing to classify these basic functions
according to the irreducible representations of both
the site group and the molecular group. In part 4
we shall apply this general formalism to some parti-
cular cases of molecular and site symmetries. At last,
concluding remarks are included in part 5.

2. Symmetry properties of the probability P 0([.0 D. -
2. 1 PROPERTIES OF Po([Q 1). - As mentioned above,
the orientation of one molecule in the crystal is repre-
sented by the rotation Q which brings the crystal
system axis {X, Y, Z} in coincidence with the
axis { x, y, z } attached to the molecule. A physical
rotation r will therefore simply brings a molecule
from the orientation Q to the orientation rQ.

By definition, the probability density function for
molecular orientation, Po([D]), is a positive and real
function, the integral of which over the whole space of
possible orientations must be equal to unity. However
we shall here focus our attention only on the symmetry
properties of Po([Q]) which arise both from the site
symmetry and from the molecular symmetry.
The site symmetry is represented by a point group

8 ; subgroup of all the operations p of the crystallo-
graphic space group which leaves the site unchanged.

The molecular symmetry is described by a point
group M(Q) the operations of which, p’(Q), are

defined in the molecular system axes and therefore
depend on the orientation 0 of the molecule under
consideration. To avoid this difficulty, we shall often
refer to the symmetry group 4(, of a molecule, the
orientation of which is such that the molecular axis
coincide with the crystal axis. The group 4t, is isomorph
to all the groups JC(Q), and the operations p’ of M
are related to the corresponding operations p’(Q)
of fl(Q ) through the relation :

As proper rotations are the only operations which
bring a right-handed system axis into another right-
handed system axis we have to discriminate among
the operations of 8 and fl which are proper rotations
and which are improper ones (i.e. inversion-rotations).

Thus, we shall write

where e is the identity operation, i is the inversion, 8,
is the reduced subgroup of 8, that is the subgroup of
all proper rotations. Similar notation (Mr’ ir’0) being
used for the molecular group.

In the following, latin letters, r and r’, will be used
for proper rotations only whereas Greek letters, p
and p’, will be used to label symmetry operations which
can be either proper or improper rotation.
We can now list the properties of the pdf Po([QI).
- Symmetry properties related to proper rotation.

Two orientations of the molecule which deduce
one from the other through a proper rotation of the
site group are by definition equally probable :

Every rotation r’(Q) of the molecular group 4t(Q)
leaves the molecule bodily unchanged, so that the
orientation of a molecule can in fact be described by
any rotation of the set {r’(Q) Q, r’(Q) E tÂl(Q)} :

which, in view of the relation (2. 1) can be written

- Compatibility relation between the groups Sand u1L
and symmetry properties related to improper rotations.

Before making explicit those properties of P0([03A9])
which are related to the improper rotations of the
groups 8 and vtt, it is necessary to stress that there
exists a compatibility relation between these two

groups : the site group 8 cannot contain improper
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rotation if the molecular group vit does not. Indeed,
no proper rotation can bring a molecule, the point
group of which does not contain improper rotations
into its mirror image, whereas the existence of this
mirror image is implied by the existence of improper
rotations in S.

Conversely, if the molecular group M contain

improper rotations and the site group 8 does not,
no additional properties arise for Po([Q]). Indeed,
this additional symmetry of the molecule does not
affect the set of rotations describing the same physical
position of the molecute. The situation is different
when both groups 8 and X contain improper rota-
tions. Indeed, a product such as irir’(Q), where ir

and ir’(Q) are rotation inversions belonging respec-
tively to the site and the molecular symmetry group,
transforms a molécule with orientation Q into an
identical molecule, the orientation of which rr’(Q) Q
appears to be as. probable as the first one. Thus

P o([Q]) fulfills the additional relation :

which, in terms of the group vtt, reads

2 . 2 THE SYMMETRY GROUP J OF THE pdf’ p()([Q]). -
2.2.1 The symmetry properties of P o([Q]) seems to
be closely related to the molecular and site symmetry
group 8 and M. Symmetry operations have a natural
physical meaning when regarded as operators acting
on the vectors of the usual three dimensional eucli-
dian space ; however, it is not the same when dealing
with molecular orientations : improper rotation, for
instance, have no meaning. Thus, we first have to define
how the site and molecular symmetry operations act
on functions of the molecular orientations. This will
enable us to define the product group 8w* through
its representation on the space of function of the
Euler angles ([Q]) and then to derive the actual sym-
metry group of Po([Q]).

2.2.2 Let us consider the space of all the functions
of the Eulerian angles [Q]. This space has a natural
basis constituted by the well-known Wigner functions
Dî ’ ,([Q]) (1 is an integer ; m and m’ take on the
2 1 + 1 integer values : - 1... + 1). These functions
are the matrix elements of the irreducible representa-
tions ’C, of the full rotational group, defined on the basis
of the spherical harmonics through the relation

In particular, for any rotation r1 and r2, the Wigner
function verifies the following rules (see e.g. Ref. [9]) :

and

This space of functions can be considered as a

representation Tof a site point group 8 if we state that :
- for a proper rotation r

- for the inversion operation

Indeed, the definitions (2.8) together with the
relation (2.7) ensure that the operators T(p) verify
the multiplication rule

At the same time and similarly, this space can be
regarded as a representation T’ of a molecular group
vJl by setting :
- for a proper rotation r’

- for the inversion

According to the definitions (2.8) and (2.9), the
operators T(p) associated with the site group commute
with the operators T’(p) associated with the mole-
cular group (1). Consequently the set of operators
{ T(p) T(p’) p ES, p’ E A 1 form a group which can
be regarded as the product 8fl of the site and mole-
cular symmetry group.

2.2.3 Now, the symmetry properties (2.3), (2.4)
and eventually (2.5) of the pdfPo([Q]) appear simply
as the invariance of this function under the operations
of a reduced subgroup of SM : the subgroup of even
operations, that is those which involve an even number
of improper rotations. In the case where both groups 8
and X, contain improper rotation, the full symmetry
group S of P([Q]) can thus be written under the
following form

(’) This simply reflects that the rotations of the site group per-
formed about the crystal axis commute with the rotations of the
molecular group performed around the molecular axis. Indeed :
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Table I. - The symmetry group of the I)dj» Po([Q]).

which underlines the important role played by im-
proper symmetry operations. This symmetry group
has been previously derived by S. Alexander and
M. Lemer Naor (Ref. [6]) as being the symmetry
group of a molecular crystal Hamiltonian in this

special case.
The above discussion can be summarized in table 1

which gives in each case the full symmetry group of
the orientational probability P,([Q]).

3. Symmetry adapted basis and development of

P([Q]). -We now intend to develop the pdj’Po([QI)
on a set of basis functions having the same symmetry
properties as P,([Q]). We shall choose these basis
functions to be independent linear combinations of
Wigner functions with the same 1, which belong to the
identity representation of the symmetry group.
As the character of the identity representation is

equal to unity for each operation, these functions
could be obtained from the Wigner function by
application of the projection operator

where N is the number of elements of J. However,
most of the experimental data on molecular crystals
are analysed with respect to the site and molecular
symmetry group 8 and M. Thus, it is useful to have a
complete basis of function of [Q] classified according
to the irreducible representations of those groups.
This symmetry adapted basis will be derived just
below and then used to develop the orientational pro-
bability.

3. 1 SYMMETRY ADAPTED FUNCTIONS. - The for-

mulae ((2.6), (2.8) and (2. 0)) show that the Wigner
function n,mm’([Q]) transforms as the spherical harmo-
nic y,m* for symmetry operation of the site group and as
y,m’ for those of the molecular group.

For a given value of l, the space of spherical harmo-
nics { y,,, m = - 1... + l} can be splitted into

irreducible spaces with respect to the site group S.
This decomposition leads to well-known functions,
the surface harmonics relative to the point group 8
which have been derived and classified by Cracknell
and Bradley (Ref. [10])

the label À, which takes 2 1 + 1 value, is a short hand
notation for a composit index (1-pn) where :

r is the name of an irreducible representation of
the group 8,

j1 labels the independent r subspaces if the repre-
sentation T is included more than once in the space
{ YM il
n numbers the different basis functions for multi-

dimensional T representations.

For a given value of 1, the coefficients cxf.m form a
(2 1 + 1) x (2 1 + 1) unitary matrix. The rela-
tion (2.6) can be rewritten as

From the very definition of the surface harmonics,
for each rotation r of the group 8, the matrix

CX,- 1 D,(r) CX, is a block diagonal matrix which can
be written as

where = r, J1, n, ÎI.I = rI, J11, n, and Mrnn, is the
matrix of the T representation of S.

In the same way, the space { Y,m 1 can be splitted
into irreducible subspaces with respect to the mole-
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cular group fl, this leads to the surface harmonics
relative to fl

where à.’ is a composite index (r’, /1’, n’) with nota-
tions analogous to the above ones.
For a given 1, the unitary matrix cx{111 and /3(111’ appear-

ing in (3.1) and (3.4) are used to set up a new basis
for functions of [Q]

the interest of this transformation is that, as Wigner
matrices transform as the spherical harmonics, a
direct application of ((2.8), (2.9) and (3.3)) shows
that an operation T(p) T’(p’) associated with the

product group 80K transforms the basis functions
A /i: according to the representation r * r’ of the
group SM. (r and r’ are respectively the irreducible
representations of 8 and wK which are understood in
the index ÎI. and ÎB;’, and r * is the representation
conjugate to the representation r.) For brevity, we
shall say that A/i"([Q]) is in the r representation of S
and in the r’ representation of M.

Remark. - When the groups 8 and M are not both
centred groups, the product SA is a direct product
group (i.e. every element of the product 8fl can be
represented in a unique way as the product T(p) T’(p’)
where p belongs to 8 and p’ to u1l). In that case, the
irreducible representations of the product SM are all
the possible products of the irreducible representations
of 8 and M respectively (cf. Ref. [11]). This is no

longer true when 8 and vtt are both centred groups.
Indeed, in that case, each element of 8a* can be

represented in two ways as T(p) T’(p’) or as

T(ip) T’(ip’). A centred group is itself a direct pro-
duct of its reduced subgroup of proper rotations with
the group 3 = { e, i } . The irreducible representations
of such a group fall into two categories : the even « g »
representation generated by the identity representa-
tion of 3 and the odd « u » representation generated
by the other representation of 3. One can show that
the irreducible representations of 80K are the pro-
ducts rg F’ 9 or Tu 1-’ u of representations of 8 and fl
which have the same parity with respect to inversion
operation. In fact, the mixed products Tu rg or

rg fu are not representations of SM because they
associate two different operators (for instance

I-u(p) 1-’(p’) and 1-u(ip) I-’(ip’) ru(p) r§(P’)) with
the two ways of writing the same element of SA,.
As the space generated by the manifold D,mm’([Q])
is a representation of 8vK, those mixed products
cannot appear in its decomposition into irreducible
subspaces A l ’([Q ]).

3.2 DEVELOPMENT OF THE ORIENTATIONAL PRO-

BABILITY P,,([Q]).
- The basis functions d l ’ derived in part 3. 1 can be

used to develop the probability P o([Q])

The basis functions J/’ transform according to the
irreducible representations of the product 8fl, while
the symmetry group S of W([Q]) is only the reduced
subgroup of SA. To eliminate from this development
all the trivial and redundant coefficients we have to

derive, in each case, which representations of SM
induce the unity representation of J. This problem may
be simplified by the following remark.

In any case, the group S includes as a subgroup
the direct product 8, K,,. Thus, the representation of
SM which are allowed in the development of Po([Q])
must be searched among those which induce the

unity representation of 8, Jttr.
In the following, we shall call ro and ri the unity

representations of the reduced groups 8, and K,,.
The unity representations of Sr 4L, is thus the product
ro F’. For a point group 8 containing improper
rotation, one can prove that there is two one-dimen-
sional representations of that group which induce the
unity representation of its reduced subgroup. The
first one, we shall note r 0+ is the unity representation
of 8 while the other one, we shall note r 0-’ has no
special name except in the case of a centred group
where it is the odd representation (Alu). The charac-
ters of those two representations are general and
given in table II. The same consideration is valid if the
molecular group K, contains improper rotations
and we shall call F " and Fo the two representations
of K, inducing the identity representation ri of Jttr.
We can now, for the different case of table I, list the

representations of 8fl which induce the identity
representation of J .

Table II. - Characters of the two representations
of a point group 8 (containing improper rotations)
which induce the identity representation of the reduced
subgroup 8,.

In the first case where both symmetry groups Jl
and 8 are purely rotational group, the only allowed
representation of SM is the product ro r ¿ of the unity
representation of 8 and M. The development of
Po([Q]) thus reduces to :

In the second case, where the molecular group X,
contains improper rotations while the site group 8
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does not, the two possible products r 0 r  + and

ro r¿- generate the unity representation of J and the
development of Po([Q]) can be written

Remark. - If M is a centred group, the identity
representation Alg of JL is included only in the mani-
folds { Ym 1 with an even value of l, while the odd
representation Alu can occur only for an odd value
of 1. Consequently, the development (3.8) includes
only functions of the first kind L1 {oi.ô+ for even values
of 1, and functions of the second kind L1/oi.ô- for odd
values of 1. This remark is not valid for a molecular

group which is not a centred group. For instance,
the representation A2 of the tetrahedral group
Td(rô = A2), is included in the manifolds 1=6, 9,
10, 12 etc... while Ai (AI = To+) is included in the
manifolds 

At last, when both symmetry groups contain

improper rotations, the allowed representations for
P,([Q]) must be searched among the four products
r 0+ r ¿ +, r 0- r ¿ +, r 0+ F’- and rj r ¿ -. It is clear,
from table II, that only r 0+ r ¿ + and r 0 rô- gene-
rate the unity representation of J. According to the
remark at the end of part (3.1), this result holds even
in the case when both groups 8 and ,,4t are centred
groups. Thus the development 6f Po([Q]) appears to
be :

Remark. - If 8 and JL are both centred groups,
functions of the first kind J/o+ï.ô+ appear only for
even values of 1 while functions of the second kind

appear for odd values of 1.

3. 3 CONCLUSION. - The above method provides in
every case a complete and non redundant set of basis
functions which fulfills the symmetry properties of
the pd! Po([D]). It must be stressed that in the case of
symmetry groups containing improper rotations, the
development of Po([Q]) involves basis functions
which are not in the unity representation of the
molecular and site symmetry groups. In that case,
the symmetry adapted functions for Po([Q]) falls into
two categories : those which are related with the

unity representation r 0+ and ri+ of the groups 8 and
f1 and those which are related to the other allowed

representations of these groups r 0- and fo .
The results presented here are not completely

new. Hüller and Press (Ref. [12]) have already used
those symmetry adapted functions to develop the

probability P,([Q]) and calculate the coherent elastic
scattering function of a disordered molecular crystal.
However these authors used an incomplete basis

including only the functions related to the identity
representations of the molecular and site groups.
Nevertheless, their results are correct and the reason
for this is quite simple and general.

In most cases, informations about the orientational
structure of disordered molecular crystals are derived
from the measures of a molecular observable. In

crystal axes, the value of this observable depends on
the molecular orientation with respect to the crystal
axis and experimental data correspond to an averag-
ing over all molecular orientations. As this observable
is, by definition, in the unity representation of the
molecular group the measured mean value is only
related to those coefficients of Po([Q]) which are in
the unity representation of fl and therefore of SM.
However, we shall see in the next paper, that the

coefficients of the second kind (related to the represen-
tation rj and 1-’-) have a real physical meaning and
that they can in principle be measured through
incoherent neutron scattering experiments.

4. Examples. - Three examples will now illustrate
the above formalism. In the first one, a tetrahedral
molecule (fl = Td) is placed in a cubic site (8 = Oh).
This is the case of the high température phases of
CD4, CBr4 and neopentane C(CH 3)4. The two other
examples correspond to the two disordered phases of
tertiobutyl-chlorine CCl(CH3)3. The molecular group
is C3v and the site group is Oh in the high temperature
phase or D4h below the transition temperature.
In each case, we shall give for the first values of the
index 1 the number of independent symmetry adapted
functions which appears in the development of the
pdfPo([Q]). We shall adopt the crystallographic nota-
tions for the irreducible representations of the groups
Td, C3,, Oh and D4,,. Thus, for instance, the five

representations of Td are noted A1, A2, E, Fi and F2
and we can easily identify the identity representation
ri+ = AI and the other allowed representation
ro = A2.
The first step consists in splitting the space

into irreducible subspaces with respect to the four

groups Td, C3v’ Oh and D4h. For the first values of 1,
this decomposition can be found in reference [10],
from which one easily writes down table III.
Now we just have to count, for each value of 1,

the number of possible products r 0+ F " and rg F’-.
The results corresponding to each one of the three
cases we have consider appears below in table IV.
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Table III. - Decomposition into irreducible subspaces of the first 1 manifolds.

Table IV. - Number of independent, non trivial coeffi-
cient in the development of the pdfPo([Q]).

The basis functions for 1 = 0 correspond to a

uniform density of orientational probability. The
coefficient of this function in Po([Q]) is always equal
to unity, which ensures that PO(j Q 1) is normalized.

Thus, for a tetrahedral molecule in a cubic site, the
first non trivial coefficient of P o([Q]) arises for 1 = 4,

and the first coefficient which is not in the identity
representation of Oh and Td must be waited until
1 = 9. This is due to the high symmetry of this case.
For a molecule C2v in a site C2v’ for instance, coeffi-
cients of the second kind arise for 1 = 2, 3, 4, 5... etc.
Tables of reference [10] give also the coefficients

ay"’ and pt-’m’ which related surface harmonies to

spherical harmonics. They can be used to explicit
symmetry adapted functions according to for-
mula (3.3).

Remark. - The above formalism can also be

applied to the simple case of a linear molecule. Then,
the molecular symmetry group is 2) 111 hif the molecule
has a symmetry centre (a dumb-bell molecule for

instance) and Coov otherwise.
Let us choose the molecular axis { x, y, z } in such a

way that the z axis is the Coo axis of the molecule.
For a given orientation of the molecule characte-

rized by the Euler angles [Q] ] = (0, ({J, §), the spherical
coordinates (e, 4» of the Cac axis in the crystal axis
are :

the surface harmonics which are in the identity
representation of Coo are just the spherical harmonics
Yl0 ; ,l ,

Yi° is in the identity representation of Coov ;
Yi° is in the identity representation of DOOh for 1

even, and in the Alu representation of for l odd.
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Thus, the symmetry adapted function for the

pdf Po([Q]) are the following :

From the relations given in reference [9], one easily
show that

In the case of linear molecule, one recovers sym-
metry adapted functions which, of course, only depend
on the spherical coordinate of the molecular axis and
which are just the surface harmonics relative to the
site group 8 as it was expected.

5. Conclusion. - The formalism developed here

provides a complete and orthonormal set of basis
functions L1 /i.’ ([ Q]) suitable for the description of

orientationally disordered molecular crystals. Those
basis functions can be called symmetry adapted func-
tions as they transform, at the same time, according
to the irreducible representations of both the site

symmetry group 8 and the molecular symmetry
group tel. The development of the orientational

probability density functions P o([Q]) on such a basis
provides a set of independent parameters which
characterize the mean long range order of plastic
phases. In the same way, the canonical basis could be
used to analyse any function of the molecular orienta-

tions, such as the mean potentiel V([Q]) experienced
by one molecule in the surrounding of the others.
In the following papers, we shall use this basis to
describe the dynamics of molecular reorientations
and analyse the experimental data arising from
neutron, Raman and infrared scattering experiment.

In this paper, the orientational pdf has been defined
independently from the instantaneous position of
the molecular centre of mass which is assumed to be
in its equilibrium position. Recently, Hüller, Press
and Grimm (Ref. [13]) have extended the method
of symmetry adapted functions to the development of
conditional pdfPo([Q] , R) in order to take into account
the correlation between the orientational pdf and the
instantaneous position of the molecular centre of
mass, R.
The main originality of this paper lies on the close

study of the symmetry problems encountered when a
molecule with a point group symmetry K, is located
on a site with a point group symmetry S. When both
the molecular and site groups involve improper
rotations, the full symmetry group of the orientational
probability function Po([Q]) is only the reduced sub-
group (SM)r of all proper rotations included in the
product SM. Thus, in that case, the development
of P o([Q]) involves basis functions which are not

generally considered because they are not in the

identity representation of SM. However, we shall
see in a next paper that the associated coefficients are

crystal observables and arise directly, for instance,
in the analysis of incoherent neutron scattering data.
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