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Résumé. — Cet article passe en revue quelques progrés récents en théorie statistique de la tur-
bulence développée. L’accent est mis sur les analogies mais aussi les différences avec la mécanique
statistique hamiltonienne, en particulier les phénomeénes critiques.

La méthode des équations spectrales qui joue un peu le réle d’une théorie du champ moyen est
discutée en détail. Elle est présentée comme une reformulation de la théorie de Kolmogorov de 1941,
permettant d’étudier I’énergétique de la turbulence (spectres en loi de puissance, cascades d’énergie
directes et inverses, dissipation d’énergie dans la limite de viscosité nulle...). En outre cette méthode
éclaire de fagon intéressante les résultats tant démontrés que conjecturés sur les équations de Navier-
Stokes et d’Euler que I’on passe en revue en termes plus accessibles que dans la littérature mathé-
matique.

1l existe de fortes indications expérimentales (intermittence) que la théorie de Kolmogorov de 1941
n’est en fait qu’une premiére approximation. Certains des efforts actuels pour prendre en compte des
grandeurs statistiques au-dela du second ordre, au moyen de techniques formelles inspirées de la
théorie quantique des champs ou des phénoménes critiques, sont aussi discutés.

Abstract. — This paper gives a self contained review of some recent progress of the statistical
theory of fully developed turbulence. The emphasis is on both analogies and differences with Hamil-
tonian statistical mechanics, in particular critical phenomena.

The method of spectral equations, which plays to a certain extent the role of a mean field theory,
is discussed in detail. It is here viewed as a reformulation of the Kolmogorov 1941 theory leading to
quantitative insight into the energetics of turbulence (power-law spectra, direct and inverse energy
cascades, energy dissipation in the limit of zero viscosity, etc.). In addition, it sheds light on the proven
and conjectured properties of the Navier-Stokes and Euler equations which are reviewed in terms
more accessible than those of the mathematical literature.

There are strong experimental indications (intermittency) that the Kolmogorov 1941 theory is only
approximate. Some of the current efforts to handle higher than second order statistics by formal
methods inspired from quantum field theory or critical phenomena are also discussed.
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1. Introduction. — The word turbulence is used to
describe a wide family of diverse phenomena, even
when restricted to systems adequately described by
the Navier-Stokes (NS) equation for incompressible
fluids [1]

ou 3 .
-a—t—+(u.V)u= —Vp+vViu+f (a)

Vau=20. (b) .0

(+ boundary and initial conditions).
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f denotes a possible external force per unit mass and v
the kinematic viscosity. The pressure force per unit
mass — Vp which is necessary to maintain incompres-
sibility, can be expressed as a quadratic functional of
the velocity by taking the divergence of eq. (1.1.a) and
solving the resulting Poisson equation. For zero
viscosity, the NS equation is called the Euler equation.
It is easily checked that for three-dimensional flows,
the non-linear terms conserve both the energy

&0 = %j | u(r) |* d®r 1.2
and the helicity [2, 3, 4]
3(f) = % j (). o() dr (1.3)
where
o = curl u 1.4)

is called the vorticity.

As an illustration of the different regimes described
by the NS equation, consider in figure 1 the photo-
graph (taken from Prandlt [5]) of the flow past a
cylindrical body. From the diameter L of the body and
the (uniform) velocity V of the fluid far upstream, one
constructs the Reynolds number R = LV/v which
appears as the ratio of the non-linear to the dissipative
terms in the NS equation. If R is much less than one,
the flow is time-independent and laminar. As R grows,
several flow regimes are encountered :

1) The laminar flow which was stable for R < 1,
becomes unstable and is replaced by another laminar
flow which has two counter-rotating vortices just
downstream of the cylinder.

ii) The above laminar flow becomes unstable and is
replaced by a time-dependent flow in which vortices
are shed, in a quasi-periodic manner, and carried
downstream.

iii) The vortex structure becomes less and less
distinct.

iv) In the limit of infinite Reynolds number, a
highly chaotic flow develops in regions of the fluid
downstream of the body.

Let us stress the strong difference between the
second regime referred to as transition to turbulence
and the fourth one called fully developed turbulence.
The former has recently attracted much attention for
example in the context of the Rayleigh-Bénard
convection and Couette flows where the fluid is driven
respectively by thermally produced gravitational forces
and centrifugal forces ; see Martin [6] and McLaughlin
and Martin [7] for reviews. This regime is chaotic in the
sense that the time-correlation-function, obtained by
temporal averaging, tends to zero for large time
separations. However, the presence of distinct spatial
structures (the rolls in the Rayleigh-Bénard convection
and the Taylor cells in the Couette flows) which are



Nes

FULLY DEVELOPED TURBULENCE AND STATISTICAL MECHANICS 443

9

FIG. 1. — Photographs of different flow regimes past a cylinder (taken from Prandlt [5]).

characterized by just a few length scales means that the
chaos is temporal and not spatial. Models which
exhibit such behavior have been obtained from severe
truncations of a modal representation of the primitive
equations. The Lorenz [8] model for example is
derived from the Rayleigh-Bénard system by retaining
only three modes. This model has proved to be highly
useful as a simple example of a bifurcating system.

N

When the model’s Rayleigh number (the ratio of the
temperature induced buoyancy force to the viscous
force) is increased, there is a first bifurcation from a
purely conductive (zero velocity) solution to another
stationary solution which corresponds to the usual
convective rolls; after the second bifurcation, there
is numerical evidence that the phase-space trajectory
is ergodic on a strange attractor which locally appears
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as an infinite-sheeted surface. Similar models are
discussed in Hénon and Pomeau [9]. It is possible
to find mathematical models which develop strange
attractors after four bifurcations. Their mathematical
aspects are developed in Ruelle and Takens [10] and
Ruelle [11], and their relation to higher order trunca-
tions of the Rayleigh-Bénard system are discussed in
McLaughin and Martin [7]. We shall not dwell here
on this very interesting aspect of tramsitional turbu-
lence ; see Clever and Busse [12], Joseph and Sattin-
ger [13], Joseph [14, 15], Sattinger [16, 17], Iooss
[18, 19], Marsden and McCraken [20], Normand,
Pomeau and Velarde [21].

In contrast, fully developed turbulence (which we
shall in this paper simply refer to as rurbulence) is
characterized by a spatio-temporal chaos : there is a
hierarchy of flow structures (eddies) whose length
scales extend from /[, characteristic of boundary
and/or initial conditions, to the dissipative scale
lys < Iy, where viscous and inertial forces become
comparable.

The chaotic aspect of fully developed turbulence
can be characterized in several ways. In a given
flow-realization the trajectory of each fluid particle is
extremely intricate, leading to strong mixing of the
flow and to drastically modified transport properties
compared to those in the laminar state. This modifi-
cation usually amounts to an enhancement of the
transport coefficients (one then talks of turbulent or
eddy transport coefficients). Even when the small
scales of such a flow cannot be resolved (e.g. in
distant stars), these changes in the transport properties
may have observable consequences. Another charac-
terization is found in the instability of a given flow-
realization : a small amount of noise in initial condi-
tions will be amplified and attain a significant level
independent of its initial value (*). This naturally leads
to the use of a statistical description of fully developed
turbulence which is in this paper our main concern.
Note that there has been recently a renewed interest
in the properties of individual flow-realizations in
connection for example with large scale semi-coherent
structures (Laufer [24]).

Let us now outline the content of the paper. In
chapter 2, we introduce some of the fundamental
concepts of fully developed turbulence. In chapter 3,
we compare turbulence to systems in thermal equi-
librium. Existence of energy transfer is motivated by a
model whose properties are similar to those of a
thermodynamic system in its equilibrium properties
but ressemble turbulence when it is far from equi-
librium. In chapter 4, we present a restatement of the
classical Kolmogorov (1941) [25] phenomenological

() This also applies to noise in the boundary conditions.
Although this is apparent experimentally, the construction of
models for mean quantities which take this effect into account is
difficult [22, 23].
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theory (in short K41), which contains many important
concepts and has strong implications concerning the
eventual nature of a mathematical theory. Chapter 5
is devoted to the results which can be rigorously
obtained from the Euler and Navier-Stokes equations.
The K41 theory also sets the framework for the method
of spectral equations presented in chapter 6, a possible
starting point for the reader mostly interested in
closure. Within this approximate framework it is
possible to answer a number of mathematical ques-
tions which are still open in the context of the primitive
Euler and NS equations. The most important defect
of the K41 theory is that it does not take into account
intermittency (the very sparse spatial distribution of
small eddies). Intermittency is one of the most chal-
lenging question in the theory of turbulence; it is
considered in chapter 7, mostly on a phenomenologi-
cal basis. In chapter 8, we compare turbulence with
critical phenomena and also discuss the possible
applications to turbulence of the calculational techni-
ques recently developed in this field.

Finally, let us make some bibliographic comments.
Review papers in somewhat the same spirit as the
present one but with less emphasis on the relation
to modern statistical mechanics and mathematics
include Orszag [26] and Kraichnan [27, 28]. An
extensive discussion of Kraichnan’s DIA and related
theories is given in Leslie [29]. A review of scaling
behaviour at high Reynolds numbers is given by
Nelkin [30]. Reviews concerned with the prediction of
turbulence in realistic (usually inhomogeneous) situa-
tions include Tennekes and Lumley [31], Brad-
shaw [1, 22], Craya [32], Fernholz [33], Johnston [34],
Bradshaw and Woods [35], Reynolds [23, 36], Reynolds
and Cebeci [37], Launder [38], André [39]. A compre-
hensive survey of the physics of turbulence is given in
Monin and Yaglom [40]. For more detailed reviews
of the mathematics of the Navier-Stokes and Euler
equations, we refer the reader to Lions [41], Lady-
zenskaya [42, 43], Ebin and Marsden [44], Marsden,
Ebin and Fischer [45], Bardos [46] and Bardos and
Benachour [47]. Let us also mention the old but still
illuminating paper by von Neumann [48].

2. Fundamental concepts. — 2.1 INHOMOGENEOUS

TURBULENCE AND EDDY VISCOSITY. — It is often the
case for practical applications that a knowledge of

only the simplest flow statistics is required. As an
example, to calculate the mean turbulent drag on an
object, all that is needed is the mean velocity < u ).
However, the nonlinear terms in the NS equation do
not permit the derivation of an equation for (u )
alone. If the velocity field is decomposed into a mean
and a fluctuating part

u=duy+u, 2.1

one can derive an equation of motion for { u(x) > in
which terms of the form < u/(x) #'(x) > occur. Again,



Ne 5

because of the inertial terms, an attempt to derive an
equation of motion for < u'(x) u'(x) ), the so called
Reynolds stress tensor, necessarily introduces terms
of the form < u'(x) u'(x) u'(x) >, etc... The traditional
phenomenological approach to this closure problem is
associated with the name of Prandtl [49]. It is motivated
by the kinetic theory of gases and consists in the
simplest case in approximating the effects of fluc-
tuations on the transport of mean momentum
(velocity) by enhancing the values of the kinematic
viscosity by an eddy viscosity vg, which is defined by

<waw«w>=~%v4§i<uxw>+g}<wunﬂ.

Xj
2.2
The eddy viscosity is often approximated by
vg ~ (lul )y

where the mixing length I, is usually taken to be the
integral scale of the velocity fluctuations (see Brad-
shaw [22], Mellor and Herring [50], Tennekes and
Lumley [31], Reynolds [36], Craya [32] for reviews).
These models are strictly valid only when the fluc-
tuations have a characteristic length scale much
smaller than that of the mean velocity. In the kinetic
theory of gases, one usually has such a separation
between, say, the mean free path and hydrodynamic
scales. In inhomogeneous turbulence, in contrast,
there is never a clear separation between the length
scales of the fluctuations and those of the mean field.

More recent models work explicitly with the
Reynolds stress tensor as well as the mean velocity ()
(Hanjalic and Launder [53], Launder [54], Launder,
Reece and Rodi [55], Donaldson [56], Lumley and
Khajeh-Nouri [57], Wyngaard and Coté [58], Win-
gaard, Coté and Rao [59], André [39]). As mentioned
before, this introduces triple correlations whose signi-
ficance is connected with the energy transfer. The
conservation of energy by the non-linear terms of the
NS equation implies a transfer of energy from one
location to another (spatial transfer) and from one
scale of motion to another (spectral transfer).

2.2 HOMOGENEOUS ISOTROPIC TURBULENCE AND THE
DYNAMICS OF THE FLUCTUATIONS. — A quantitative
description of the spectral transfer requires the
explicit introduction of two-point-correlations. Their
systematic study in the inhomogeneous geometries

() Though such models succeed in describing a large number of
situations, they are unsuitable for the cases where there are signi-
ficant spatial variations of the integral scale, for example in some
experiments on spatially decaying turbulence [51]. Recent inves-
tigations suggest that, in addition to the mean velocity and the
Reynolds stress tensor, the vector potential of the velocity field must
be explicitely considered ; it contains in effect important infor-
mation on the largest eddies [52].
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characteristic of real flows is difficult. Some attempts
have nevertheless been made. Herring [60, 61] per-
formed calculations of thermal convection with
methods which are in some sense intermediate between
the above one-point phenomenological models and the
more quantitative two-point closure methods des-
cribed in chapter 6. Kraichnan [62, 63], Herring [64]
and Leslie [65, 29] have suggested that the latter can
be use to deduce the former. We shall here restrict our
study to homogeneous turbulence, a flow whose
statistical properties are invariant under spatial trans-
lations : the mean velocity is uniform and hence may
be eliminated by a Galilean transformation. Tur-
bulence then reduces to the dynamics of fluctuations.
A further simplification consists in assuming that the
turbulence is isotropic (i.e. statistically invariant
under rotations) and non-helical (i.e. statistically
invariant by mirror symmetries). For a flow which
possesses these symmetries, the two-point correlation
tensor

Ui, ) = Cux, Duf(x + 1,0 > (2.3)
is characterized by its trace [66, 67]
3
Ulr, 1) = ), Uyr) (2.4
i=1

where r = | r |. Since our conceptual understanding of
turbulence involves the classification of eddies accord-
ing to their size, it is often convenient to work with the
Fourier transform of U(r, f), denoted by Uk, ?).
In terms of U, the kinetic energy per unit mass is

80) = 5 <1, ) ) =

0

=% ‘[ Ok, 1) d% = f Etk,ndk (2.5

where d is the dimension of space and

Ek, ) ~ k%1 Uk, 1) (2.6)

is called the energy spectrum; it characterizes the
energy distribution among the different scales of
motion.

The experimental result on three-dimensional tur-
bulence which has been the focus of theoretical
interest, is the existence of a range of eddy-sizes,
{1;1ly> 1> Iy}, called the inertial range, where
turbulent kinetic energy production and dissipation
are negligible (see Fig. 5 in ref. [68]) and where the
spectrum exhibits a scaling behaviour [69]

E(k,?) oc k™™, 2.7
with m close to 5/3.

The spectrum with m = 5/3 is the celebrated

Kolmogorov (1941) spectrum. It is shown in Appen-
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dix 1 (cf. also Batchelor [66]) that if 1 < m < 3, the
correlation function U(r) is locally determined in
Fourier space in the sense that it is determined by
U(k) for k in the neighbourhood of r~!. This implies a
scaling law for the structure function
U@©) — U@r) oc rm~1. 2.9
The huge Reynolds numbers required to produce
an extended inertial range are experimentally acces-
sible in geophysical flows such as the planetary
boundary layer and tidal channels. Of course, the
large scale eddies reflect the inhomogeneities charac-
teristic of the forces and boundaries conditions which
produce them. Nevertheless, since the characteristic
times decrease geometrically with eddy size (see
chapter 4), a large number of generations is produced
during the life-time of the large anisotropic eddies,
and the idealization of homogeneous isotropic tur-
bulence is approximately realized in the small scales.
We refer the reader to Van Atta [70] and Comte-
Bellot [71] for a review of the measurement methods.
With the latest generation of computers which can
handle of the order of a million words in central
memory, direct numerical simulations of the NS equa-
tion with periodic boundary conditions and random
initial conditions are now feasible with Reynolds num-
bers up to a few hundred in three-dimensions [72, 26]
and up to about thousand in two-dimensions [73, 74,
75, 76]. Only in the two-dimensional case, are the
Reynolds numbers sufficiently high for the spectrum
of the solution to display an inertial range [77].

2.3 VORTICITY DYNAMICS AND ENERGY TRANSFER
IN THREE DIMENSIONS. — The vorticity dynamics
(which will be seen in section 7.1 to be also relevant
in understanding intermittency) gives a configuration-
space interpretation of the energy transfer to small-
scale motions in three-dimensional turbulence. In
effect, in the absence of viscosity the vorticity
w = curl u satisfies (D/D¢ is the Lagrangian deri-
vative)

Dw

Br ‘Z—c;’+(u.V)w=~ (@.Vyu. (2.9

This reveals an intimate connection between the energy

transfer and the distortion by velocity gradients of a -

small line element dl being carried by the flow : its
evolution is governed by eq. (2.9) where w has been
replaced by dl. The question of the stretching of a line
element by a prescribed random velocity field has
been studied by Batchelor [78], Cocke [79, 80] and
Orszag [81]. The main result is that a line element
which is initially statistically independent of the
velocity field is, in the mean, stretched, but the exact
law of stretching is not known. Such results cannot be
used for vortex lines, the integral curves of the vorticity
field because velocities cannot be assigned indepen-
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dently of vorticities. However, the following very
simple argument taken from Bardos and Frisch [82]
suggests that in the non linear case there may be a
catastrophic growth of the vorticity : the vorticity is
just the anti-symmetric part of the velocity gra-
dient Vu; if we tentatively identify w and Vu and
discard vector and tensor indices, we obtain that the
Lagrangian rate of change of the vorticity is something
like the squared vorticity, which implies that w blows
up at the time (°) ¢, = |sup w, |

Growth of the mean squared vorticity can be
demonstrated rigorously for short times with Gauss-
ian initial conditions. (Ref. [26], p. 306). There is
numerical evidence that this growth persists at least
for some time (Ref. [26], p. 274). Mean square vorticity
Q = { w? ) is usually called enstrophy. 1t is related to
the energy spectrum by

Q =ka2 E(k) dk .

0

Growth of enstrophy together with conservation of
energy requires an energy transfer to high wave-
numbers.

2.4 THE SPECIAL CASE OF TWO-DIMENSIONAL TUR-
BULENCE. — Large scale flows in the earth atmosphere
and oceans are known to be mostly two-dimensional
but of course not exactly so [85, 86, 87]. In two dimen-
sions, the Euler equations has the property of conserv-
ing in addition to the energy the vorticity of each fluid
element as it follows the velocity field (). This is
immediately seen from the vorticity equation (2.9)
whose right hand side vanishes identically in two
dimensions. For example, if the flow is confined
to the (x,y)-plane, then w = (0,0, w), while
V = (d/0x, 0/dy, 0) and (w.V) = 0. A special conse-
quence is the conservation of enstrophy. This excludes
the possibility of significant energy transfer towards
the small scales [90]. It is generally believed that the
energy cascades to large scales (inverse cascade) and
that enstrophy cascades to small scales ([91], see also
Section 6.3).

Spectra derived from large scale atmospheric
motion [92, 93, 94, 95] and from turbulent flows of
mercury constrained by a strong magnetic field [96, 97]
exhibit a k3 range. This has been interpreted as
evidence of enstrophy cascades, but the existence of
physical effects related to the earth’s rotation in the
former and Joule dissipation in the latter which

(®) Note that this argument applies neither to two-dimensional
flows (cf. Section 2.4) nor to axisymmetric flows (cf. the spherical
vortex of Hill [83, 84] which is a steady axisymmetric solution).

(*) This property does not survive in MHD, which makes the
two-dimensional MHD turbulence dynamics very different from
the non-magnetic ones [88, 89].
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compete with the transfer makes their relevance to the
turbulent solutions of the two-dimensional NS equa-
tion doubtful (Leith 1975 private communication,
cf. [98]). A k2 energy spectrum has also be observed
for turbulence in a steady stratified fluid, i.e. a fluid
in a gravitational field with the density of the fluid

FULLY DEVELOPED TURBULENCE AND STATISTICAL MECHANICS 447

decreasing upwards, assuming the Boussinesq approxi-
mation [99, 100].

2.5 DETAILED CONSERVATION PROPERTIES OF THE
EULER EQUATION. — After spatial Fourier transform,
the Euler equation of an unbounded fluid reads

0 . i . .
S0 = = 53 P - J i@ 0 (@, 0 4% (@
J.m

p+a=k
k.ik, 1) =0 ) (2.10)
with
P (k) = k, P;k) + k; P,,(k) (2.11)
where
P, (k) = 6; — k; k;/k? 2.12)

is the projection operator on the plane perpendicular to k.
The global conservation of energy implies a detailed conservation in which any triad

{a£ k), a(xp,

it q);

k+p+q=0}

exchanges energy among its members conservatively. This is a direct consequence of the energy being a quadratic
invariant [91], but can also be seen more directly. Indeed, starting from eq. (2. 10), let us evaluate

where

Use of the definition of P;;, and the transversality of u’s give

% | ak) | =j Sk | p, @ d9p d9q (2.13)
Sk |p,q = — Im { P;;,(K) i(p) i,(@) (k) } 6k + p + 9). (2.14)
Sk |p, @ = — Im { (k.a(q) @(p).a(k)) + (k.a(p)) (@(Q).4(K)) } 6%k +p + @) . (2.15)

Detailed conservation means that

Sk|p,9+S(p|q.k)+S(q|k p)=0. (2.16)

The terms of this sum are cyclic permutations of

(k). a(p)) (k+p) (@) 6k +p+q) (2.17)

which vanishes because of the transversality of i(q).

Similar calculations lead to detailed helicity and
enstrophy conservations in three and two dimensions
respectively.

3. Relationship to equilibrium statistical mechanics.
— We begin this chapter by demonstrating a funda-
mental difference between turbulence and thermal
equilibrium and then attempt to bridge the gap by
using a model-system with the following features : it is
similar to a thermodynamic system in its equilibrium
properties but far from equilibrium, it resembles
turbulence.

3.1 ENERGY TRANSFER AND THE LACK OF A FLUCTUA-
TION-DISSIPATION THEOREM IN TURBULENCE. — In an

equilibrium system, fluctuations tend to restore ther-
modynamic equilibrium; in contrast three-dimen-
sional turbulence is concerned with the fluctuations of
energy transport from large to small scales of the
motion. One might think that the non-equilibrating
effect of the energy transfer could be compensated by
driving the fluid with external forces in such a way
that a statistically stable stationary state is maintained :
the energy lost to the small scales being balanced by the
external injection of energy at large scales. However,
the fluctuations about this stationary state are different
from the fluctuations about thermal equilibrium.
Consider a classical interacting gas in thermal equi-
librium. On the average, the energy density is spatially
uniform. If at a given instant of time, a fluctuation is

- observed whereby the energy density in a given region

is lowered under its mean value, then, because energy
is conserved and because we presume the interaction
between the molecules of the gas to be short-ranged, a
compensating augmentation of energy must be found
in the neighbourhood of this region. As the fluctuation
relaxes, energy which was transferred out of the given
region returns. There is thus a direct correlation
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between the original fluctuation and the subsequent
relaxation process. The fluctuation-dissipation theo-
rem is a compact mathematical representation of this
effect [101, 102]. Now, consider a fluctuation in a
turbulent fluid whereby, the energy in (inertial range)
eddies of a certain size in a given spatial region is
transferred to eddies of a comparable size in a neigh-
bouring spatial region. If the turbulence is in a sta-
tionary state, then there will be a transfer of energy
back into the given region. However, because the
transfer of energy to smaller eddies occurs on a time
scale comparable to that for spatial transfer, the
energy that was initially transferred out is no longer
available : it has been pushed to the smallest eddies
and dissipated by viscosity. Thus, the energy which
drives the local energy spectrum back towards its
mean values is not closely correlated with that which
was initially lost. Instead, it comes from the energy
cascade generated by the new eddies which are
being injected to maintain stationarity. This absence
of correlation between fluctuations and relaxation is
reflected in the non existence of a fluctuation-dissi-
pation theorem for turbulence. This difference can be
illustrated by considering an abstract space in which a
point represents a probability distribution function.
In this space, the evolution of the gas is self-corrective,
whereas turbulence amplifies deviations from an
initial truncated absolute equilibrium state with each
step of the cascade (Kraichnan [28], Monin and
Yaglom [40] chap. 8).

3.2 ABSOLUTE EQUILIBRIUM IN THREE DIMENSIONS, —
. The absolute equilibrium model, introduced indepen-
dently by Burgers [103], Hopf [104], Lee [90] and
Kraichnan [105] has the virtues of being closely
related to the usual thermodynamic systems in its
equilibrium properties, yet resembling turbulence
when it is far from equilibrium. It is obtained when the
discrete Fourier transform of the Euler equation
(e.g. assuming cyclic boundary conditions) is truncated
by retaining only those wavenumbers which fall in an
interval (Kpin > Kmax)s Kmin DEING sometimes taken to be
zero. The dynamics of the remaining finite number of
modes

{ﬁ(k)lk =%(nx, n, n, }, 3.1
where n,, n,, n are positive or negative integers such
that k;, < k < k., IS then governed by an equa-
tion similar to (2.10) where the integral is replaced by
a discrete summation and #(k), #(p), ti(q) are restricted
by (3.1). The #’s are further constrained by the
transversality (2.10b), and by the reality of wu(x).
These constraints allow us to associate with each k
in the half-space k, > 0, four independent variables
which correspond to the real and imaginary parts of
the components of # in a plane perpendicular to k.
Let {y,; 1 <a< N} be the set of independent
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variables. In the phase space of the y’s, a repre-
sentative point moves according to

dy, o
dl = Z Aabcybyc7

b,c=1

(3.2)

where 4,,. = A4,, are constant coefficients. Excluding
excitation at k = 0 (uniform advection of the flow),
a condition preserved by (2.10), we can assume that
A, vanishes if two indices are equal. The detailed
energy conservation by the original Euler equation
yields

Ape + Apey + Ay = 0. (3.3)
This implies the global energy conservation
d N
Gl =0 3.9

and the incompressibility of the phase space flow
of an ensemble of points :

3.9

In other words, the volume of a given region in the
phase space of the y’s is preserved as it evolves accord-
ing to (3.2). Assuming that the flow in the phase
space is mixing, we can carry over the usual analysis
which uses first the microcanonical ensemble and
then the canonical ensemble to describe the equili-
brium statistical mechanics of (3.2). It has the pro-
bability distribution (for zero mean helicity)

P() oc exp {— ﬂgyz/z} (3.6)

where B plays the role of an inverse temperature.
Evolution towards this equilibrium was observed
in the computer simulations of Orszag and Patter-
son [72].

The distribution (3. 6) has two outstanding features :

(i) It is Gaussian in the variables y.

(i) ¢ y? ) is independent of a, which is equivalent
to an equipartition of energy among the Fourier
modes u(k).

Equipartition implies that U(k) is independent of .
and therefore E(k) oc k2. The energy per unit mass
in the system at equilibrium is, assuming k_;,, = 0,

km.ax
&(f) o j k*dk oc k3, , 3.7

0

which diverges if the limit of k., — oo is taken.
This is analogous to the ultraviolet catastrophy of
classical blackbody radiation. Since we would hope
to regain the full Euler equation in this limit, we
conclude that if the initial velocity field has a finite
but non-zero energy per unit mass, a state of statistical
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equilibrium will never be attained as the velocity
field evolves in time according to the Euler equation.
This inability to reach equilibrium for k_,, = oo,
is one of the characteristics of turbulence. The impli-
cations of this statement are illustrated by a series
of Gedanken Experimente which lead up to the
limit k., = . For example, begin with a distri-
bution of energy which is in equilibrium, confined
by kpiw = 0 and k,,, = &k, then remove the cons-
traint at k = k,, and let the system evolve in time
according to (3.2) until it has again approximately
reached equilibrium at a time ¢ = 7, with a newly
imposed cutoff at k = k, > k. If

A k* k<k,
E("”‘O)‘{ 0 k>k, @
and 3.8)
A, k* k<k,
Ek,t=T)= b
(k, t ) { 0 k>k )

then conservation of energy implies that (see Fig. 2)

A4, AN

This shows a tendency to transfer energy up to the
highest wavenumbers available in Fourier space or
in other words a tendency for large eddies to generate
smaller eddies. Alternatively, one may see that
regions of high velocity gradient (high shear) are
created. This follows from comparison of the enstro-
phy at time t =0 and ¢t = T.

3.9

k2
k2 E(k) dk

CoX(T)) _jo 4, <k2>?

Ca¥0))y j 4,

k? E(k) dk

0

(3.10)

Therefore, for three-dimensional turbulence we
may interpret the transfer of energy to small scales
and the associated build-up of velocity gradients,
as a consequence of the Euler equation seeking to
attain an inaccessible state of statistical equilibrium.

More generally, if helicity is non-zero, the exponent
in eq. (3.6) should be a linear combination of energy
and helicity which is also conserved by the truncated
Euler equation. In contrast with the enstrophy
invariant in two dimensions (see section 3.3), the
helicity invariant does not lead to absolute equilibria
spectra which are peaked at small wavenumbers
[106]; this is no longer true in MHD (%) [107].

(*) The reader interested in helical MHD turbulence is referred
to Léorat, Frisch and Pouquet [108], Pouquet, Frisch and Léo-
rat [109], Léorat [110], Moffatt [111], Pouquet and Patterson [112].
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E(k

FIG. 2. — Evolution from an equilibrium truncated at k, to an
equilibrium truncated at k, > k;.

The effect of a non-zero mean helicity on energy
transfer has been analysed on the basis of spectral
equations [113] which indicate that the inertial range
is unchanged except for an inhibition of the rate of
energy transfer. This inhibition is suggested by consi-
dering the Euler equation in the form

2
-6—11+u><w=—V<p+—lf—).

< . (3.11)

A non-zero helicity ( u.w > implies a directional
correlation between u and w which tends to reduce
u x w, and hence the energy transfer (Patterson and
Malkus, private communication cited in ref. [107]).
In addition to energy and helicity, there exist the
Kelvin circulation invariants which do not seem
to have any counterparts in the truncated equations.

3.3 ABSOLUTE EQUILIBRA IN TWO DIMENSIONS. —
The existence of an additional positive-definite qua-
dratic invariant of the motion, the enstrophy

Q=YK (3.12)
profoundly changes the form of the absolute equili-

bria spectra (°). In place of the distribution given
by (3.14), we have [91, 115]

P(y) o exp {— Y (@ + Bk |y, |2} (3.13)

which yields

CNyal?) (3.14)

1
o + Bk?

(°) Hald [114] shows that for special truncations having only
a very small number of modes (up to 8), there may be other inva-
riant quantities, quadratic or cubic. For such systems, the flow
on the intersection of the surfaces corresponding to the invariants
is not mixing.
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where o and f are parameters which together deter-
mine the mean energy § and mean enstrophy Q;
see Fox and Orszag [116] and Basdevant and Sadour-
ny [117] for a computer simulation of the approach
toward this equilibrium. The case f = 0 gives energy
equipartition, o« = 0 gives enstrophy equipartition,
while the possibility of negative f# implies the existence
of spectra whose energy peaks at small wavenumbers.
The implication for the nonequilibrium behaviour
displayed during the approach to equilibrium is
complex because there are three different regimes
of behaviour depending upon the values of
ko = (2/6)Y/? relative to the truncation wavenumbers
knin and k... We refer the reader to Kraichnan [115]
who shows that an initial state in which energy and
enstrophy are concentrated at k, with

kmin < kO < kmax

leads to an inverse (to small wavenumbers) transfer
of energy and a direct (to large wavenumbers) transfer
of enstrophy.

Extension of this treatment to two layer flows
with or without topography and rotation has been
made by Salmon, Holloway and Hendershott [118].
They found that the system behaves essentially like
a single flow in the large scales and like two uncor-
related flows in the small scales.

In the context of the two-dimensional Euler
equation, it is also possible to consider the statistical
mechanics of a system of discrete point-vortices [119-
123]. The relationship between this approach and
absolute equilibrium has been investigated by Kraich-
nan [115]. It must also be mentioned that the numeri-
cal simulations of Boccara, Conte and Sarma [124]
indicate that such systems of discrete vortices do not
necessarily evolve towards statistical equilibrium.

4. Phenomenology following Kolmogorov 1941. —
4.1 K41 PHENOMENOLOGY FOR THREE-DIMENSIONAL
TURBULENCE. — By the Kolmogorov 1941 theory
(in short K41), we mean the general class of arguments
developed by Kolmogorov [25], Obukhov [125] and
others (see ref. [126] for review) which has led in
particular to the 5/3 law for the energy spectrum.

Consider a stationary homogeneous isotropic tur-
bulence where energy is injected with a forcing
spectrum F(k) peaked about a wavenumber ky(= 1//,),
as in figure 3. The energetics of eddies with wave-
numbers smaller than a given wavenumber k are
determined by an equilibrium between the injection,
the losses due to viscous dissipation and the energy
flux IT(k) to higher wavenumbers (to smaller eddies) :

=)
1§
|

k k
JE(p)dp=J F(p)dp —

0 0

D

t

k
- 2VI p*E(p)dp — (k) (4.1)

0
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F1G. 3. — The energy cascade according to the 1941 Kolmogorov
theory : at each step the eddies are space-filling.

IT depends upon the inertial terms in the Navier-
Stokes equation, and is expressible in terms of the
triple velocity correlation { uuu ) (cf. appendix 3).
We suppose that the flow will evolve into a quasi-
stationary self-similar hierarchy of eddies whose
wavenumbers form a geometric progression, say

k,=2"ky, n=20,1,2,.... 4.2
The energy, E,, carried by eddies of size [ (~ 1/k,)
is related to the energy spectrum by

kn+1
E = J E(k) dk @.3)

kn

There are three time scales implied by the Navier-
Stokes equation for an eddy of size 1/k in the hierarchy.
In the inertial range, the viscous time scale,

Tvisc(k) ~ I/sz (44)
is the largest of the three and may be ignored. The
inertial terms determine two time scales :

(i) The eddy-turnover-time,

Tn = ln/vn (4 M 5)

where

v, = ux) — ulx + 1) > D2 (4.6)

is a typical velocity difference accross an eddy of
size [,. It is the time required for the eddy to be dis-
torted and, in this distortion process, generate smaller
eddies. Therefore, 1, is associated with energy transfer.

(i) The sweeping time,
4.7

is the time required for the eddy of size /, to be simply
advected without appreciable distortion past a point
of observation fixed relative to the largest, most
energetic eddies. It is therefore irrelevant to energy
transfer.

Tsweep = ln/UO
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The tendency of eddies to generate smaller eddies
of comparable size makes the word cascade appro-
priate for the description of energy transfer (Fig. 3).

I1(k,) measures the rate at which energy is being
transferred out of the interval k, < k < 2k, into
the interval 2 k, < k < 4 k,. This rate is estimated
by the amount of energy in k, < k < 2k, divided
by the eddy-turnover-time

II(k,) ~ E,Jt, . 4.98)
If the flow is not intermittent (see chapter 7) and if
the spectrum is local (see Appendix 1), then

E, (1) ~ v(D) . 4.9)
Now, assuming the existence of a wavenumber
range, the inertial range, where injection is absent
and dissipation negligible (because t,.(k,) > 1,),
then energy conservation implies that IT(k,) is a
constant in this range. This constant is usually
symbolized by &, which gives, using (4.9)

3l ~¢. (4.10)

This leads to

E, ~ 23123 4.12)

which, by localness assumption, is equivalent to

E(k) = Ceg?P k313 (4.13)

This is the Kolmogorov spectrum. C is a universal
constant, generally called the Kolmogorov constant.
Note that such a spectrum, if not terminated by
viscosity, implies an infinite enstrophy

{w?) =J‘wk2E(k)dk.

0

To estimate the extent of the inertial range, we
use the condition that the viscous decay time becomes
comparable to the eddy-turnover-time. Let this occur
at a wavenumber k4. Then

1 1
ki) & (kaiee)
gives the Kolmogorov dissipation wavenumber (’)
kgiss ~ (g/V?)V*. 4.15)
When ¢ is evaluated for n = 0, we obtain
e ~ vafly, (4.16)

(7) This analysis can be extended to the case where the dissipative
term in the NS equation, v Au is changed into — v(— A)* u with a
dissipativity > 0. (— A)* is defined as the Fourier transform of
multiplication by | k [**. If « > 1/3, a dissipation range is obtained
at high wavenumbers; if « < 1/3 and the viscosity is too small,
the viscous time is everywhere longer than the transfer time and
this modified NS equation is expected to be as singular as the Euler
equation [127].
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which is clearly independent of the viscosity. For a
given value of viscosity, k4 simply adjusts itself
to make eq. (4.16) true.

Using eq. (4.1), the mean square velocity gradient
becomes

VulP)y ~{a?) =
£y kdiss
=j PP E(p)dp ~ szﬁj p3dp ~¢gv. (4.17)

0 0

We take this to mean that for any v > 0, the velocity
field is differentiable. This justifies the usual mani-
pulations to prove that the inertial terms in the Navier-
Stokes equation conserve energy. It follows from
egs. (4.1) and (4.17) that the energy balance reads

0=%JwE(k)dk= —e+j F(k)dk .
0

0

(4.18)

Thus, ¢, which was originally defined as an energy
transfer rate, is also equal to the energy dissipation
and energy injection rates. These considerations lead
to the picture of energy being injected into the flow
at small wavenumbers, and being transferred to
higher wavenumbers where it is eventually removed
by viscosity (see Fig. 3).

4.2 EXTENSION OF K41 PHENOMENOLOGY TO TWO
DIMENSIONS. — Consider the unforced inviscid initial
value problem with an initial energy spectrum peaked
at k,. The conservation of enstrophy

Q=< ?) =j°° k* E(k) dk (4.19)
0 .

prevents the establishment of a direct cascade of
energy to high wavenumbers since such a cascade
would increase the enstrophy. But an enstrophy
cascade has been conjectured [91, 128, 129] : the
(constant) rate of enstrophy transfer is given by

n=Q,/, (4.20)

where

kn+1
Q, = j K* E(k) dk ~ k3 E(k,) . (4.21)

kn

If we take for 7 the same (local) expression that was
used in three dimensions, i.e.

1, = LJEY? = (k2 E(k,))" "%,
we obtain

E(k) ~n?P k3, (4.22)
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which invalidates the locality assumption
(E(k) ~k™™;m < 3) (see Appendix 1).

A more refined analysis has been made by Kraich-
nan [130] : if one uses for the eddy-turnover time 1
the non-local expression (see Appendix 1)

k —-1/2
r(k)=[ f p* E(p) dp] , (4.23)

0

then eq. (4.20) becomes

k 1/2
n~k E(k)[j p* E(p) dp] (4.24

0o

which gives a log-corrected spectrum

. k -1/3
E(k)~n2/3k‘3(1nk—> ) (4.25)

0

Note that with (4.22), all octaves below a given
wavenumber k contribute the same amount to the
strain acting on eddies on size close to 1/k, whereas
with (4.25) we have gained a certain amount of
locality (not very much actually). Nevertheless the
dynamics of the enstrophy cascade remains deter-
mined essentially by the quasi-uniform straining
action of the largest eddies. This is a linear problem
related to the somewhat simpler question of the quasi-
uniform straining of a passive scalar [131].

This transfer of enstrophy to high wavenumbers
is necessarily accompanied by some energy transfer ;
this would increase the enstrophy if a larger quantity
of energy were not simultaneously transferred to
small wavenumbers [132, 133]. To see more clearly
the inverse energy transfer, let energy be injected
in a narrow wavenumber-band near k, at a rate e.
This is necessarily accompanied by enstrophy injection
at a rate § & ek3. The energy cannot be significantly
transferred to large wavenumbers; instead, it is
transferred to small wavenumbers at the rate &. We
then obtain an inverse energy cascade where the K41
analysis gives as usual E(k) ~ ¢*3 k=373, It follows
from the divergence of the integral of k%3 at k = 0,
that the development of such a range will never
reach zero wavenumbers at a finite time. The conser-
vation of energy implies that at time ¢ the inverse
cascade reaches up to wavenumber k,;, () given by
(e(0) is the initial energy)

ko
gt + §(0) ~J. X3k~ dk.  (4.26)
kmin(t)
For large ¢ we obtain
Kpin (1) ~ g7 1317302, 4.27)

5. Rigorous results for time-dependent Euler
and Navier-Stokes equations. — 5.1 PHENOMENOLOGY
AND MATHEMATICS. — Turbulence phenomenology
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(K41 and almost any extension taking intermittency
into account, see chapter 7) has strong implications
concerning the nature of a mathematical theory.
For the NS equation, it predicts global regularity
(i.e. smoothness for all times). This regularity is in
fact expected to hold even if the viscous term — v Au
is changed into v(— A)* u with a dissipativity o larger
than a critical value close to 1/3 (see section 4.1
footnote 5). For the Euler equation, global regularity
is predicted in two dimensions. In three dimen-
sions, in contrast, a vortex stretching argument
suggests a catastrophic growth of vorticity (see
section 7.1). Some direct numerical evidence of
singularities has been found for the Taylor-Green
vortex [26], a flow whose initial velocity field is a
simple product of sines and cosines. There are also
a few known exact solutions of the Euler equation
which display singularities at a finite time, but these
solutions are badly behaved at large distances. An
example of such a solution, communicated to us by
S. Childress and E. Spiegel is

t—ty’t—tyt— 1o

u(x,y,z,t)=<y+z z+ x x+y>.

The pressure is then

2 2 2
X + + z
P(x:y,2,1)=— ti)t .
0
We shall examine in this chapter, which among
these conjectures have a mathematical support :

i) The global regularity of the two dimensional
Euler equation in a bounded domain has been known
for a long time [134, 135, 136]. This is mainly a conse-
quence of the conservation of vorticity. Global regu-
larity in an unbounded domain is still unproven when
no constraint is prescribed on the decrease of the
solution at infinity.

ii) On the three-dimensional Euler equation, regu-
larity of the solution during a finite time has been
proved for a broad class of initial conditions (%)
(see refs. [138, 44, 45, 139, 140, 82, 141, 142, 143, 144]),
but the actual production of a singularity remains
one of the most challenging mathematical problems
of turbulence theory.

iii) The global regularity of the three-dimensional
Navier-Stokes equation is still an open problem.
Some regularity results are nevertheless known to
hold for

— all times and large viscosities (typically, initial
Reynolds numbers R, < 1),

— short times which, in absence of boundaries,

() The first regularity result on three dimensional Euler equation
goes back to Lichtenstein [137] where it is assumed that the initial
vorticity is confined to a bounded domain and where persistence
of regularity is shown only up to a time such that the fractional
change in the vorticity is small compared to unity.
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depend on the initial data but not on the viscosity
(this is mainly a consequence of (ii)),

— all times and all (positive) viscosity for modified
dissipativity a > 5/4 [41].

iv) The global regularity of the two-dimensional
Navier-Stokes equation for arbitrary viscosity in a
domain without boundary results from the global
regularity of the Euler equation. Proofs of global
regularity in presence of boundaries are given in
Ladyzhenskaya [42] and Lions [41]. The case v — 0
is still open because of the boundary layers problems.

Extension of the results (ii), (iii)) and (iv) to the
MHD equations is found in ref. [145]. It is inte-
resting to note that there are some indications that
the two-dimensional MHD equations at zero visco-
sity and magnetic diffusivity produce a singularity
after a finite time because of the non-conservation of
vorticity [88, 89].

In this chapter, assuming the existence of solutions
of the Euler and NS equations, we shall present in
a rather simplified way the essence of the proof of
the regularity results. Specifically, we shall remain
at the level of the so called a priori estimates.

5.2 REGULARITY OF IDEAL FLOWS. — We shall
follow the derivation given by Bardos and Frisch [82,
141] and Frisch and Bardos [146]. Another method
based on differential geometry is presented by Ebin
and Marsden [44] : It uses the fact that the solution
of the Euler equation is a geodesic flow on an infinite
dimensional manifold [147]. For simplicity, we shall
restrict ourselves to flows with cyclic boundary condi-
tions, though the results are also true for flows in
bounded domains with slippery boundary conditions
or in the entire space (with some restrictions on the
initial conditions in two dimensions). It will be shown
that :

— The velocity gradient is bounded as long as
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the vorticity is Holder continuous, i.e. that the Holder
norm [148§]

| w(x) — o(y) | 5.1)
[x =y

| | = sup | () | + sup

with 0 < « < 1 is bounded.

— The vorticity is Hélder continuous during a
finite time in three dimensions and indefinitely in
two dimensions.

— If the initial velocity is n times (n > 2) conti-
nuously differentiable, it remains so as long as the
velocity gradient is bounded.

Bound for the velocity gradient : From the definition
of the vorticity, it follows that

Au =
hence (d = 2 or 3),

u(x) = — JQ(X, 2) &ijk 562‘ o(2) d9 z
J

— curl w. (5.2)

5.3

where ¢ is the alternating tensor and g denotes the
Green’s function of the Poisson equation which
satisfies [149] :

1 1
d#2
@-28 |x—yl"?
|9(x, ») | < Ly (5.4)
o R r 7 B

where S, is the area of the unit sphere in d-dimensions
[(5.4) becomes an equality when working in the
entire space]. Moreover

Ca
-y 'd—l

| Dg(x, y) | < P (5.5

Ca
R

where D denotes any first order spatial derivative and
¢ and ¢’ are constants.

| D g(x,») | <

The boundedness of w does not imply that of Vu; however, the latter is insured if we take w Holder-

continuous. Indeed.

ou 0 0
5;’ () = — ja—xl 9(x, 2) &ijk 7. [0k2) — wyx)] d?z 5.7
J
(integrating by parts)
0 0 w(2) — o (x) .
=j5§, Eg(x,z)e,-,-k["—l%lz—xl d9z (5.8)
J
and then
ox) —ox)| [lz—x]
| Vux) | < ¢, supl — | —; d@z. 5.9
Xx,X I X X | I z X I
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It follows that. with a constant K; which depends on the size of the periodic domain, we have

K
<2l (5.10)
o
A more refined analysis leads to the stronger result with
(Ladyzenskaya and Uralceva [150], Chap. III, § 2,
lemma 22) f(X(t)3 t) = CO(X(I), t)’Vu(X(t)’ t) (5' 15)
IVul, < K |ol,. (.10 It follows from eq. (5.14) that
5.2.1 Finite time regularity in three dimensions. — d
It is convenient to work with Lagrangian coordinates, T sup | w(x, 1) | < sup | f(x, 0 | (5.16)
i.e. in a frame following the stream-lines of the flow. ¥ *
More precisely, for a smooth enough flow. there Furthermore
exists a unique function ’
(xy, 1) — o(x,, ¢
@ 1)~ X(a, 9 .1 suplOCpdz D]
X1,X2 lxl - x2 I
which will, in short, be denoted by X(¢), such that | (X (1), 1) — 0(X,(2), 1) |
= _ . (5.17)

X@,0) =a.
(5.13)

@) = X, 9);

The vorticity eq. (2.9) then reads

Lo 0 = [0, ) 619

we get (with p'(r) = dp/ds)

| X:() — X,(0)

a,az

where X,(7) and X,(¢r) are the solutions of (5.13)
corresponding to the initial conditions a, and a,
respectively. Denoting

p(n) = | X,(t) — X,(0) |, (5.18)

d | 0(X1(2), 1) — (X,(1), 1) |
-— su < su
dl aj,az p(t)“ ay,az d[

d [oX,(0), 1) = (X5, 1) |
p— <
p()*
< o SE@, D) = OG0, 0| o), 1) — oX0), 1) |
X su + o

<

ay,a2

Since

we obtain upon adding egs. (5.14) and (5.19)

p(t)* PO p'(t). (5.19)

p'(0) < | u(X(0), 1) — u(X,(0), 2) | < sup | Vu(x, 1) | p(2) , (5.20)
which implies

(), < T2 (5.24)

oL <IflL+asp|Vullol. (.20

Noticing that

fle=loVul,<|ol||Vul, (522
and using (5.11), we finally obtain
oL <K lol (5.23)
dt w . X 3 [ a *

1— Ky )|, ¢

Thus, if the vorticity is initially bounded in Holder
norm, it remains so at least up to T, ~ 1/| @y |,

Bound for higher order derivatives of the vorticity.
Taking successive derivatives of the vorticity equation
and using (5.11) to bound the gradient of the velocity
derivatives by the same order vorticity derivatives,
we prove by induction that initial boundedness of
any order velocity derivatives persists at least up to T,.
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Remark : The regularity results can be extended
from periodic domains to bounded or unlimited
three-dimensional flows. In the latter case the time
up to which regularity is insured varies like [141]

T* ~ [l Up la + |w0 Ia]_l'

5.2.2 Global regularity in two dimensions. — To
show that if the vorticity is initially Holder-continuous,
it remains so indefinitely, we make use of vorticity
conservation and of an estimate on temporal evo-
lution of pair separation ; to obtain the later, we first
use an

Estimate on velocity increments (true for d =2
andd = 3):

Iu(x, t) - u(y,-t) I <

el
[x— ]|

were C is a constant, L the diameter of the fundamental
periodic domain and e = exp 1.

To prove eq. (5.25), we start from eq. (5.3) which
leads to

< Csup |, 0)||x—y|ln (5.25)

|u(x’ t) - u(y, t) I <

0 0
< sup l (D(x, t) I j’ a_z g(x, Z) - 'a'; g(y9 Z) d(d)z
(5.26)
We then use in (5.26) the lemma 1.4 of Kato (°) [151]

J

to obtain eq. (5.25).

Evolution of pair-separation (true in d = 2 and
d =3) : Let X(¢) and Y(¢) be the trajectory of two
points advected by the flow. Let their separation

p() = | X(t) — Y(0) |

be initially p,; then at any later time it is bounded
from above and below by

d(d)z <

0 d
% g(x, z) — %= 9(y, 2)

eL

<Clx—y|ln———,
I vl =71

(5.27)

(EQ)CXpICf;Sliplw(.\'.l)ldr] - p(f)

eL STl
< (£2>\:\p[~(fosupl(u(x.r)ldr].
el
(5.28)

(®) There is a misprint in ref. [151] lemma 1.4, p. 191. W) =1:

fors > 1 must be read instead of y(s) = 0.
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The proof consists in writting, from (5.25)
d
’ap(t) < |uX@), ) — w(Y(@0), 0| <
<Csup | o, )| p()) In <iL-> (5.29)
x p(7)

and integrating forward and backward, to obtain
(5.28).

An initially Hoélder-continuous vorticity remains so
with a smaller a. From vorticity conservation, we have

|w0|u=sup'w(x9t)|+
x

|o(X(0). 1) — (Y (D).

X(0),¥(0) o

with p, = | X(0) — Y(0) | By (5.28),

+ D1 (s.30)

p(1) exp[— Csupog()l]
po < eL<—e—L-) . (.3
and finally
l@o |, = C(L) | 0(2) | (5.32)
with
of) = e CHPIl, (5.33)

Bound for the velocity gradient. Since the persistence
of Holder-continuity for the vorticity is insured with
an exponent given by (5.33), the bound for the vor-
ticity gradient given by (5.10) becomes

K
sup | Vu(x, 1) | < ) | (®) |y <
< K' | g |, exp [Ct sup | wo(x) |] . (5.39

Bound for the vorticity gradient. Taking any first
order space derivative of the vorticity equation, we get

9 Dw+@.V) Do+ ([Du.V) o=0. (5.35)

ot

Since the two first terms represent the derivative in
Lagrangian coordinates, we obtain for the supremum
of the vorticity gradient

4 sup | Vo | < sup | Vu(x, ) | sup | Vo(x, 1) | .

dr
(5.36)
Hence, by (5.34)

sup | Vo(x, 1)| < sup | Vo (x) | x

t
xexp{f Clag |, exp[K’ sup | wo(x) | 1] d‘c} .

0

(5.37)

32
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Bound for higher order derivatives of vorticity.
Similar results involving exponentials of exponentials
of exponentials... etc. are obtained by induction for
higher order derivatives of the vorticity and therefore
of the velocity. This proves that the solution of the
two-dimensional Euler equation with C*® initial condi-
tions remains so for all times.

5.2.3 Analyticity. — A stronger result than regu-
larity has been established on the two and three-
dimensional Euler equations [152, 47], namely that
for analytic initial conditions, the solution remains
analytic both in space and time as long as the velocity
gradient remains bounded. The essence of the proof
of spatial (resp. temporal) analyticity consists in
extending the a priori estimate (5.23) and (5.32) to a
suitably chosen complex domain of spatial (resp.
spatial and temporal) arguments. The first result on
finite time analyticity of the three-dimensional Euler
equation has actually been obtained as a special case
of a general theorem due to Baouendi and Gou-
laouic [153], which does not however give an explicit
lower bound for the time of analyticity.

5.3 REGULARITY OF VISCOUS THREE-DIMENSIONAL
FLOWS. — The regularity of the Euler equation (global
in two dimensions and during a finite time in three
dimensions) is easily extended to the Navier-Stokes
equation, at least in the absence of boundaries,
because of the regularizing properties of the Lapla-
cian. In addition, supplementary results have been
obtained on the NS equation. First, global existence
of a weak solution has been proved for arbitrary
positive viscosity (Leray [154], see also Lions [41]),
whereas at zero viscosity the existence is known only
during the regularity time. But the global regularity
of the NS equation for small viscosities remains an
open problem. For simplicity, we shall restrict our-
selves in this section, to flows extending in the entire
R3-space. Those readers interested to the NS equation
in bounded domains (with rigid boundary conditions)
are referred to Lions [41].

For the NS equation it is useful to have a framework
in which energy and its dissipation are simply related
to the various norms. This is provided by a gene-
ralization of the L2 space, the Sobolev space HY(R?)
with the norms

3
If g =1l f g + ;1 ID;f It (5.39)

wherein

An equivalent norm is

PG =S8+ | 1kE flZ (5.38)

or

WSl =1 @+ &7 [t (5.39)

Ne 5

where f denotes the Fourier transform of f and
the L?-norm |. |y is defined by

| f I = j | () | d9x ~ ﬁ 700 P dk .
(5.40)

The use of Sobolev norms, defined as integrals over
the domain, is limited to finite energy flows. Notice
that the definition in Fourier space makes sense even
for non integer values of s.

5.3.1 Finite time regularity for arbitrary viscosity.
— The essence of the method consists in obtaining
estimates for the Sobolev norms of the solution of
the NS equation, by writing a closed inequality for
the smallest positive-order norm. If, as in Kato [139],
we restrict ourselves to integer orders, this can be done
for || u ||As. Let b(u, v, w) denote the L2-scalar product
of (u.V) v with w, ‘

b(u, v, w) = (u.V) v, w) = J‘(u.V)hv.w d9x .
(5.41)

For divergenceless fields which are smooth enough
and vanish at infinity,

b(u, v, w) = — b(u, w, v) (5.42)
and the L2-scalar product of such a field with a gradient
(e.g. the pressure force) vanishes. The energy equation
follows

| >

—v| Vu . (5.43)

lullg. =

1
2

D

t

Now, taking three spatial derivatives of the NS equa-
tion, we obtain

1d
za” D3ulf + v|D?Vu .=

= — b(D3u, u, D> u) — 3 (D3 u, Du, D3 u)
— 35Du, D4, D) . (5.44)

We then use the Schwarz inequality and the following
inequalities true for scalar functions defined on R? [155]

Cllflla Il gl
I fg < )7 07 (5.45)
C il flie 1 g lwe
to obtain
| 5(D? u, u, D* ) |
| 6(D? u, Du, D*u) | {< Cyllullfs. (5.46)
| 5(Du, Du, D* u) |
It follows from egs. (5.44) and (5.46) that
1d
TR I + v Il Vu |l < Co |l u(0) I3s (5.47)



Nes

v | Du || being non negative, this implies

I 4o lIns
u(®) | < . 5.48
I [ 1 —Cyllugllust ( )
Higher order Sobolev norms (s > 3) satisfy
d
I | u(®) &< Cs || w(®) |us || u(® |3 . (5.49)

This implies that if a solution of the three-dimensio-
nal NS equation, with arbitrary viscosity v = 0,
initially belongs to H5(R3) with s > 3, it remains so at
least up to a time T, ~ 1/ uq |y [139].

Remark : An improvement of this result corres-
ponding to the replacement of 3 by 5/2 + ¢ (¢ > 0)
is presented in Section 5.3.3.

5.3.2 Global regularity for «large» viscosity. —
This result was first obtained by Leray [154], a shorter
derivation can be based on (5.47). Using (5.38’), we
rewrite (5.47)

2 ) [ + v w0 e <

<Gy || ud) |3 + v | u@) |25 (5.50)

since

| @) [lfe = [ u(® & and [ u(@) |22 < lluo lIE2,

(5.51)
we also have
1d
3 3 140 [k <
< || w(®) & [Co | w(®) s —v]+v [ o IE2. (5.52)
Denoting y(f) = | u(?) ||&s, eq. (5.52) reads
Y HO)=C, y vyt | g 2. (5.53)
TR Y)I=EC) 'y o llL2 - .
If
C, |l uo I
V> v, = " (5.54)
C T Mo E — 1 o I

H(»(0)) is negative and y(?) first decreases down to the
first zero o of H(y) (cf. Fig. 4). Then, y cannot increase
above a because in such a situation ' would be
positive whereas H(y) would be negative. It follows
that y(¢) < y(0), or

| (@ s < Il o llus - (5.55)

We conclude that for sufficiently large viscosity
(eq. 5.54), or equivalently sufficient small initial
Reynolds number, the solution of the NS equation
remains regular for all times.

5.3.3 Global regularity for increased « dissipa-
tivity ». — We are interested in this section in

FULLY DEVELOPED TURBULENCE AND STATISTICAL MECHANICS 457

Hiy)

FiG. 4. — Global regularity for large viscosity : graph of H(y)
defined in eq. (5.53).

the NS equation in which the viscous term v Au is
replaced by — v(— A)* u where the dissipativity o is a
non-negative real number. In Fourier space, this term
reads — | k |>*4. This problem was first considered
by Ladyzhenskaya (1963) who proved global regula-
rity for « = 2 and arbitrary viscosity. Lions (1969),
using Sobolev space interpolation techniques, proved
the same result for o > 5/4. We shall give here a more
direct proof (valid only for o > 5/4) which is based
on a generalization of the Kato estimate (3.47)
where H? is replaced by H® with s > 5/2. This requires

Fors > 1+ﬂ

A non-integral order Leibnitz formula - 3

and ‘2—1 <y < s — 1 (d = space dimension), we have

(proof given in Temam [143])

X AU s g s + 1 f Mepes 1 g llms-a } - (5.54)

Now, following Bardos e al. [127] and Temam [143],
we deduce from the Euler equation that for s > 0,

1

|

T Diull{. = (Dj(u.Vu). Diu)
= (D%(u. Vi) — uD$ Vu, Df u) +
+ (uD} Vu, D;u) . (5.595)
Notice that
(uD Vu, Df u)=b(u, Df u, Di u)=0. (5.56)

Then, using the Schwarz inequality and the above
Leibnitz formula, we obtain

| (D§(u.Vu), D w) | < C(y, 8) x

X { Il # leas 1| Vot v+ gy oo [l Vot oo} I Dl o
5.57
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Finally we get

= < CO 9) e | e e (5.58)

Q—lQ_

1
2

withs < 1 + yand y > 3/2.
In particular, fors = y + 1 > 5/2, this reads

1d

> q | u (5.59

ullis < Cllu s

It follows that a solution of the Euler or NS equation
which initially belongs to H® with s > 5/2, remains so at
least up to a time T, ~ 1/|| uy ||ys.

In the presence of a dissipative term — w(— 4)*u,
eq. (5.59) becomes
A Nty Baee <Gl e +

+vlulf:. (5.60)

To estimate the dissipative term, we need the

lemma :if 0 < s; < 5, < 53,
o ledss ™ <Ol ol > I o g™ (5.61)
The proof of the lemma is readily obtained by noticing

that if

S35 d 83— 5
p_s3—s2 an q_sz_sl
' then
1 1 K s
—+-=1 and —i+“3‘=32-
P q p q

Eq. (5.61) is then a direct consequence of the Holder

inequality
1/p 1/q
< H.fp d@x lfgq d9x
(5.62)

o

applied to

[ + k22 | ak) |27] x
x [(1 + k2| a(k) [24] d9%k .

lu e =

(5.63)

Taking s, = 0, s, =5, 53 =5 + o in eq. (5.63), we
obtain

s+a st+a
o llgs ° (78
I % [l fgve = — = . (5.69)
" Pull2ss = 1w 125"
Eq. (5.60) finally reads
1 d 2 3 v 2a—s
- S < s CS - Yy ss
T I u s Ilullu[ o 12 I ulln +
+ v | up . (5.65)

with s > 5/2.
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Denoting y(f) = || u(?) ||f, eq. (5.65) reads

1dy 55
e AP h = 13/2 C. — s
) dt (y) Y < N ” Uy ”2a/sy +

(5.66)

+ v lluo I -

hiy)

FIG. 5. — Global regularity for increased dissipativity : graph of
h(y) defined in eq. (5.66).

If « > s/2, the aspect of A(y) is represented in figure 5.
If the unique zero of A, namely y, is less than y(0),
then A(y(0)) < 0 and y(?) first decreases down to 7.
Then, y cannot increase above y because this would
simultaneously make y’ > 0 and /4(y) < 0. For the
same reason if y(0) < y, y remains so indefinitely.
If follows that

sup ((0), y) . (5.67)

Consequently, for arbitrary positive viscosity, a solu-
tion of the NS equation with a dissipativity o > 5/4,
which initially belongs to H* with s > 5/2, remains so
indefinitely [128].

Remark 1. — Bounds for statistical quantities have
been obtained rigorously by Howard [156, 157] and
Busse [158] for flows in domains bounded in at least
one direction. For unbounded homogeneous isotropic
turbulence, it appears difficult to derive exact bounds
from the NS equation or from the equivalent hierarchy
of moment-equations. The main reason is that high-
order moments are not bounded from above by a
suitable combination of lower-order moments, but
only from below. For unbounded flows of finite
energy where one can use integrals instead of averages,
an upper bound on the energy flux in the inertial range
has been obtained by Sulem and Frisch [159] ; see also
ref. [88].

Remark 2. — The random NS equation with a
forcing term which is a temporal white noise, has been
investigated by Bensoussan and Temam [160], but the
results are somewhat weaker than in the deterministic
case.

W) <
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Remark 3. — Possible singularities of the NS equa-
tion : Global regularity of the NS equation remains
unproven and actually controversal. Scheffer [161, 162]
has shown that if the solution of the NS equation has
singularities, then the Hausdorff dimension (see
Kahane [163]) of the set of singular times is at most 1/2,
and the Hausdorff dimension of the spatial support of
the singularities at a singular time is at most 1. This
does not of course imply the actual existence of singu-
larities in the viscous case (conjectured by Leray [154]).
The direct numerical simulations at Reynolds numbers
up to about a hundred times larger than required by
the regularity theorem 5.3.2, give evidence against
such singularities. So do the mathematically rigorous
results derived from spectral equations (cf. section
6.2). Hopefully, Scheffer’s results will be useful in
proving that the set of singularities is empty.

6. Spectral equations. — 6.1 THE SPECTRAL EQUA-
TIONS AS SEMI-HEURISTIC CLOSURES. — The experi-
mental results on fully developed turbulence indicate
that the solutions to the NS equation exhibit a self
similar range [164], and, as we have just seen, this is
related to the possible appearance of singularities in
the limit of zero viscosity. As guidelines for a possible
theory, let us list somes fundamental structural
properties of the NS equation which must be
preserved [165].

i) Invariance under space translations, rotations,
reflections. Conservation of energy, helicity in three
dimensions, and enstrophy in two dimensions by
the inertial terms.

ii) Existence of absolute equilibrium solutions for

the inviscid and unforced truncated equations.

iii) Positivity of the energy spectrum.

iv) Invariance of energy transfer under random
Galilean transformations.

The importance of (i) is clear ; (ii) also is relevant
because there is always some tendency to locally
achieve absolute equilibrium (Léorat [110], sec-
tion 2.7); see also the argument in chapter 3 relating
absolute equilibrium and transfer ; (iii) is related to
the fact that we are interested in the evolution of the
spectrum. Should the spectrum become negative,
spurious instabilities might develop [166] ; (iv) is one
of the consequences of the locality of energy transfer
in Fourier space. A random Galilean transformation
is induced on a given statistical ensemble of initial
conditions by adding to the velocity field of each
realization a spatially uniform, time independent iso-
tropic random vector V, with zero mean and variance
{ V¢ . Since energy transfer is a consequence of eddy
distortion, a uniform velocity field such as V, has no
effect on it, and hence it is also invariant after ensemble
averaging over V,. The relevance of (iv) for a theory
of fully developed turbulence follows from the presence
of an energy concentration at low wavenumbers.
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Most of the effect of the large, strongly energetic
eddies on the small inertial range eddies is simple
uniform advection. An approximate theory which
fails to satisfy criteria (iv) will overestimate this effect
and predict incorrect inertial range behaviour.

There are two frameworks in which approximations
to turbulence can be constructed, the Eulerian and the
Lagrangian. The Eulerian representation is the one
used in eq. (1.1). The Lagrangian representation is
essentially characterized by using as one of the
independent variables, the position of each fluid
element at a given reference time. This means using a
coordinate system which follows the motion of the
fluid. In both frameworks, it is possible to make a very
close analogy between the algebraic structure of the
statistical theory of turbulence (and more generally,
classical non-Hamiltonian systems) and that of quan-
tum field theory [104, 167-178].

Eulerian perturbation theory : The simplest renor-
malized approximation in the Eulerian framework is
the Direct Interaction Approximation (DIA) of
Kraichnan [179]. This leads to a set of closed integro-
differential equations for the two-time correlation and
the infinitesimal response (Green’s) function (cf.
Ref. [29] for details). For the inertial range of homo-
geneous turbulence, this theory has the severe defect
of being non-invariant under a random Galilean
transformation [180]. Consider a given realization of a
Galilean transformation, with V,, the uniform velocity
field. This modifies the solution to the NS equation as
follows

ik, ) » e ®Vo 4k, 0) for k#0. (6.1
If V, is chosen to be Gaussian and isotropic, the
effect on the covariance

Ujk|t, )= Cuk, Du(—k, t)> (6.2)

and the Green’s function

Gk |t,1)=0<uk,)>/6{f(k. 1)) (6.3

is

j <U(k |1,1)

. 112025 sn2 U(klt,t’))
G(klt,t’)) exp[ —gk* <V (¢ t)]( .

G|t t)
6.4

For homogeneous turbulence, equal-time correlation
functions, and therefore energy transfer are invariant
under a Galilean transformation. The Eulerian DIA,
or any approximation which works directly with
two-time covariances, and Green’s functions will have
difficulty in faithfully representing this invariance
because there is no way for the exponential factors
in (6.4) to simply drop out of an energy transfer
calculation. As a consequence, they predict an inertial
energy spectrum E(k) ~ (eV,)'? k™32 where V, is
the r.m.s. velocity [179].
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Lagrangian perturbation theory : A description of
the traditional Lagrangian representation is found in
Tennekes and Lumley [31], and the relation between
Eulerian and Lagrangian correlation functions is
investigated in Weinstock [181]. We will restrict
ourselves to the particular representation introduced
by Kraichnan [182, 183, 184], which uses a generalized
velocity field u(x, ¢ | s), defined as the velocity mea-
sured at time s in a fluid element which passes through x
at time ¢. Kraichnan has constructed two heuristic
approximations within this framework, the Lagran-

gian History Direct Interaction (LHDI) and Abridged .

Lagrangian History Direct Interaction (ALHDI)
approximations, which are random Galilean invariant
and yield K41 spectra. Kraichnan [178] has shown
that these approximations can be obtained as the
lowest order of a systematic renormalized perturba-
tion theory. In addition to being Galilean invariant,
the Lagrangian representation has the advantage of
capturing more of the physics than the Eulerian one
at a given order of perturbation theory. For example,
Kraichnan [185] has used the Lagrangian DIA to
calculate the effects of helicity on a passive scalar
and on magnetic field. As shown by Kraichnan [186,
187], such effects are missed by the Eulerian DIA
and require higher order approximations, the so-called
vertex approximations. Note also that the Lagrangian
DIA and the Eulerian vertex renormalized approxi-
mations conserve energy and have absolute equilibria
as solutions. However, it is still unknown whether
they do or do not maintain the positivity of the energy
spectrum.

In view of the above difficulties, a class of pheno- .

menologically-inspired Eulerian closures working only
with the energy spectrum has been developed. Such
methods, referred to as spectral equations have been
the object of both analytic and numerical studies at
huge Reynolds numbers. There are several ways to
establish spectral equations. Let us begin with the
relationship to the formal calculation of short-time
behaviour of the NS equation for Gaussian initial
conditions. For this purpose, an abstract represen-
tation of the equation of motion which only makes
explicit the quadratic nonlinearity is sufficient,

du _

dr
We have dropped the viscous term which poses no
closure problem.

Taking zero-mean Gaussian initial conditions, #(0),
and writing (we ignore numerical factors)

du(0)  , d*u(0)
t
a Tl Tae

we obtain, after expressing fourth order moments as
sum of products of second order moments

d£z< u@® u(®) > = t L u(0) u(0) »  u(0) u(0) > + O(t?) .
6.7)

uu . (6.5)

u(t)=u(0)+1¢ +0(3) (6.6)
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Reverting the expression (6.6) to lowest order and
inserting in (6.7), we obtain

%( u(t) u(t) > = t Cu(®) u(®) > Cu®) u(r) ) + O(F) .
6.8)

The non-autonomous character in this equation
(appearance of a factor ¢ in the r.h.s.) is due to the
special choice of initial conditions (zero triple corre-
lations) which singles out the initial time.

For the explicit calculation, we write the NS
equation in Fourier space (eq. (2.10)), take into
account homogeneity, isotropy and mirror symmetry,
and obtain (cf. appendix 2 and also ref. [26] section 4.4
where the three-dimensional case is treated in the
context of the quasi-normal approximation) :

4-d
%E(k, )= C,; jj tk 1-x%?% x
Ay

pq
x [a®, k=1 E(p, 1) E(g, 1)

@ p*~1 E(g, 1) E(k, ] dp dg + O(*) (6.9)

d—3
2

d is the dimension of the physical space. The inte-
gration in the (p, ¢g) plane extends over the domain 4,
such that k, p, g can form the sides of a triangle
(see Appendix 2). The coefficient b is given by

kpq
1
biépa =5%[(d— Nz+(d—Dxy+22%, (6.10)

where X, y, z are the cosines of the interior angles of
the (k, p, ¢q) triangle, and

al, =38, + b2 . (6.11)
The numerical coefficient C, is related to the surface

2 7.’:d/ 2
" TdpR)

Sa

of the unit sphere in d dimensions by

C,=—_ . 6.12
T @d-1s, (6.12

In particular
C, =4/n, Cy, =1/2. (6.13)

Higher order terms in the expansion (6.9) can be
obtained similarly. But what do we know about the
convergence properties of such an expansion ? 4 priori,
there is no reason to believe that the formal Tay-
lor series has more than zero radius of conver-
gence [165, 188, 189]. Indeed, individual realization
of the Euler equation in any dimension d > 2 are
likely to blow up at a finite time which, by the Gaussian
assumption can be arbitrarily close to ¢t = 0. Four-
nier and Frisch [190] have investigated this question
on Burgers’ equation [191] which is known to produce
singularities at a finite time. They have shown that
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the formal Taylor series in powers of ¢ of the energy
spectrum has, for fixed wavenumber, an infinite
radius of convergence. There are also strong indica-
tions that the formal solution differs from the true
(v — 0) solution by a non-analytic function with an
identically vanishing Taylor series, something like
exp(— 1/¢?). For the NS equation, the convergence
properties of the formal expansion are unknown.
Still, we shall assume that homogeneous isotropic
turbulence can be defined for arbitrary (non integral)
spatial dimensions by analytically continuing the
formal expansion, term by term, as functions of
dimension. In integral (d > 2) dimensions, the energy
spectrum is by definition non-negative because it is
realized as the mean square of the Fourier component
of the velocity. A realizability problem can occur
only by making some approximations. This is not so
any more in non-integral dimensions since the analytic
continuation of a positive function need not be posi-
tive. Realizability for 4 > 2 is still an open problem.
At least it can be shown that for d < 2, if realizability
holds at ¢ = 0, it may be lost for arbitrary small
positive times (Frisch, Lesieur and Sulem [192],
Fournier and Frisch [193] where a proof is given in
Appendix A).

The Taylor expansion (6.9) allows us to calculate
the energy spectrum for short times (1°). We have
already noticed that (6.9) is non-autonomous. For
sufficiently long times, the memory that the triple
correlations were initialy zero should be lost and an
autonomous equation seems more appropriate. Such
an equation can be obtained from (6.9) by various
heuristic modifications which we shall now outline.

Direct numerical simulations of the NS equation
indicate that triple correlations saturate in a time of
the order of the eddy turnover-time [203]. This
suggests replacing the factor ¢ by some eddy-turnover
time 0 (for times large compared to ). If we also
want to make contact with the K41 theory which is
local in wavenumber space, we should use an expres-
sion 6, involving only the local eddy turnover
times t(k), ©(p), ©(q) (see Appendix 1) of the interacting
triad (k, p, q). Finally, in order not to loose energy
conservation, it is convenient to assume complete
symmetry of 6,,, in k, p, g (*!). We are then led to the
following equation for the energy spectrum (viscosity
reinserted)

t
(19 If ¢ is replaced by J dt’, we essentially recover the Quasi-
0
Normal Approximation [194, 195, 196] which has the well-known
defect of yielding negative energy spectra [166, 197, 198]. A modi-
fication of the Quasi-Normal approximation, which is suitable for
studying inhomogeneous turbulence, is the clipping approxima-
tion [199]; it insures positive energy spectra by enforcing certain
inequalities between double and triple velocity correlations;
cf. also refs. [200-202].

(*Y) Actually, symmetry in k and p suffices [203].
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(-% E(k, 0)+2 vk* E(k, =Tk, )=C, U Orpal) X

Ak

k4—d d—3
- (- x?) T [a@ k=1 E(p, 1) E(q, 1)

— b, p*" ' Eq, 1) E(k, /] dp dq .

X
(6.14)

A simple choice for 0, with all the above require-
ments and which reduces to ¢ for small times is

1 - exp[_ iukpq(t) t]

kaq(t) - ”kpq(t)

(6.15)

with

i) = 1(8) + 1, (8) + 11 (1) (6.16)

k 1/2
w(D=vk*+ 4, [J P2 E(p, b dp] . (6.17)

0o

The p,’s are called eddy-damping rates (note that the
viscous rate vk? is negligible except in the dissipation
range). 1, is a free numerical parameter of the approxi-
mation which can be adjusted to give a constant in
front of the k~*? law in agreement with the experi-
mental data [113, 130].

An equation of the form (6.14) with a different
(non-local) choice of 0,,, has been introduced for the
first time by Kraichnan [204]. Orszag [205, 206] and
Orszag and Kruskal [207] have used

okpq = (/’tkpq)_1 (6 18(1)
/'lkpq = Uy + up + l‘lq (6 18b)
e = vk + Ak® E(k))'? (6.18¢)

equivalent to the above choice when one assumes
stationarity and a power law spectrum shallower
than k3. Expression (6.15) with (6.18b, ¢) which is
also appropriate for short times has been proposed by
Leith [208]. We shall refer to all these equations as the
Eddy-Damped Quasi-Normal Markovian (EDQNM)
approximation.

From the method of construction it follows that the
absolute equilibria spectra are time independent
solutions to the truncated, inviscid, EDQNM. This is a
consequence of the Gaussianity and time independence
of the absolute equilibria solutions to the truncated
Euler equation, and the exactness of the inviscid
EDQNM for short time. Since the choice of y,
in (6.18) is not affected by adding to E(p) a é-function
at p = 0; the energy transfer function is invariant
under a random Galilean transformation, and hence
the EDQNM satisfies the criteria for a spectral equa-
tion which were listed at the begining of this section.
The positivity of the spectrum is guaranteed by that
of a,,. In Appendix 2, it is proved that g,, > 0 if
and only if d > 2. ‘

Eq. (6.14) describes not only the EDQNM but
several other spectral equations each determined by
the choice of 6y,
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— The Test Field Model (TFM), first introduced
by Kraichnan [209, 210] as a heuristic modification of
the DIA to restore random Galilean invariance : the
triad relaxation time 6, is calculated from an
auxiliary problem, the advection of a Test Field by the
turbulent flow [211]. This model is less ad hoc than
the EDQNM but more difficult to handle both
analytically and numerically. The EDQNM can be
derived as a simplified version of this more refined
model [212].

— The Markovian Random Coupling Model
(MRCM) [213] is obtained by taking 6,,, to be just a
constant number. This is, from the view-point of the
K41 theory, less realistic than the EDQNM, but has
a simple dynamical model underlying, closely related
to the NS equation ; furthermore the MRCM is simple
enough to form the subject of rigorous mathematical
studies (ref. [214], and next section).

It must be mentioned that the EDQNM can be
obtained in other ways.

1) From the DIA (Kraichnan 1964c¢) : if the two-
time covariance and the Green’s function are assumed
of the form

Uk|t,t) =e @ Uk |t (a)

, (6.20)
Gk | 1,1') = e~ ®)

the EDQNM equation is recovered in the equation
for Uk | t, ©).

2) As a closure of the hierarchy of moment equa-
tions : (@) the equation of evolution of triple corre-
lation involves in the r.h.s., a fourth order moment
which is written as a sum of products of second order
moments (as in the Quasi-Normal approximation)
plus a fourth order cumulant { uuuu »,. Symbolically,

y denoting the bare vertex — %P,-j,(k), and dropping

the viscous term, one has

S Gy =y Qo y @

%(uuu>=ysz Cuud uud+yuuuu .. (b)
terms (621)

(b) Following Orszag, [26, 205, 206] one takes into
account the statistical irreversibility by relating
{ uuuu ), linearly to the third order moment (or
cumulant) { wuu ) through an eddy relaxation ope-
rator u determined phenomenologically as above, or
obtained more systematically on the basis of the full
hierarchy [215], (also Frisch, private communication
1977). One then obtains the closed equations

%(uu>=~,’<uuu> (a)

S oy = Sy Gy Cuny — oty . ()
(6.22)

Nes

(c) Eq. (6.22b) is solved with zero initial third order
moments :

Cu(®) u() u@®) ) = J exp[— J u@) dr]x
0 s

x Yy uls) u(s) > {u(s) u(s) >ds. (6.23)

Finally, the markovianization consists in neglecting
memory effects and writing

Cu@) u(t)u(®) > =3, 0(0) y Cu(t) u(®) > {u(®) u(®) >

(6.24)
with
() = j exp[— j (1) dr] ds ~ L_L"uu
’ | (6.25)

3) Stochastic Models. — they are obtained by
coupling many replicas of the NS equation characte-
rized by an index a =1, ..., N to each other with ran-
dom coupling coefficients. Symbolically they read (*?)

du® 1 X

T = ¥ Z (Paﬁy(t) uB 4y — @ 4 f(a) (6.26)
By=1

a=12,...,N.

@.p,(1) is a Gaussian white noise process with zero
mean and covariance &(t — t') 8(¢). Furthermore,
the various ¢,z,’s are identically distributed and
independent with the restriction that they are comple-
tely symmetric in «, § and y to insure energy conser-
vation. One then proves that the spectrum constructed
from

Uk, 1) = lim % ‘2 Cu () wi(h) > (6.27)

N—-ow

exactly satisfies the EDQNM equation.
If the @,4,’s are chosen to be time-independent, one
obtains the DIA [216, 217, 218].

6.2 RESULTS IN THREE DIMENSIONS. — The method
of construction of the EDQNM equation only gua-
rantees that the Kolmogorov spectrum is a stationnary
solution in the limit of zero viscosity. It is of interest
to see if the time dependent solutions evolve toward
the K41 spectrum for arbitrary initial conditions.
At Reynolds numbers R, ~ 100, the integration of
the spectral equations such as EDQNM, DIA or
TFM is in good agreement with the direct numerical
simulation and the experimental results [203]. One of
the very attractive features of the EDQNM equations
is that, contary to the primitive NS equation, they can
be integrated numerically at very high Reynolds
numbers. The reason is that the spectrum E(k), being
an averaged quantity, has a very gentle variation

(*?) In the case of inhomogeneous turbulence, only the fluc-
tuation-fluctuation terms are randomly coupled.
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with £ which can be adequately represented by a
few points per octave. Typically, one takes k 00 21/F
L=1,...,LS with F=4 or 6. The total number
of points (LS) depends on the ratio of maximum
wavenumber k. to minimum wavenumber k ;.
one wants to achieve ; this in turn depends on the
Reynolds number because k& ,,, must be large enough
to allow dissipation to remove energy at high wave-
numbers before truncation effects become important.
The reader interested in the numerics will find details
in Kraichnan [219], Leith [208], Herring and Kraich-
nan [203], Pouquet, Lesieur, André and Basdevant
[220]. In this way, (large scale) Reynolds numbers
R, up to 10° have been achieved [113]. It is then
easily checked that a true asymptotic regime is
attained at high wavenumbers : when the Reynolds
number is changed, say from 10* to 10°, only the
dissipation wavenumber varies in accordance with
the Kolmogorov law

3/4
kdiss oC RO/ .

Figure 6a extracted from André and Lesieur [113]
represents the temporal evolution of an energy spec-
trum according to the EDQNM. The initial spectrum
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is E(k.0) ~ k* exp — 2(k/ko)* with the large scale
Reynolds number (1) R, = { V& DY?/vk, ~ 10° and
there is no external forcing. £ is measured in units of
the energy wavenumber, &, ¢ in units of the large-eddy
turnover time 1/k, ¢ V2 »'/? and E(k, f) in units of
{ V& >k, Tt is seen that with increasing time, there
is a transfer of energy towards large wavenumbers.
For t > t, ~ 5, a zone where E(k) ~ k™°" is esta-
blished, limited at the upper end by a dissipation zone
where the spectrum has a rapid decrease and which is
pushed further and further away when R — oo [179,
205]. In this limit, the k™53 spectrum reaches to
infinity (cf. Penel [221], Bardos et al. [127] for a mathe-

(**) Many papers make use of the Reynolds number R, cons-
tructed from the Taylor micro-scale which is more easily accessible
to experiment. For fully developed turbulence R, ~ R2. This
relation is not true in absence of an inertial range.

<&t >
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F1Gs. 6. — Evolution of high Reynolds number three-dimensional '
turbulence (taken from André and Lesieur [113]) : a) Temporal
evolution of energy spectrum E(k, ) ; no helicity, initial spectrum
E(k, 0) ~ k* exp(— 2 kF), Reynolds number R, = 524 000. - --
t=0, ——.t=3 —.— =35 t=6, — t =238,
x x X x t = 15. b) Evolution of the enstrophy in the limit of
infinite Reynolds number: ¢) Temporal evolution of the total
energy < u2(f) ); same initial conditions as in figure 3a. x x x
Ry=128; —— R, =813; ..... Ry=32800; —— R,=524 000.
d) Variation of the energy flux II(k, ¢) as a function of & for ¢ = 8;
same conditions as in figure 6a. - - - energy dissipation rate.
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matical demonstration of a similar result on a sim-
plified model, the MRCM applied to Burgers’ equa-
tion), and the enstrophy diverges. Figure 6b shows
the evolution of the enstrophy in the limit R, — oo :
the enstrophy becomes infinite at a finite time.

These results obtained numerically with the
EDQNM can be demonstrated on the MRCM (where
the triad relaxation time is chosen to be constant).
One establishes in this case the following equations
[222, 214] (cf. also appendix 4) :

B0 +2v[EW | =0 (6.28)

S1E0| + 20| B =R EO R (6.29

and fors > — 2

%IE(I) L < CED | |E® ],  (6.30)

where
| E(r) |S = j k? E(k, 1) dk (6.31)

0

denote the moments of the energy spectrum which
play a role similar to that of the Sobolev norms in
the analysis of the primitive NS equation. | E |, is
the energy and | E |, the enstrophy. It follows from
(6.29) that at zero viscosity the enstrophy is given by

3| EO) |,
3 — 61| EQO) |,

| E@) |, = (6.32)

and therefore becomes infinite at the instant
t, = 3/6, |E(0) ]1 .

In contrast to what happens with the primitive
Euler equation, the initial analyticity of the covariance
(in configuration space) may be immediately lost on
the inviscid spectral equations [127]. This probably
reflects the fact that individual realizations of the
three-dimensional Euler equation are likely to blow
up at a finite time which for Gaussian initial conditions
can be arbitrarily close to ¢ = 0.

For positive viscosity, in contrast, the enstrophy
remains uniformly bounded in time. The Schwarz
inequality leads in effect to

| E®) |5 > | B0 [/ EQ) |o

and (6.29) becomes

(6.33)

d 0
G201 < 0] {2120], - B0l 50k .
(6.34)
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From the energy eq. (6.28), one obtains

" I—E(%E a('l;IE(t) lo (6.35)

or again

d. (| EQ 9, d
EIH{E@);}< :

~ 32 T ED]o- (6.36)

thus
0
| E() |, < | E0) |, exp {-3—%|E(0) |0}. (6.37)

Eq. (6.30) then clearly shows that for positive visco-
sity. all the | E(t) | s > 0, remain bounded. which
signifies that the energy spectrum has a rapid fall-
off at large wavenumbers. In this case, one speaks
of global regularity, in opposition to the case v = 0,
where there appears a singularity at a finite time.
Notice that both of these questions are still open on
the original equations (cf. chapter 5).

Let us indicate that in the case where 0,,,(?) is not a
constant but is given by the EDQNM expression
(6.16), it has not yet been possible to demonstrate
analytically that for v = 0, the enstrophy becomes
infinite at a finite time, although this is shown very
clearly by the numerical results : for the moment one
only has the following inequality [113], which is not
better than the estimate obtained from the original NS
equation (see chapter 5)

d
a]E(t)|1+2v|E(t)]2<C|E(t)H/2.

Nevertheless, and in contrast with the corresponding
estimate on the primitive NS equation, this estimate
insures global regularity for v > 0.

Since the enstrophy becomes infinite for ¢ > ¢,
when v — 0, it is interesting to consider the limit of
the dissipation of energy, v | E(?) |, (cf. 6.28). Figure 6¢
shows in the case of the EDQNM, the temporal evo-
lution of the energy | E(?) |, for smaller and smaller
values of the viscosity : it appears that when v — 0,
the energy is only conserved during the time of regu-
larity, t,.. After this, an infinitesimal viscosity suffices
to produce a finite dissipation of energy. This is
called energy catastrophe in Brissaud et al. [223].

This infinite Reynolds number dissipation makes
the energy tend to zero when ¢ — oo (cf. Foias and
Penel [224] for a rigorous proof on the Burgers
MRCM equation). For large times, the entire spec-
trum evolves to a universal form with all the time-
dependence contained in scale factors (Ref. [225];
see [226] for experimental results).

Figure 6d, extracted from André and Lesieur [113]
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shows that in the kK~ spectral range, the flux of
energy (or energy transfer rate) through each wave-
number k

k
(k) = —f T(p, 1) dp (6.38)
0

is constant. In addition, it can be shown (cf. Appen-
dix 2) that a — 5/3 spectrum, extending from k, to
infinity, assures the constancy of II(k).

One example of practical application of the second
order spectral equations is found in the predictability
problem [208, 227, 228, 229]. Consider a naturally
occurring flow whose initial velocity field can be
experimentally resolved only for length scales larger
than a certain given scale, the smaller scales of motion
being completely unresolved. As the (supposedly
turbulent) flow evolves, will the cascade sweep out the
initial uncertainty in the experimental data to even
smaller scales, or, instead, will the instability of the
flow allow the errors to contaminate the large scales
and thus make the flow completely unpredictable ?
This question is of interest in weather prediction
where a finite world-wide grid of weather stations
limits the initial condition resolution used in nume-
rical forecasting [230]. The mathematical model
introduced by Lorenz assumes two random solutions
with the same statistics which are initially strongly
correlated except in the smaller scales where the
errors are confined. In the special case of isotropic,
unforced, Navier-Stokes turbulence, both direct nume-
rical simulations and the spectral equations of the
form introduced in this chapter, indicate that errors

., will contaminate the entire spectrum, even if they
were initially confined to wavenumbers strongly
damped by viscosity (Herring, Riley, Patterson and
Kraichnan [231]). There are indications that this
happens only for Reynolds numbers exceeding a
certain critical value [232]. Rigorous bounds on error
growth can be obtained within the same framework
as for the regularity of the Euler equation (Arnold [147]
p. 343, Sulem [233]).

6.3 RESULTS IN TWO DIMENSIONS. — The numerical
integration of the EDQNM equation in two dimen-
sions is consistent with the phenomenological conjec-
tures. It is the triadic description of the energy transfer
which enables the EDQNM equation to correctly
describe the simultaneous transfer of energy and
enstrophy in opposite directions [91]. Figure 7a,
extracted from Pouquet et al. [220], shows the evo-
Iution of the energy spectrum, without external
forcing, for

E(k,0) ~ k* exp{ — 3(k/ko)* },

with a (large scale) Reynolds number Ry ~ 2.4 x 107.
We see the establishment of a k3 range (the logarith-
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FiGs. 7. — Evolution of high Reynolds number two-dimensional
turbulence (taken from Pouquet, Lesieur, André and Bas-
devant [220]. a) Free evolution of energy spectrum without forcing.
Initial spectrum E(k, 0) ~ k* exp(— 3(k/ko)*). Reynolds number
Ry = 2.4 x 107. b) Quasi-steady energy spectrum E(k,?) for
t = 100, 1 000 and 3 000 corresponding to an injection spectrum
constant in a a half-octave band around k, = 1 with injection rates
& = 0.03andn = 0.03. Reynolds number R, = 2.4 x 107. ¢) Quasi-
steady energy transfer rate II(k, f) and enstrophy transfer rates
Z(k,t) and Zy.(k, t) for t = 1000 and 3 000. Same conditions
as in figure 7a.
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mic correction (1#) is not discernable), and an inverse
transfer of energy. Since the enstrophy is conserved,
we know that the k2 range cannot extend to infinity
after a finite time. More precisely, the spectrum must
be fast decreasing for large enough wavenumbers
because all the moments | E(7) |, (defined in (6.31))
remain finite. For example,

SIEO L <t |EO | [E) ], (6.39)

hence
| E@) |, < | E0) |, exp { 3 | EO) |, %} .

To observe an inverse cascade of energy, it is
necessary to force the fluid externally. The EDQNM
results are shown in figure 7b, where the spectrum
behaves like k3 for k > k, and k™3 for k < kg
(ko is where energy and enstrophy are injected by the
external random force). Figure 7c¢ represents the
levels of energy and enstrophy fluxes IT and Z, whose
constancy, in their respective wavenumber ranges,
implies a direct cascade of enstrophy and an inverse
cascade of energy (cf. Appendix 3).

It is of interest to analyze these cascade processes
in terms of the detailed transfer between triads of
wavenumbers, &, p, ¢ (with k + p + q = 0 by homo-
geneity). We have previously defined an energy
spectrum as local if its values in the neighbourhood of
k ~ 1/I determines the velocity difference across an
eddy of size /. With the aid of the EDQNM this notion
of locality can be made quantitative. As in equation
(6.38) for I1, the enstrophy flux Z can be written in
the form

(6.40)

k
Z(k) = — f P> T(p, t)dp. (6.41)

0

Using the definition of T, the energy and enstrophy
fluxes can be reexpressed as integrals over triangles
characterized by a shape parameter, v, which specifies
the ratio of the smallest leg of the triangle to the leg of
intermediate size. Numerical calculations [130] then
indicate that the contribution of triangles with small v
are somewhat more important than in three dimen-
sions and that most of the enstrophy flux comes from
very elongated triads (cf. Appendix 3). Figure 3c
shows the contribution Zy (k, t) to the enstrophy
flux which comes from the non-local interactions such
that the ratio of the smallest to the middle wave-
number of the interacting triads is less than 0.19.

(**) A k~* energy spectrum gives an infrared logarithmic diver-
gence of the enstrophy transfer. Convergence requires a logarithmic
correction [130]. Such a difficulty can be avoided by cutting off
non-local interactions, that is by removing all non-linear interactions
between triads kpq such that min (k, p, g)/max (k, p, q) < a wherea
is a cut off parameter. One then has an exact k3 enstrophy-inertial
range.

JOURNAL DE PHYSIQUE

Ne 5

6.4 d-DIMENSIONAL TURBULENCE (2 < d < 3). —
The above sections clearly point out a strong diffe-
rence between turbulence in two and three dimen-
sions, particularly in connection with the direction of
the energy cascade : ultraviolet (to high k) in three
dimensions and infrared (to small k) in two dimen-
sions. This leads us to ask what happensfor2 < d < 3.
The question is easily settled within the framework of
the EDQNM. First one checks that the enstrophy
does not go over continuously into another conserved
energy moment. However, a continuity argument
indicates that at least for short times, the inverse
transfer will still be favored for d ~ 2. Will this beha-
viour persist or will energy eventually leak through
to higher wavenumbers ?

The following results have been obtained both
analytically and numerically with Reynolds numbers
R, ~ 10°[192, 193].

For any d > 2, there is an inertial-range solution
with E(k) ~ k~3/3, the energy cascade being in the
infrared direction for 2 < d < d, (d, ~ 2.03) (%),
and in the ultraviolet direction for d > d, (1®). The
behaviour at d, appears to be singular (see also
chapter 7) in the sense that the Kolmogorov constant
becomes infinite when d — d,. When energy is injected
in a narrow wavenumber-band near £ = 1, one obtains
for d > d, (e.g. d = 2.07), a stationary direct cascade
and for 2 € d < d. (e.g. d = 2.02) an inverse cascade
such that the bottom of the — 5/3 range moves to ever
smaller wavenumbers (Fig. 8a). In the former case,
total energy saturates and in the latter, it increases
linearly at the injection rate (Fig. 8b). Since in the
numerical integrations, the dimension differs from 2
by only a few percent, a naive continuity argument
suggests a quasi-two-dimensional behaviour for about
a hundred turnover-times at forcing wavenumbers
(here of the order of one) : this is why the EDQNM
equations were integrated up to ¢ = 5000. For
2 £ d < d,, in addition to the infrared — 5/3 range,
there appears an ultraviolet — m(d) range with m
varying from 3 to 5/3 (Fig. 8a). For d = 2, this is the
usual enstrophy inertial-range but for 2 < d < d,,
no conserved quantity cascades along this fluxless
inertial range. The unforced equations with smooth
initial data in the inviscid limit are also considered
in Frisch et al. [192] : for any d > 2, the enstrophy
becomes infinite at a finite time #,(d) proportional to
(d—2) ' neard = 2 (cf. Appendix 4) ; for2 < d < d,,
this singularity is not accompanied by energy dis-
sipation (Fig. 8c¢). This is consistent with the direction
of the energy cascade.

('*) More acurate numerical calculations indicate that the
crossover dimension may be slightly higher [193].

(®) Similar results were obtained by Bell and Nelkin [234, 235]
using a simple phenomenological model introduced by Desnyansky
and Novikov [236]. This model depends upon a parameter C whose
value determines the direction of the energy transfer.
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Figs. 8. — Evolution of high Reynolds number d-dimensional
turbulence 2 < d < 3 (according to Frisch, Lesieur and Sulem
[192] and Fournier and Frisch [193]) : @) Evolution of the energy
spectrum below and above the crossover dimension d,. Ford = 2.02,
there is an ultraviolet power-law-range and a — 5/3 infrared energy-
inertial range proceeding to ever smaller wavenumbers. For d=2.07,
there is an ultraviolet energy inertial range. b) Evolution of the
energy with forcing below (d = 2.02) and above (d = 2.07) the
crossover dimension d,. ¢) Evolution of the energy E and enstro-
phy Q without forcing in the limit of infinite Reynolds number.
The singularity time 7, varies like (d — 2)”! neard = 2.
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7. Intermittency. — 7.1 INTERMITTENCY AS A
CONSEQUENCE OF VORTEX LINE STRETCHING. — Since
the first experiments of Batchelor and Townsend [237],
there has been strong evidence that the energy asso-
ciated with small-scale structures is distributed very
unevenly in space, being confined in a smaller and
smaller fraction of the available space as the eddy-
size decreases [238, 230] (see also Monin and Yaglom
[40] and Craya [32] for reviews). This spottiness of
the small scales is called intermittency ; vortex line
stretching is believed to be the dynamical mechanism
behind this phenomenon [240, 241], as suggested from
the following plausible argument [242]. Consider the
point M within a large scale structure which at the
initial time has the largest vorticity amplitude | w |.
This point is also likely to have a large velocity gradient
|Vu| ~ | w | The straining action of the velocity
gradient on the vorticity may then be described by a
crude form of the vorticity equation

Dlw|
Dt

o (7.1)

~ |

where D = 562 + (#.V) denotes the derivative follow-

ing the flow. Hence, it is expected that the vorticity

downstream of M will rise to very large values (pro-

bably infinite at zero viscosity) in a time of the order

of the large eddy turnover time #, ~ sup | wo(x) |~*.
x

Associated with this local vorticity-increase is*a local
augmentation of vortex line stretching in the volume
originally occupied by the vorticity excess. It is true
that its volume must remain constant because of the
incompressibility constraint (which has already been
used in the derivation of the vorticity equation),
however the self amplifying feature of vorticity will
cause the shearing of the volume to be non uniform,
with the strongest concentration of vorticity found in
a small subvolume [241]. So, small-scale structures may
be generated in a very localized fashion. Note however
that it is crude to write | Vu | ~ | @ | since the velocity
gradient at a point x is not related in a simple way to
the vorticity at x; it is given by a Poisson integral
(cf. eq. (5.7)) with a fairly substantial local contri-
bution, but also with some coupling to nearby points.
This could smooth out the vorticity peak, but the
smallest-scale structures will still have some tendency
not to occur uniformly. The intermittency will by
necessity also be temporal because of the sweeping
of small structures by the large ones, but there pro-
bably also exists an intrinsic temporal intermittency
[241, 243, 244].

7.2 A DYNAMICAL MODEL FOR INTERMITTENCY. —
To take into account the fact that in the cascade,
the small eddies become less and less space filling,
let us now define the f-model [242]. In contrast with
almost all the previous intermittency models [245,
246, 247, 248, 249, 250, 251] in which the key quantity
is the energy dissipation, the B model works with



468

dynamically relevant variables such as non-linear
energy transfer [241]. It can then also be used to study
the possible intermittency of the inverse cascade in
two dimensions (see section 7.3).

It is assumed (as in K41) that at each step of the
cascade process, any eddy of size [, = [, 27", produces
on the average N eddies of size /,,, but contrary to
K41, the assumption is made that these N /,, ,-eddies
are concentrated in a fraction f(0 < f < 1) of the
volume occupied by the /,-eddy. It follows that, if the
largest eddies are space-filling, after n generations
only a fraction

Bn= 8"

of the space will be occupied by active fluid (see Fig. 9).
Furthermore, it is assumed that the nth generation of
eddies (in short, n-eddies) are positionally correlated
with (n + 1)-eddies by embedding or attachment
(for the sake of pictorial clarity this feature is not
included in figure 16).

(B=N2><1) 7.2)

k/lnjecrion

Transfer
O OO D
© s o o O
\>
Dissipation

FI1G. 9. — The energy cascade for intermittent turbulence : eddies

become less and less space-filling. The reader must be warned that

this picture is very schematic : actually, the successive eddies are

imbedded within each other and the eventual product of the cascade,

where dissipation takes place, should be thought of as some sort
of highly convoluted sheets.

It is straightforward to work out the modification
to K41 in the f-model. Let v, now denote a typical
velocity difference over a distance /, in an active
region. The kinetic energy per unit mass in scales ~ /,
is then given by

E,~ B,vi. (7.3)

n

The characteristic dynamical time for transfer of
energy from active n-eddies to smaller scales is still
given by the turnover time 1, = [ /v, as in K41 : the
generation of (n + 1)-eddies arises from the internal
dynamics of the n-eddies in which it is embedded.
The rate of energy transfer from n-eddies to (n + 1)-
eddies is expressed exactly as in K41, and as in K41
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this quantity must be independent of # in the inertial
range

en ~ Bty ~ Buvally ~ & (7.4)
Equations (7.2)-(7.4) are combined to obtain
_3-D)
v, ~ e L) 3 (7.5)
(3—-D)
T, ~ & P IR(L/L) 3 (7.6)
(3-D)
E, ~ &P 1231, [15) 3 (7.7
_(3-D
E(k) ~ P k=3Pkly) 3 (7.8)

In equations (7.4)-(7.8), all the intermittency
corrections have been expressed in terms of the
self-similarity dimension D, a special case of Mandel-
brot’s [252] fractal dimension, related to the number of
offsprings N by

def.
N=23p=2P, (7.9)

The self-similarity dimension of a self-similar
object is defined as follows : if one reduces the linear
dimensions of the object by a factor 2, as in the cas-
cade process, the number of offsprings needed to
reconstruct the original object is 2P, The usual dimen-
sion is recovered if the considered object is an interval,
a square or a cube, but for more complicated self-
similar objects [252], N = 2P, where D need no longer
take only integer values, is a natural interpolation.

Eq. (7.7) was first derived by Mandelbrot [251]
using the Novikov-Steward [247] model for the
spatial distribution of energy dissipation (see Monin
and Yaglom [40] Vol. 1, p. 609). In this model, a cube
of size [, of the order of the integral scale is split into N
equal but smaller cubes of length /[, N~ /3. Then the
entire dissipation is concentrated in m randomly
chosen subcubes. The procedure is repeated until
scales comparable to the dissipation length scale are
obtained. This model is called absolute curdling or
fractal homogeneity in Mandelbrot [251]. In this
context, D = Log N/Log m appears as the Hausdorff
dimension (see e.g. ref. [163]) of the dissipative struc-
tures in the limit of zero viscosity [250].

A generalization of the absolute curdling is the
weighted curdling (Yaglom [248], Mandelbrot [250,
251], already implicitly contained in Kolmogorov
[245] and Obukhov [246]). The dissipative structures
occupy all the available space but the density of
dissipation in each subcell of a cell is obtained by
multiplication of the dissipation in the cell by a random
variable W of unit mean value. Absolute curdling is
recovered when W has a Bernouilli distribution.
Kolmogorov [245] and Obukhov [246] assume a log-
normal W. Weighted curdling leads to a correction
to the 5/3 law of the energy spectrum which is generally
less than (3 — D)/3; D and W are then related by
3 — D= Wlog W) [251].
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Let us also mention that several authors have
proposed non-hierarchical models of intermittency,
where the small scale structures consist typically of
extensive thin sheets or ribbons of vorticity [240, 253,
254, 255]. Kraichnan ([241] section 3) explains why
such elementary structures are unlikely candidates.
One of the main reason is their difficulty in producing
an inertial range spectrum with an exponent close
to 5/3.

The f-model can also be used to calculate higher
order statistics for which the effect due to intermittency
is more easily measurable [164, 256, 257, 258, 259,
260]. The f-model then produces the same results as
the Novikov-Stewart model [247]. As an example,
consider the dimensionless structure functions

Ju@x) —ux+ D>
Clu(x) — uCx + 1) 252

al) = (7.10)

Since the only external parameter which pays a
role in K41 is ¢, a,(/) should not depend on / in the
inertial range. Instead, measured values increase
dramatically with both p and /~'. Using the -model,
these results can be understood at least in their quali-
tative features : one obtains in effect [242]

JI\G=—DC-p
ay(l) o <E> 2.

In contrast to the linear dependence on p in eq. (7.11),
the Kolmogorov (1962) log-normal theory [2495]
predicts a quadratic dependence. Actually, there are
indications that only linear-with-p deviations of the
exponents from K41 are compatible with the infinite
cumulant hierarchy of fully developed turbulence
(Frisch 1977 private communication). Nelkin and
Bell [261] have reached a similar conclusion with the
assumption that there exists a single dissipation scale
for all the structure functions.
The skewness

@)/ )

and the flatness

&/ @)

which measure the deviation of the small scales of the
velocity field from Gaussian behaviour can also be
calculated in the framework of the f-model, and are
found to vary as positive powers of the Reynolds
numbers if D # 3, in the limit of large Reynolds
numbers. The correlation function of the dissipation
&(r) = va*(r) is found to satisfy

Ce)elr + 1) = Ce? > oc (&) U/l

with u = 3 — D. Experimentally, a power law seems
to work quite well and defines an exponent

(7.11)

(7.12)
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u =~ 0.5[262, 263] (see Monin and Yaglom [40] vol.2,
Chap. 25 for review). This leads to D =~ 2.5.

Since the Hausdorff dimension of the dissipative
structures in the limit of zero viscosity satisfies
0 < D < 3, the corrections to K41 cannot make the
spectral exponent larger than 8/3. The same upper
bound can be derived from the NS equation for finite
energy turbulence (Sulem and Frisch (*7) [159]). This
exponent corresponds to a dissipation concentrated
on a zero-dimensional set (e.g. isolated points). The
true dimension is likely to be greater than two. Indeed,
as noticed by Mandelbrot [251], the intersection of a
D-dimensional set with a line has D-2 dimensions if
D > 2, and is almost surely empty for D < 2. Since
intermittency is easily seen in measurements made
with a hot-wire anemometer, which is essentially
a measurement along a line, it follows presumably that
D> 2.

7.3 INTERMITTENCY IN TWO DIMENSIONS. — The

presence of highly non-local interactions makes the
model unusable in the enstrophy cascade. Inter-
mittency is present, but, as shown by Kraichnan [115],
it probably does not change the energy spectrum.
The inverse cascade, in contrast, is local and inter-
mittency corrections to the 5/3 law cannot be ruled
out. The closest thing to the S-model would be a
cascade of the kind shown in figure 10 which becomes
less and less space-filling with increasing scale-size.
Let us assume that after n octave-steps the fraction
of space filled with active n-eddies is '
Bn = 2_M2_D) = (ln/IO)D-z . (713)
Repeating the calculation of section 7.2, we obtain
(2-D)

E(k) ~ 3 k™53(kly) 3 (7.14)

(*7) Pouquet [88] has noted that this reference contains a mistake
in the bound on enstrophy flux in two dimensions. Eq. (8) of Sulem
and Frisch [159] must read

L
(k) < CS'{EL*“ o, ( S &2 9:/2) +

=0

L—1
+ kg 20 szzaa( S K E:,ﬂ)

R

L

£ & ai) (a2t 01, + L%, 0l
e
+ Z El/Z(Q 1/2 + 91/2 + 91/2 )]}
m=L+2

It follows that if E, oc Ck; %, we find, lim I, (k,) = 0, provided

L-ow
that o > 8/3.

This mean that in the enstrophy range, the energy spectrum
cannot be steeper than k=113, If we insert E(k) oc k=113, we find
that the dominant contribution comes from / and # close to L and
small m, an indication that the enstrophy transfer is strongly non
local.
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Fi1G. 10. — An intermittent inverse cascade.
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Thus as first noticed by Kraichnan [115], intermittency
corrections to the two-dimensional inverse cascade
will, if they exist, decrease the 5/3 exponent.

We have seen that with the EDQNM, a crossover
dimension, d, ~ 2.03, is found where the direction

Critical phenomena
limit T — 7,10
(T, = critical temperature)
distance r

non-universal small scale fluctuations (characteristic
small scale ;)

T—-T\7"
correlation length & = ¢, (-Ti) -
order parameter (magnetization) M(r)

fluctuations of M have an infinite range in configura-
tion space in the limit 7 — T, | 0.

spin-spin correlation function g(r)

lim g(r) exists
TiTc

if H is an external field which couples to M, then the

r2g(r)dr c (T-T,)""
0

susceptibility %, H=0 ~ j

gir) ~ ri¥nf g :

scaling relationy = 2 — n) v

Ne 5

of energy cascade reverses. Intermittency corrections
to the inertial range exponent for the energy spectrum
are thus expected to change sign upon crossing d,. It is
an open question whether the intermittency corrections
vary continuously in the neighbourhood of d..

8. Comparison with critical phenomena. — 8.1 FoRr-
MAL ANALOGIES. — Detailed analogies have been
sought between fully developed three-dimensional
turbulence and critical phenomena. Both have
asymptotically universal self-similar behaviour, the
former in the limit of infinite wavenumber, the latter
in the limit of zero wavenumber, and a suggestive
table can be constructed [264-267]. We shall use the
inverse Reynolds number R; ' and not viscosity to
avoid confusion with the standard use of the exponent
v in critical phenomena (see Kadanoff et al. [268] for a
review of notations and pre-renormalization group
phenomenology).

Turbulence
limit Ry | 0

wavenumber k

non-universal small wavenumber fluctuations (cha-
racteristic scale of the energetic eddies L = 1/k,).

Lo _ +
dissipation wavenumber k4, = ko Rg"

Fourier transform of vorticity &(k)

fluctuations of @ have an infinite range in Fourier
space in the limit R; ! | 0

Fourier transform of vorticity-vorticity correlation
function ¢ | @(k) |*> ~ E(k) in three dimensions

lim E(k) exists

R, Y

total vorticity J' k* E(k) dk ~ eR,. This corres-
0

ponds to a critical exponent y = 1

K41 implies that for k > k,

E(k) ~ 82/3 k—5/3 f(k/kdiss)

and kg, = ko Ry ¥4

This corresponds to critical exponents #n = 2/3,

v = 3/4 which satisfies the scaling relation
y=Q2-nv.

If intermittency is accounted for, then in the inertial
range

E(k) ~ &3 k= 5Bk, k).

This corresponds to critical exponents
-1

2 4
’1—§+C’ V—'<-3--C' ) )’—1
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These analogies are not meant to be taken literally.
It is the underlying concept of scaling which may be
useful in understanding turbulence. In critical pheno-
mena, scaling means the existence of various fields,
the scaling fields, whose range of correlation is
determined by a single length scale which diverges as
T | T.. The inertial range behaviour of the energy
spectrum naturally leads to the identification of the
velocity field (or equivalently any component of
the velocity gradient, denoted y(r)) as a scaling field.
Note that Nelkin [266] has conjectured that the local
dissipation rate &(r) = wy?(r) is another scaling field.
This conjecture is based upon the experimental result
that the dissipation spectrum appears to have the
same viscous cut-off as the energy spectrum [257].

Finally, let us mention the analogy which may
exist between the inverse cascade in two-dimensional
turbulence and a Hamiltonian system, initially out
of thermal equilibrium, but with a total energy such
that for large times it approaches a critical point.
At the critical point, there are infinite fluctuations in
the order parameter, such as the magnetization in a
ferromagnet, which can be interpreted as the result of
the condensation of spins into larger and larger
locally aligned spin cluster. This appears to be ana-
logous to the inverse cascade in two-dimensional
turbulence [269]. Intermittency does not have a
readily identifiable counterpart, but a relationship
with the convolutions of the cluster boundaries has
been envisaged [270].

8.2 UNIVERSALITY. — In order to compare what
is usually meant by universality in critical phenomena
and in turbulence, it is necessary to start with non-
equilibrium critical phenomena. It has long been
believed that the sufficiently small scales of fully
developed turbulence are independent of initial
conditions [25]. This, we plausibly take to correspond
to the tacit assumption that there is a unique state of
thermal equilibrium associated with each class of
initial conditions for a Hamiltonian system. The
values of the isolating integral of motion serve as class
characteristics ; in particular, the initial energy per
unit volume may be chosen such that the state of
thermal equilibrium attained is a critical point. In the
modern theory of phase transitions, the feeling that
certain properties of the system in the vicinity of the
critical point, such as the critical exponents, are
unsensitive to the detailed form of its Hamiltonian has
been elevated to a principle which is called univer-
sality. The degree of universality is not generally
quantifiable. However, given a specific Hamiltonian
and one of its critical points, certain possible changes
in the Hamiltonian are classified as irrelevant (relevant)
if they lead to the same (different) critical point
behaviour. Usually, changes which preserve the
various symmetries of the Hamiltonian are irrelevant.
Consider the class of lattice models for magnets which
are partially characterized by the number of spatial
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dimensions d and the number of spin components #.
It is known that changes in the lattice structure which
are changes in symmetry are irrelevant (e.g. for d = 2,
spin on triangular or square lattices have the same
exponents). In contrast, changes in n or d, or the
introduction of a preferred spatial direction in which
for example the coupling is strongest are relevant.
One is then led to compare the universality in critical
phenomena with the sensitivity of turbulence to
changes in the NS equation.

One of the essential symmetries to be preserved
is the detailed energy conservation as expressed
in (2.16). If in eq. (2.10a), the coupling coefficient
P;; (k) is multiplied by a totally symmetric function
¢(k, p, @), a modified NS equation is obtained which
belongs to the same symmetry class as the original.
Let us examine the qualitative significance of such a
change in three dimensions. In the original NS
equation, the dependence of the coupling coefficient
P;;(k) upon the sole wavevector k implies that in
configuration space, the triadic interaction couples
two eddies at the same point r’ to produce a third eddy
at point r. Though the pressure contribution to the
coupling appears to be long ranged, it varies in fact
like r~* because of the quadrupole character of the
pressure source 07u; u;/0x; 0x;. This is a rapidly
decreasing function as compared to the velocity
structure function in the inertial range

2y — (o v(0) Y oc ! with m=~ 5/3.

A modification of the coefficient P;;(k) by multi-
plication by a function ¢(k, p, q) would couple eddies
at two distinct points r’ and r” to produce an eddy at r.
In critical phenomena, it is known that interactions
of infinite range must be added to a Hamiltonian
before a change in critical exponents is produced.
On the basis of a superficial analogy, it would seem
that if the nonlinear terms are modified without
introducing any long range interactions (in physical
space), then the associated turbulence would be the
same as in the original NS equation. Loosely following
Kraichnan [28], we will now attempt to cast a serious
doubt upon this conclusion. A change in the coupling
coefficient will in general affect the locality of energy
transfer in Fourier space, a measure of which is given
by the energy transfer locality function W(v) (see
Appendix 3). It is likely that the locality degree of
transfer determines the effective number of cascade
steps needed to reach a given wave-number and hence
the intermittency. If this conjecture is true, a modi-
fication of the coupling coefficient which leaves the
scaling properties of turbulence invariant coincides
with a modification which leaves W invariant. In this
context, non local interactions (between scales of
arbitrary separation) seems to be a prerequisite for the
existence of intermittency. This is suggested by an
analysis of the cumulant hierarchy (Frisch 1977
private communication).

33
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8.3 IS THERE A MEAN FIELD THEORY IN TURBULENCE ?
— In comparisons between fully developed turbulence
and critical phenomena, K41 has been considered as
the analog of the Landau mean field theory of phase
transition, in the sense that they neglect statistical
fluctuations of the energy flux and of the order
parameter respectively [235, 243]. In critical pheno-
mena, it is possible to carry out a systematic expansion

, of the various statistical quantities, the so-called loop
expansion which gives the mean field theory at the
lowest order [271]. In contrast, for turbulence, the only
know systematic expansion analog to the loop
expansion gives the Direct Interaction Approximation
to lowest order [173], which, as noticed in section 6.1
is not compatible with K41.

8.4 Is THERE A CROSSOVER DIMENSION FOR VALIDITY
OoF K41 7 — By applying to the energy dissipation
an argument parallel to the Ginsburg: argument for
critical phenomena, the existence of an 8/3 crossover
dimension for intermittency correction to K41 has
been proposed [6, 265, 267]. However, dissipation
is not an inertial range quantity, and therefore the
dimension 8/3 is of no particular interest. So far,
there are no indications that intermittency corrections
disappear in any dimension (*8).

8.5 INFINITE-DIMENSIONAL TURBULENCE. — It has
been suggested that simplifications occur as d - ©
and in particular that K41 could become exact
(Migdal 1976, Siggia 1976 private communications).
In the case of a passive scalar advected by a velocity
field which is spatially smooth and white noise in time,
Kraichnan [131] found that temporal fluctuations in
the smallest scales become negligible as d — co. More
recently, the limit d — oo has been investigated on the
NS equation [273]. It is found that short-time expan-
sions and the (Eulerian) DIA yield well defined limits
if a rescaled time f = t/\/ZJ or equivalently a rescaled
energy spectrum E(k) = E(k)/d is used. The latter is

.equivalent to assuming finite energy per component
rather than a finite total energy. All the energy transfer
comes then from triads which have one right angle. A
simple understanding is obtained by noting that two
independent unit vectors are almost surely orthogonal

.in infinite dimensions. This result has an important
consequence : if initially the energy is confined to a
wavenumber band k; < k < k,, then it can never
be transferred to wavenumbers less than k,, since the
interaction of two orthogonal wavevectors within
that band necessarily results in a wavevector larger
than k,. The characteristic time for the dynamics of
the energy containing scales (presumably the time
for appearance of a singularity at zero viscosity)
becomes independent of d in the limit d — oo, when

(*®) Grossmann and Schnedler [272] have made a Renormaliza-
tion Group calculation suggesting a crossover at d = 2. Their
starting point is however not the NS equation.
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the reference velocity from which this time is
constructed is the r.m.s. velocity per component.
The incompressibility constraint was found to still
play a role as d — co. Nevertheless, the pressure which
is given by a Poisson equation with a source
div ((u. V) u) should only depend weakly on individual
components of velocity and velocity gradient. There-
fore, an anisotropy affecting a finite number of
velocity components cannot be relaxed in a few large
eddy turnover times as in three dimensions [274, 275].
When short-time expansions going beyong the second
order, or renormalized perturbation theory going
beyong the DIA, are considered, the corrections
remain as important as the DIA terms as d — oo.
At this level there is so far no evidence that K41
becomes exact as d — oo. But the fact that such
corrections remain finite does not rule out exactness
of K41 as d » oo (Kraichnan 1976 private commu-
nication).

8.6 RENORMALIZATION GROUP METHODS AND APPLI-
CATIONS. — The tool which has proved to be very
useful for describing and calculating critical pheno-
mena is the Renormalization Group (RG for short) as
recently developed by Wilson [276]. See for reviews
Wilson and Kogut [277], Wilson [278], Fischer [279],
Ma [280, 281], Toulouse and Pfeuty [282]. In brief,
it has two essential features :

a) Since (in a ferromagnet) spins tend to align, it is
natural to consider in place of solitary spins, block
spins [283] which are essentially a local average of the
solitary spins and which are labelled by suitably
rescaled values of the original position and time
indices.

b) The self similarity of the large scales at a critical
point imply that the sequence of Hamiltonians in
terms of solitary spins, block spins, groupings of
block spins, etc... converges to a fixed point. For
(possibly non-Hamiltonian) dynamics, a sequence of
equations of motion takes the place of the sequence
of Hamiltonians [284, 285]. The critical thermody-
namic properties are then determined by the approach
to the fixed point.

Critical phenomena methods have been applied to
the study of convective instabilities [286, 287, 288, 289],
but their application to fully developped turbulence,
proposed by Nelkin [264], has just begun. The first
attempt to really implement the RG ideas in connection
with fully developed turbulence is due to Forster.
Nelson and Stephen (FNS) [290, 291]. This work is
concerned with the infrared properties of a randomly
stirred fluid and makes use of a very powerful method
carried over from critical dynamics [284, 292, 293].
Its essence can be sketched as follows. Let the NS
equation be written in Fourier space with wave-
numbers extending from 0 to k... Without any
approximation, reference to velocity Fourier compo-
nents #” with wavenumbers larger than k,,,,./b (b > 1)
can be suppressed by the following procedure : using
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the NS equation, #” can, in principle, be expressed
in terms of velocity Fourier components #~ with
wavenumbers less than k,,./b and of the stirring
forces f~ (and also the initial conditions u”(0) if
needed) ; the expression for #” is then substituted in
the equation of motion for = wherever 4~ appears. In
the resulting equation for u~, variables are then
rescaled to make it, as much as possible, look like the
original equation (but unavoidably, new terms are also
generated). This defines the RG transformation ; when
iterated indefinitely, the equation of motion may
converge to a fixed form. In such a case, the scaling
laws of the problem are easily extracted from the
fixed equation and the rescaling factors. Since the RG
transformation cannot be carried out explicitly, the
real problem is to calculate perturbatively. It turns out
that for the problems considered in FNS, there are
crossover dimensions d, above which the non-
linear terms become essentially negligible as £ — 0,
so that for d slightly less than d,, one can calculate
perturbatively (cf. the e-expansion of Wilson and
Fisher [294]). The most interesting result of FNS
from the view-point of turbulence concerns their
Model B. To give an indication of what is done, let us

first use the K41 phenomenology. We write the equa-

tion of detailed balance of spectral energy density
for stationary solutions

aE(k) = F(k) + T(k) —

2vk? E(k) (8.1)
(F(k) = forcing spectrum, T(k) = transfer spectrum).

Inertial range solutions correspond to situation
with negligible forcing and viscosity and identically
vanishing transfer, whereas in FNS’s Model B
stationarity results (for d < 4) from competition
between forcing and transfer with negligible viscosity.
FNS assumed a particular power law forcing
F(k) oc k%~ 1; following Fournier and Frisch [193],
let us more generally assume

Fk) oc k77 8.2
let the energy spectrum be a prescribed power law
E(k) occ k~™ 8.3)

Using the ideas of K41, and assuming locality, we
can write

k) ~ k32 E(k)¥'? .

When we substitute (8.3) into (8.4) and equate the
transfer to minus the forcing spectrum, we obtain

r=3m-—1)2. 8.5)

8.9

This argument can be made more quantitative by
using the EDQNM of chapter 6. Since the EDQNM
is compatible with K41, the k-dependence of T(k)
automatically agrees with (8.4). Convergence of
transfer and negativity put some constraints on r
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which depend on the dimension (see Fournier and
Frisch [193], section V.C.). A noteworthy feature is
that the DIA and the EDQNM which usually differ
in their predictions (cf. the k=32 and the k~°?
inertial ranges [180]) do agree for the solution (8.4)
as long as m < 1, the reason being that the DIA has
then no infrared divergence so that its non-Galilean
invariance become irrelevant. The main interest of
the FNS solution is that it agrees with K41 calculations
although it does not use closure. Indeed, at a technical
level, the FNS calculation is based on an ¢ = (4 — d)-
expansion. They calculate an approximate recursion
relation valid to order ¢ by a diagramatic perturbation
method. Only second order diagrams contribute, so
that the calculation is equivalent to using the lowest
order mass renormalized equation, namely the DIA
(see Martin et al. [173] for a field-theoretical view
point of the DIA and higher order approximations).
Nevertheless, as they noticed, this calculation is
probably valid to all orders in & Fournier and
Frisch [193] have shown that the actual crossover
parameter is not the dimension but the spectral
exponent m or equivalently the forcing exponent r :
the relation (8. 5) can be obtained by a RG calculation
for r = — 3 + ¢ and arbitrary d > 2 (Fournier [295]
ch. II). Other results obtained by FNS are relevant to
large scale dynamics of stationary turbulence but
correspond essentially to negligible non-linear terms
(model A and C).

There is another infrared aspect of turbulence which
can be investigated by RG methods, namely subgrid
scale modeling [296]. The existence of a long range of
quickly evolving small eddies, the inertial range, in
fully developed turbulence implies both the impossi-
bility of direct numerical calculation based on the NS
equation because the number of degrees of freedom
is too large, and the possibility of a numerical calcu-
lation which only explicitly refers to the large eddies
because the properties of the small eddies are universal
and need not be calculated explicitly. Existing subgrid-
scale calculations are based either on phenomenolo-
gical arguments [297-301] or on closures [302, 303, 304].
It may be shown that closure-based calculations, ate
roughly equivalent to doing only one step in a RG
iterative process. However, a distinctive characteristic
of the RG applied to subgrid scale modeling is that the
statistics of the scales to be eliminated are determined
by the large scales which are the object of the calcu-
lation. This is in contrast with the application of the
RG to critical phenomena where statistical properties
are explicitly determined by the Gibbs ensemble.

The most challenging question for the application
of RG ideas is fully developed three-dimensional
turbulence which is clearly an ultraviolet problem.
There has been an attempt, loosely inspired from the
RG ideas to calculate the exponent of the dissipation
correlation function for intermittent fully developed
turbulence by numerical integration of a suitably
chosen set of hierarchically distributed Fourier
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modes [244]. In trying to implement true RG ideas,
there is no particular difficulty involved in defining
the RG for an ultraviolet problem ; it suffices to
interchange k,,,, and k.. = and «”. b and 1/b. The
real problem is that, so far, we do not know how to
carry out the perturbation calculation due to lack of a
known small expansion parameter.
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Appendix 1 : Dependence of the Eddy-turnover-time
on spectral shape when intermittency effects are
ignored. — We assume the turbulence to be homo-
geneous and isotropic. For an arbitrary spatial
dimension of space d, it then follows that

A, )Py = |ulx + 1,0 — ux, 1) )

= J“’ E(p, 1) x

0

x [1 - je"””“”d“"” Q] dp (Al.1)

where d“~ Y Q is the differential solid angle which
is normalized according to

Jd“““9=1

and 6 is the azimuthal angle. The integral over p can
be broken into three parts

0<p<k/2, kl2<p <2k,
L2k, <p<oo,

where k, = 1/I,, We roughly identify the integral
over the middle range with E,. In the first and third
integrals, we make the asymptotic replacements
(pl, - 0

1 _j‘eipl,.coso'd(d-l)gzczpzlnz, (A12)

[where ¢ is a constant of order unity which will be
suppressed] and (pl, » o)

1 - Jeiv’nws" A=V Qx1. (Al.3)
We obtain
n/l
| Aul, 0y P ~ lff p* E(p) dp +
0
+ E, + J E(p)dp. (Al.4)
knV2
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There are two possibilities. Either E, dominates in
(A1.4) in which case the spectrum is called local,
or it does not and the spectrum is non-local. With the
substitution E(p) oc p~™ (inertial range), we see that
the first integral is well behaved if m < 3, and the
second is well behaved for m > 1. Therefore, if
1 < m < 3, the spectrum is local. The case m < 1
is observed only in connection with infrared problems
while the limit m = 3 appears in the calculation of the
enstrophy-transfer-range in two-dimensional turbu-
lence. Let us here exclude m < 1, which then allows
us to replace (Al.4) by a simple formula valid both
in the local and non-local cases,

kn
ClAud, 0 P~ lfj P E(p,ndp. (AL.D)
0
This implies that
= /<t 0 Py, =
kn
~ J P2 E(p,Hdp. (Al.6)
0

It is of some interest to give a physical interpretation
of the non-local contributions to ¢ | Au |* ) as they
appear in (Al.4). Consider an eddy of size 1/p > I,.
Its velocity field varies slightly over the length scale /,
and may be approximated by a simple shear, i.e.
a flow having a spatially constant velocity gradient
o(p). The velocity difference across the eddy of size /,
is [, w(p) and the mean squared velocity difference is
12 { w*(p) >. This allows a correspondence with the
first integral in (A1.4) under the identification

<w2(17)>=f

size 1/p < 1. Its velocity field varies over length scales
much smaller than /, and, in effect, causes the boundary
of the /,-eddy to execute a highly convoluted random
walk. In the mean, this effect is diffusive, and as in
the usual diffusion models which are based upon a
fine grained random walk, the relevant parameter is
the mean square velocity of the carrier field, which
corresponds to the second integral of (Al.4).

p? E(p) dp. Now consider an eddy of

Appendix 2 : The technical aspects of second order
spectral equations. — In d spatial dimensions, the
conditions of homogeneity, isotropy, reflection inva-
riance and incompressibility allow us to write the
velocity ‘covariance in the form

Uk, t
Cill, ) i, 0> = &0 p g 50k + p).
(A2.1)
The Navier-Stokes equation
0 2\ - _
<a—t + vk ) ik, 1) =
= ,,m(k) 4(p, 1) i,(q, 1) d9p (A2.2)
p+q=k
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together with the above definition of U, the short time
expansion and the replacement of ¢ by 6, yield

%tt-] (k, ) + 2vk2 Uk, t) =

_ 4
T @d-D

J.d(d)ka kaq(t)[aidp)q U(P, t) U(‘I- t) -
where

aﬁ:q = lmn(k) Pmi(P) Pnj(q) Plu(k)/4 k2 (A2 4)
b;:?q = len(k) Pnli(p) I:’mt(q)/2 k2 . (A2 5)

Some ;iroperties of these coefficients which follow
immediately from their definitions, are

24, = b, + b, (A2.6)
2k*al) = p* b3, + 4* b2, (A2.7)
k2 b, = p? b9, (A2.9)

In terms of x, y, z, the cosines of the interior angles a,
B,y of the (k, p, q) wavenumber triangle (Fig. 11),

b@, =ﬁ[(d— 3z 4 (d— Dxy+22°]. (A2.9)

Using the identity

X + yz = sin f sin y (A2.10)

(a)

FiG. 11. — a) The (k, p, q) triangle. b) The 4, domain limited by
the triangular inequalities | p — g | < k < p + p.
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and eqs. (A2.6) and (A2.9), we obtain

40 =2d-2)+(B—d)(y*+2z%) — 2yzcos(B—7)
= d(sin? B+sin?y) — 4+ 3 (cos? f+cos? y)
— 2cosficosycos(f—7) .,
(A2.11)

from which we conclude that a'¥ is an increasing
function of d. Ford = 2,

402 =y*+ 22 —2yzcos(f—y) =0 (A2.12)
and consequently

for d=2
In contrast,
for d<2 af,=3d-2(1-y)<0.

a® =>0.

The bUU term in (A2.3) can be absorbed into an
integration factor :

% [U(k, )] exp‘[ V(1) dt’] =

0

4 t
=——exp J V(@) dt'] X
d-1 [ 0
} jdwp K2 00, i, Ulp, 0 U@, ), (A2.19)

where

Vk(t) = 2 sz + d;;l J‘ d(d)P k2 Ql(c;)q bkpq U(q" t) :
: (A2.16)

From this and the positivity and complete symmetry
of 6;,,(2), it is easily checked that a necessary and
sufficient condition for the preservation in time of the
property { Uk, t) > 0 for all k } is ¥ > 0 for all its
allowed wavevector arguments, violated in dimensions
d<?2.

In discussing the conservation laws, it is traditional
to work with the energy spectrum E(k, ). Using
the rotational symmetry of the problem, we perform
the angular integrations in d® p and express the
energy per unit mass

%(u.u) = -;- JU(k, Nd9%k  (A2.16)

in terms of the energy spectrum by

2Cuu) = Jm Bk, ydk.  (A2.17)

0

E(k, 1) is related to U(k, t) by the use of the properties
of the d-dimensional volume element

d% = k4"t dk d“9 Y Q (A2.18)
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where d~V Q is the differential solid angle. When
integrated over all the angular variables, it yields the
area of the d-dimensional unit sphere

2 72
Jd Q=3S, T@D (A2.19)
Therefore
Ek,H) =18,k Uk, 1) . (A2.20)

If y is chosen to be the azimuthal angle, then the
integrand in (A2.3) is independent of the other
angular variables implicitly contained in ¢~V Q and
we may therefore make the replacement

d94VQ - S, (siny)~%dy 0<y<1
- S;_isiny)?3dz —-1<z<1.
(A2.21)
Using the law of cosines
q* = k* + p* — 2kpz, (A2.22)
a(p, z) q
dp dz dpdg =+~dpd
P *\a(p,q) P = P
(A2.23)
and the law of sines
k _ g9 __»
sina  siny sinf’ (A2.24)
we are led to the replacement
d—2
d9p > S,_ l(gl‘g) (sinaw)?"3dpdg.
(A2.25)

The variables of integration p and g are restricted to
the region 4, limited by the triangular inequalities
|p—ql| <k < p+ g whichisillustrated in figure 18.
Eq. (A2.3) can now be rewritten as

%%(k, f) + 2vk? Ek, ) =

ina\=3 k -
=C, j J e (%) 2 Ll K4 E(p, D EGG, -

—b@ p*~ ' Eq, 1) E(k, )] dp dg  (A2.26)

where
C,=4S8,_,/d-1)?2S,. (A2.27)
In particular
4 1
C, == C; =5- (A2.28)

To demonstrate the detailed conservation pro-
perties of (A2.26) when v = 0, its symmetries must be
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made explicit. By construction, 6,,, is completely
symmetric. The factor sin a/k may be regarded as a
completely symmetric function of &, p, ¢ by the law of
sines. The region of integration 4, is symmetric in p
and ¢, and when considering the evolution of total
energy, we shall have integrals of the form

j dkjj dpdq=J dkj dpf dg x
0 Ax 0 0 V]

xY(p+q—k) Yk+q—p) Yk+p—q), (A2.29)

(Y is the unit step function) which are completely

symmetric in &, p, g. Finally, let us make the integrand
in (A2.27) symmetric in p and g by writing

%_f(k,z>=” Stk |p,g)dpdg (A2.30)
Ay

with
Sk |p,q) = Sklq,p) (A2.31)
and
C sin 473
SUe 19, 6) = 5 B0 (——k ) y
x 2o [ aff, K47 E(p. 0 Elg, )
'—b;cdp?q E(‘]: t) E(k’ t)'—b;c‘?q E(p9 t) E(k’ t)] . (A232)

As shown in Section 3.1, a quadratic conserved quan-
tity such as the energy, must be conserved in detail.
In terms of S(k | p, ¢) this is equivalent to

Stk |p,q + S(plg k)+ Sqlk,p)=0.
(A2.33)

To see this explicitly, form the above sum for
eq. (A2.32). It contains a series of terms quadratic in
the energy spectrum whose coefficients vanish. For
example, the coefficient of E(p, t) E(q, ¢) in this series
is proportional to

kd—2
pq
which vanishes by virtue of egs. (A2.6) and (A2.8)."

Similarly, the detailed conservation of enstrophy in
two dimensions,

kK*Sk|p,q) +p*S(plg. k) + q*Slk,p)=0
(A2.35)

[2 K2 Gypg—P? bipg—4° baiy]  (A2.34)

follows from (A2.7) and (A2.8). More generally, the
conservation of the energy moment

| E@) |s = jw k?s E(k, 1) dk

0o
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is equivalent to the condition

k* Sk |p,q) +p*S(p g, k) +¢*Sglk,p) =0
(A2.36)

from which it can be shown that the enstrophy does
not go over continuously into another energy moment
for d # 2[193].

Appendix 3 : Evaluation of emergy and enstrophy
fluxes. — The constancy of the energy and enstrophy
fluxes in the energy and enstrophy cascades respec-
tively, together with the symmetry properties of the
transfer function S(k | p, q) implied by these cascades,
can be used to quantitatively establish the notion of
locality in the transfer processes. Though egs. (A2.30),
(A2.31), (A2.33) and (A2.35) were derived in the
context of semi-phenomenological spectral equations,
they are also true for the exact equations.

The energy flux through wavenumber k is (*°) (vis-
cosity and forcing set equal to zero)

k) = — % f E(k') dk' =
0

k
—J dk’ H S(k' | p,q)dpdg. (A3.1)
0 Ay’

A sufficient set of conditions for II(k) to approach a
constant positive value ¢ in the limit of large k (the
direct cascade of energy) is given by

(i) The scaling law

! 1 ’ *
Stak’ | ap, aq) = —5 S(k" | p, 9) (A3.2)

to be satisfied for a —» oo.

(ii) The contributions from very elongated triads
k<p~qorp<k~gqorq<k~ p) should be
vanishingly small, or in other terms the integral (A3.1)
has neither infrared nor ultraviolet divergence when
the inertial range expression is substituted in S;
furthermore it should be positive. The condition for
the inverse cascade are similar except that a — 0 and
the flux integral must be negative. A constant enstro-
phy flux

k
n = Zk) = —J‘ dk’ U k'* S(k’ | p, q) dp dgq
0 Ax'

(A3.3)

requires, in place of (i), the condition (a — o0)

1 1 7
Sak’ | ap, ag) = — Sk' | p, q) . (A3.4)

(*9) More precisely, to prevent possible infrared divergence, the
energy flux must be defined as the limit for k,;, — 0 of the inte-
gral (A3.1) with k', p, ¢ restricted to exceed k,,;y, -
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From the expression for S(k | p, q) given in (A2. 32),
and that for 6,,, given in (6.15-6.18) with v = 0, it is
seen that the scaling law (A3.2) which is associated
with an energy cascade is consistent with a Kolmo-
gorov (1941) spectrum for E(k). Similarly, a k™3
spectrum is consistent with the scaling law (A3.4)
which is associated with the enstrophy cascade, but
the logarithmic correction is required to insure the
convergence of the integral in eq. (A3.3).

Before investigating the consequence of the above
conditions in the context of the spectral equations,
let us first put (A3.1) and (A3.3) into convenient
forms, with the following sequence of manipulations
which are based upon the general properties of
Sk | p,q). As noticed by Kraichnan [179], the
triple integral in (A3.1) collects four types of interac-
tions according to the values of k', p and g as compared
to k (see Fig. 12)

1I(k) = Iy(k) + IIy(k) + (k) + (k) (A3.5)
k rk k
k) = — J dk’' | dp J dgS&’ | p, q9) (A3.6)
0 Jo 0
k P o0 o]
Iyk) = — f dk’ | dp f dgS(k" |p,q) (A3.7)
0 Jk k
k f*© k
IIy(k) = — f dk’| dp j dgS(k" |p,q) (A3.8)
v e pw
oy(k) = — J dk’| dp J dgSk’ | p,q). (A3.9)
0 Jo k

Wavenumber —s
=

}

I CI.a)
Ay

FiG. 12. — Classification of triad interactions involved in the
energy flux I1(k).

The above four integrals are also implicitly constrained
by the condition that k', p and ¢ form the sides of a
triangle. Detailed energy conservation (A2.33) implies
that IT; = 0. Eq. (A2.31) implies that IT; = I}y
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11 m(k) +1I IV(k) =211 lV(k)

k k 00
=~2j dk'J dpj dgSK' | p, )
0 0 k

k k 00
- j dk’ J dp f dg[SKK' | p, )+
0 0 k

+ S 1K, 9]

k k 0
=f dk'j dp f dgS(q | k', p)
0 0 k
© k k
=J dk’f dpJv X
k 0 0

x dgS(k’ | p, q) = Iy .
Thus (Kraichnan [179])

(A3.10)

© k k
11(k) =j dk'_[ dpJ dgSk’ | p, 9) —
k 0 0

k 0 00
—j dk'j dpf dgS(k' | p,q). (A3.11)
] k k

The first term on the r.h.s. is the total rate of gain in the
range k' > k due to triad interactions with p, ¢ < k,
while the second term is the total rate of loss in the
range k' < k due to triads with p, ¢ > k. These two
classes of triad interactions are mutually exclusive and
exhaust the interactions which contribute to the net
transfer across k. Similarly, in two dimensions, the
mean rate of enstrophy transfer is

0 k k
Z(k)=f k? dk'f dp I dgS(k’ | p, ) —
k 0 0

k © ©
- f k' dk’ f dp J dgS(k' |p, q). (A3.12)
0 k k

Still following Kraichnan [91, 179], we use the symme-
tries of the integrand and of the domains of integration
in (A3.11) to make the replacements

k k k 4
j dpJ dq—>2J‘ dpj dg
0 0 0 0
) ) 3} 0 0 pt+k
j dpJ. dq—>2J‘ dpj dq——>2J‘ dpj
k k k p k P

(A3.12)

where the last replacement is a consequence of the
triangle constraint. Changing the variables of inte-
gration of the first integral in (A3.11) according to

w=k'lp (A3.13)

u=klp, v=gqp,

and in the second according to
v=Kkp,

u=kip, w=gq/p (A3.14)

we obtain
n(k)=2k3U dv rd_fjrd s(k E,k_”>~
u u u u u
1+v
jduj J dw s( k kw)]. (A3.15)

We now restrict our attention to the energy cascade
(see Kraichnan [91] for the enstrophy cascade ana-
lysis) and use (A3.2) to remove the factor k/u from S,

© 1 ©
k) = 2[J' %‘—j dvf dwS(w | 1,v) —
1 0 u
- j %J'“ dv j ude(v |1, w)] . (A3.16)
0 0 1

In the first term we may replace

f duj dw by j dwj du (A3.17)
1 u 1 1

and in the second term

1 u 1 1
J duJ dv by I dvj du. (A3.18)
0 0 0 v

Note that in the first term w can never reach infinity
because of the triangle constraint,

w=k'lp < (p+q)/p=1+v. (A3.19)

The integration over u can now be performed, yielding

H(k)=e=2j dvj
0 1

x dw[lnwSw|1,v) + InvS@|1,w)]. (A3.20)

Since v is always less than one and w always greater
than one, each choice of the pair (v, w) corresponds to
a unique triangle shape, with v the ratio of the shortest
to the middle leg. The energy transfer locality function

o) 1 1+
W) =-| dv X
& v 1

x dw[lnwSw | 1,v) + Inv' S@' |1, w)] (A3.21)

gives the fraction of energy transfer due to triangles

whose smallest leg is larger than v times the middle leg.
In two dimensions, detailed energy and enstrophy

conservation, eq. (A2.33) and (A2.35) lead to

S@lg k) _
S(q | k, p)

q2_k2
k2__p2

(A3.22)
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or
.2
S(w11,v)=vl2 - S(1 | v, w) (A3.23)
—-w
w2 —1
S|l w) = =—=81|v,w) (A3.24)
Ve —w

and therefore

1 1+v
k) = 8=2j. dvj- dw[(l — ) lnw +

0 0

+ Ww?* — )Inv] S(1|v,w) (A3.25)

(Kraichnan [130], egs. (2.5) and (2.9)). The energy
locality function reads

1 1+
W) =2 | dv
€ v 0

+ W= 1)Inv] S |v,w) (A3.25)

dw[(1 — v'>) Inw +

Figure 13 taken from Kraichnan [118] shows the
function W(v) computed in the context of the TFM in
two and three dimensions. It illustrates that the energy
transfer in two dimensions is less local than in three
dimensions.

Lid i s & 2 2

(W B .|

0.01

1 01 vy

F1G. 13. — The transfer locality function W (v) in three dimensions
(3D) and in two dimensions (2D) (taken from Kraichnan [130]).

Through the use of egs. (A3.20) and (A3.24), and
the corresponding equation for the enstrophy flux,
the various Kolmogorov constants, which are the
dimensionless factors in the inertial-range expressions
of E(k), can be related to the adjustable constant A,
which appears in the expression for 6, [113, 130].

Appendix 4 : Appearence of a singularity at zero
viscosity in dimensions d > 2 on the MRCM (commu-
nicated by M. Lesieur). — From eq. (6.14) with a
constant triad relaxation time 0,,,(f) = 0, (corres-
ponding to the Markovian Random Coupling Model
of Frisch et al. [213]), we derive a closed equation for
the enstrophy

0

k2 E(k, 1) dk .

|E(t) |1 =j

0o
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d C, k* (sino\?73
w0k =50 [ 50

x[d—=3)z+(d—-Dxy+22%]
x [k*~' E(p) E(q) — p*~ ' E(q) E(k)] dp dg dk
(A4.1)

where 4 is the set of wavenumber-triads able to form a
triangle. Exchanging £ and p in the 2nd term on
the r.h.s. and using the law of sines, we obtain

o]

d C
EIE(I)II =—2froj q* dg x

(1]

X jm k* dkE(q) E(k) Ak, q) (A4.2)

0
wherein

k 2 rktaq
A9k, q) = (—) j (sin B)?73 x
47 Jix-q| -

P\ | (p\*_,| d»
X[(d—3)2+(d—1) xy+2 23] <E> [(7(-) —I:I —q—
(A4.3)

A“(k, q) is a homogeneous function of k and ¢
of degree zero, and thus may be expressed as a function
A(g/k). Symmetrizing in ¢ and k, eq. (A4.2) then reads

0

d C

[

x r dkE(q) E(k) [,Z Gi-) + Z(fﬂ (A4.4)
. q

Writing g/k = 4 and p/k = p, we have

1+4
A = %I (sin B)*73 (xy+2%) p2(? —1) du+
|1-2]
d—3 [+ ' _ d
+ l_zj (sin f)* 3 (xy+2%) p?(u?—1) 7” .
11-4]
(A4.5)
The trigonometric relation
)
xy +z =S8 (A4.6)
and the sine and cosine laws lead to
+1 1 /,{2
An=| Gnpt|t+—1"2 |ay+
@ j Ginf [ 2y -+ 1)] g
+1
+ d - 3)j (sin B~ 1dy. (A4.7)
-1
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It follows that Integrating, we find
. N +1
A(Q) + A(—/{)_= 2(d - 2) j (sin g)?~* dy | E) |
|E@) |, = : (A4.10)
2d -2 2)
2 1 - d(d 00 t I E(0) |1
and then 2 Hence, we obtain that for zero viscosity, the enstrophy
becomes infinite at a finite time
d+1
d C ===
— 4 _ 1/2 2
3| EO |y = = 0o(d — 2 n¥ RS | E() |7 L dd — 1)
2 * 2d - 2) I E(0) |1 0o
_2d-2) 2
=da—1 | EO i (A4.9) 4 any dimension d > 2,
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