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Résumé. — Nous présentons un exposé détaillé du formalisme de la diffusion élastique nucléon-
nucléon en ajoutant de nouveaux résultats & ceux déja connus. Nous passons en revue plusieurs
représentations de la matrice de diffusion en tenant compte des principes de symétrie, notamment
de la conservation de la parité, de I'invariance par renversement du temps, du principe de Pauli et de
I’invariance isotopique. Les quantités expérimentales du systéme du centre de masse (c.m.s.) et du
laboratoire (l.s.) sont exprimées en fonction des amplitudes de diffusion. Les relations entre ces
quantités, découlant des symétries mentionnées ainsi que des relations entre les quantités du c.m.s.
d’un c6té et du ls. de 'autre sont citées en détail. Nous discutons ensuite une relation générale
décrivant la distribution angulaire dans la diffusion corrélée qui comprend toutes les quantités
expérimentales existantes ; la formule pour chaque expérience choisie peut en étre déduite en précisant
les polarisations initiales et les pouvoirs analyseurs. Enfin, nous étudions les conséquences du prin-
cipe de Pauli pour la diffusion de deux nucléons identiques. Nous exprimons les relations d’une part
entre les quantités dans le c.m.s. mesurées aux angles de diffusion 6 et = — 8 et d’autre part entre
les quantités dans le 1.s. aux angles associés 6, et 8,. Une attention particuliére est prétée aux angles
0 = /2 du c.m.s. et 8, = 0, du Ls. Le contenu de I’article est susceptible d’intéresser des expéri-
mentateurs et des phénoménologistes et plus spécialement ceux qui s’occupent de la reconstruction
des amplitudes de diffusion a partir des données expérimentales.

Abstract. — A detailed exposition of the nucleon-nucleon elastic scattering formalism is presented,
reviewing known results and adding some new ones. Several different representations of the scattering
matrix are reviewed, paying attention to symmetry principles like parity conservation, time reversal
invariance, the Pauli principle and iso-spin invariance. Experimental quantities in the centre-of-mass
and laboratory systems are expressed in terms of scattering amplitudes. Relations between experi-
mental quantities in each of these systems, following from the above mentioned symmetries, are
spelt out in detail, as are relations between l.s. and c.m.s. quantities. A general formula for the
angular distribution of correlated scattering is given and discussed. This formula involves all existing
experimental quantities. It can be specialized to describe any chosen experiment by specifying the
initial polarizations and final analyzing powers. Consequences of the Pauli principle for the scattering
of identical nucleons are studied. Relations between c.m.s. quantities measured at the c.m.s. angles 0
and © — 0 or at Ls. angles 0, and 0, (scattering and recoil angle) are obtained. Special attention is
paid to relations at 8 = =/2, i.e. §; = 0,. The material contained in this paper should be useful for
experimentalists and for phenomenologists interested in the reconstruction of scattering amplitudes
from data.

1. Introduction. — The purpose of this article is to provide a detailed study of the kinematics of nucleon-
nucleon scattering. Since a large body of literature has already been devoted to this topic during the last 25 years
or so. some parts of this article will have the character of a unifying review, while others contain new results
(for some of the original work and previous reviews see refs. [1-15]).

In section 2 of this paper we discuss the nucleon-nucleon scattering matrix M, present and relate several
different parametrizations of it and discuss the constraints on M following from invariance principles like
parity conservation, time reversal invariance, the Pauli principle and isotopic invariance. In section 3 we define
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the concept of a pure experimental quantity (or a pure experiment), i.e. one that involves only spin projections
onto certain basis vectors in momentum space. We list 256 different pure experiments in the centre of mass
system and then find all the constraints on them, following from the invariance principles discussed in section 2.
Nonlinear relations between c.m.s. experimental quantities are also discussed, as well as some inequalities
imposed on them. Pure experiments in the laboratory system are considered in section 4. A general formula
describing the angular distribution of correlated scattering for the case when both initial nucleons are polarized
is presented. Simpler formulas relating various angular distributions to laboratory system components of
polarization tensors are obtained from the general formula e.g. by assuming that one or both of the initial
polarizations are zero and/or that one or both of the final polarizations are not detected. The laboratory frame
components of the polarization tensors are expressed in terms of the scattering matrix in tables Sand 6. The c.m.s.
and laboratory system pure experimental quantities are related to each other in section 5, taking relativistic
effects fully into account. Again, we first present a general formula for an arbitrary experimental quantity, then
consider the case where 1. 2. 3 or 4 polarizations are involved. In section 6 we establish linear relations between
laboratory system experimental quantities, following from the usual invariance principles. While these relations
are not independent of similar ones in the c.m.s., their form, taking relativistic spin rotations into account, is
considerably more complicated. In section 7 we discuss consequences of the Pauli principle. In addition to
restricting the number of independent amplitudes from 6 to 5 in the scattering matrix and thus significantly
restricting the number of independent experiments, the Pauli principle has further implications. Thus, for nn
and pp scattering we present all symmetry relations between quantities measured at the c.m.s. anglesfand = — 6,
i.e. at laboratory system angles 6, and 0, (the scattering and recoil angles). Further, interesting relations for nn
and pp scattering are obtained when 6 = n/2, i.e. 0, = 0,, as well as relations between np and say nn experi-
mental quantities. Some conclusions and future outlook are mentioned in section 8.

New results are contained in sections 3 to 7 and they mainly concern quantities involving polarized targets
and especially the more complicated experimental quantities. While we give credit in cases when we use the
results of other authors, we do not attempt to give anything like a complete bibliography of the field. We also
make little effort to relate the formalism of this article to the numerous equivalent formalisms in the literature.

A few words on conventions and notations are in order.

Throughout the paper we use one set of basis vectors in momentum space in the centre of mass system
and three different sets in the laboratory frame (relating to incident, scattered and recoil particles). One and the
same normal to the scattering plane is used in all cases. While such usage is common to many workers in the
field, it is strictly speaking not in agreement with the Basle convention [16]. Indeed, if the convention is applied
exactly, then the polarizations of the scattered and recoil particles should be related to opposite normals. The
target normal in the laboratory system is not well defined. In any case, it is a simple matter to transform formulas
from the one-normal convention to a two-normal one.

We consistently use a four-subscript notation for experimental quantities : X,,,;, where p and q refer to the
scattered and recoil particle polarizations and i and k to the initial beam and target polarizations. If an initial
particle is unpolarized or a final state polarization not analyzed, the corresponding subscript is set equal to zero.
This notation should help avoid some common misunderstandings in the identification of experimental quan-
tities. It also facilitates transitions between the one-normal and two-normal conventions and the establishment
of relations between various quantities. The use of different letters for different experiments is now superfluous
but for historical reasons we still use the letter I for intensities (cross sections), P for polarizations, 4 for asym-
metries, D and K for depolarization and polarization transfer tensors, M and N for the contributions of two
initial polarizations to the final polarizations of the scattered and recoil particle and C for polarization corre-
lations. .

2. Nucleon-nucleon scattering matrix. — For our purposes a convenient form of a nucleon-nucleon
elastic matrix is [3, 5, 11]

Mk, k;) = % {(a + b) + (a — b)(6,,1n) (63, 0) + (c + d) (6,, m) (6, m) +
+ (¢ —d)(e,) (0, 1) + e(6, + 6,,10) }. 2.1)

Here the amplitudes a, b, ¢, d and e are complex functions of two variables, e.g. the centre of mass system (c.m.s.)
energy k and the scattering angle 6. The c.m.s. basis vectors are :

kf+ki kf—ki ki xkf

= T h L g T g ST 2.2
& T K| & =k | & x K | 2.2

where k; and k; are unit vectors in the direction of the incident and scattered particle momenta in the c.m.s.
The spin matrices 6, and ¢, (the Pauli matrices) act on the first and the second nucleon wave functions, respecti-
vely. (The projection (o, a) of a spin matrix ¢ on an arbitrary direction a will be written also as (¢, a)=(ca)=0,.)
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In (2.1) we have already taken into account parity and time reversal invariance. We have also assumed
that the particles are identical which is strictly valid for pp and nn scattering. For np scattering this assumes
isotopic invariance of the nucleon-nucleon interaction. The scattering matrix for the elastic scattering of two
nonidentical particles would contain a sixth term, namely

5/ = o3,m). @.3)

Still assuming isotopic invariance, we can write the scattering matrices for pp, nn and np scattering in terms
of two matrices M, and M, of the form (2.1), putting

Mk, k) = MO[—-———1 - (:" 1:2)]+ M, [——3 + (;" ”)] 2.4)

where 1, and 1, are the nucleon isospin matrices, and M, and M are isosinglet and isotriplet scattering matrices,
respectively. Obviously we have

M(pp - pp) = M(nn —» nn) = M,
M(np — np) = M(pn - pn) = (M, + M,)/2, 2.5
M(np — pn) = M(pn — np) = (M; — M,)/2.

Formulas (2.4) and'(2.5), unlike all the others in this paper, refer only to strong interaction scattering
matrices, ignoring the electromagnetic interactions.

The generalized Pauli principle for the nucleons implies certain symmetry conditions for the amplitudes
in (2.1), summarized in table I [5].

TABLE I
Symmetry properties following from the generalized Pauli principle

T=1 T=0

a;0) = —a;(n — 0)  ay(6) =  ay(rx — 0)
bi(0) = — ci(m —0)  bo(d) =  co(m — 0)
() = —bi(m —0)  co(0) = bo(n — 0)
di(0) = di(n—0) do(0) = — do(n — )
ei(0) = em—6) ell) = — eo(n — 0) ‘

Throughout this article we shall use the amplitudes a, b, ¢, d and e, although many different but equivalent
parametrizations are often useful.
Hoshizaki [8] uses the scattering matrix
M(kg, k;) = ay + cy(6, + 6;,n) + my(oy, n) (6, N)
+ gul(o1, 1) (62, ) + (0,, m) (6,. m)] (2.6)
+ hH[(‘,l’ l) (62’ l) - (61’ m) (62’ m] B

so that
m=r@+ ). a=%. ma=2@-b. gu=% u=-3 @.7)
which implies
a=ay+ my, b=ay — my, c=2gy, d= —2hy, e=2c¢cy. (2.8)
The so-called Wolfenstein amplitudes B, C, N, G, H [1] are defined as :
M(ks, k) = BS + { C(6; + 6,,n) + N(6,, n) (6,, n)
+ % Gl(ay, m) (6, m) + (0., 1) (5,,1)] 2.9

+ 5 HI(o;, m) (02, m) — (6,.1) (0. D] } 7
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where S and T are the spin-singlet and spin triplet projection operators, respectively :
1 1
S = Z [1 - (61, 62)] ’ T = Z [3 + (0-19 02)] . (2’10)
The Wolfenstein amplitudes are related to ours as follows :
B=b-c, C =¢/2, N=a, G=a+b+c, H=d 2.11)
which implies
a=N, b=B—-N+ 06)2, ¢c=(G—-B—-N)2, d=H, e=2C. (2.12)

The « singlet-triplet representation » matrix elements [17] are :

M ,=b-c
My, =a + dcos 6

M, =%(a+b+c—dcos0)

1

My = — —=(dsin 6 + ie) 2.13)
7

My, = — —— (dsin 0 — i)

NG
1
Ml—l = 5(_ a + b + 4 + dCOS@) = Mll - MOO - \/E(Mlo + MOI)COtge

M_,_ =M, M_,,=M_,, My_, = — M,,, M_,,=—-M,,
which implies
1
a =§(M11 + Moo — M,_y)

1
b =§(M11 + Mss + M1—1)

1
c=§(Mll_Mss+M1—1) (2.14)
1 1
d= (M + My +M,_ )= —————(M;o+ My,)
2cos 6 ﬁsmﬂ

i
e=—(M;o — My,).

72

Jacob and Wick [18] have developed the helicity formalism in which states are labelled by the spin projec-
tion A onto the particle momentum (4 is the helicity quantum number). Since there are some ambiguities in the
definitions of helicity states and amplitudes we shall specify our formalism here. Essentially it will coincide with
that of Jacob and Wick [18]; Martin and Spearman [19], Goldberger, Grisaru, MacDowel and Wong [15],
Hoshizaki [8], etc. Other authors. e.g. Cohen-Tannoudji, Morel and Navelet [20] and Kotanski [21, 22] use
somewhat different phase conventions (they omit the factor (— 1)*~* for particles 2 and 4).

We use the centre-of-mass system, consider the xz plane as the scattering plane, put the z-axis along the
momentum of the incident particle and the y-axis along the normal n. The helicity states of the incident and

scattered particles are

Xag = (2.15)



Ne1 FORMALISM OF NUCLEON-NUCLEON ELASTIC SCATTERING EXPERIMENTS 5

1 0 1 . 0
<-2— + /13> cos 5 — (5 — /13) sin 5

and

;o _ .Ou _
Xlg,-'exp( 12 0>X13_ 1_|_)v Si Q+ l—l OSQ (2'16)
77 M) Sg T g T 4] 087
The helicity states of particles 2 and 4 are defined with a different phase as
1
- ] + ).2
1-2 n -1 2
X = (= D? exp (—i%n) == ] 2.17)
stk
and
1 0 1
— s+ A, )sinz — [z — 4,) cosx
’ 3~ 44 .0y 7 <2 4) 2 (2 4) 2
X = (—1* exp [—— 1—2—-(0 + 7:):| X, = (— 1)° . (2.18)

1 0 1 .0
(5 + 14) cos 5 — (5 - 24) sin 5

The helicity A for a nucleonis 1/2 if the spin projection is parallel to the momentum, — 1/2if it is antiparallel. The
helicity amplitudes are denoted { A3 4, | M | 4; 4, D> and can be expanded into a partial wave sum as

(A3 A | M| Ay 2z =51i—k;(21+ D)< A3 4 | TUE) | Ay 22 > di,(6) (2.19)

where A = A, — A,. u = A3 — 1, and dj,(6) are Wigner rotation matrices [23] satisfying
d7(0) = (= )*7*d5,0) = (= 1)**dL,_,0). (2.20)

Parity conservation, time reversal invariance and the Pauli principle imply that

<‘)~3—/14|TJ(E)|—/11—12>=<}“3}~4|TJ(E)|)~1'12>
(A A | THE) | A3 4a D> = A3 Ag | TUE) | A1 A2 ) (2.21)
</14)~3|TJ(E)|)~211>=<]~314|TJE|'11}~2>

respectively. These relations for the partial wave helicity amplitudes together with (2.19) and (2.20) in turn
imply that the total helicity amplitudes satisfy

<—)~3—'14|M|—)~1 —12> =(‘ 1)11_12_l3+14<13}~4|M|'11/12>
CAidg I M [ A3ds) = (= D4R g0, M A4y ). (2.22)
<ﬂ'4 /13 |M|)~z '11 > = (— 1)11_12—23“" < '13 )»4 | M | 11 lz)

Taking these symmetry relations into account and indicating only the signs of the nucleon helicities, we put :

Mi=(++IM|++)=({—-=IM|--)

My=<{++|M|-=)=<X—-—-IM|++)

My={+—-|M|+-)>={-+[|M|-+)

My=<{+-|M|-+)>=(-+IM|+-)

Ms=(+ +|M|+-)>=(—-+|M|--)=(-—-IM|+-)=
S+ IMI+ 4> ===~ M|=+)=—<(+~ M|+ +)
/"=—<++|M|—+>=—<+—IMI——>~ (2.23)
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Substituting expression (2 /1) for M and calculating the appropriate matrix elements we obtain the relations
between the invariant c.m.s. amplitudes a, ..., e and the helicity amplitudes M, ..., M. With our conventions
we thus obtain

M, =%—(acos0+b——c+d+ ie sin 0)

M, =%(acos0—b+c+d+ ie sin 6)
M3=%(acos(9+b+c—d+iesin0) (2.24)
M4=-;-(—acos(9+b+ ¢+ d — iesin 0)

M, =%(— asin 0 + ie cos 0)

Formulas (2. 24) can be inverted to give

= %[(M1 + My + My — M) cos 6 — 4 M sin 0]

b= %(Ml—M2+M3+M4)

¢ = %(— My + My + My + M) 2.25)
d= %(M1+M2—M3+M4)

¢ = —%‘[(M1 + My + My — M)sin 0 + 4 My cos 0] .

For forward scattering, when 6 = 0, total angular momentum conservation implies that e(0) = 0,
a(0) — b(0) = ¢(0) + d(0). For helicity amplitudes this obviously implies that M,(0) = M4(0) = 0.

Obviously, infinitely many different types of nucleon-nucleon scattering amplitudes could be introduced
and indeed a very large number exists in the literature. In addition to those introduced above we wish to consider
two more, namely the transversity amplitudes [21, 22] and exchange amplitudes [24, 25], since both of these are
used by various experimental groups.

The exchange amplitudes are useful since in the high energy limit they correspond to the exchange of definite
quantum numbers (Regge poles) in the ¢ channel (the amplitudes Ny, N;, N, correspond to natural parity
exchange, U, and U, to unnatural parity, the subscript denotes the amount of ¢-channel helicity flip). The
exchange amplitudes are related to the s-channel helicity amplitudes and the g, ..., e amplitudes by the relations

NO=%(M1+M3)=%(acos(9+b+iesin9)
N, = M, =%(—asin0+iecos€)
1 1 I
N, =§(M4 - M, = 5(— acos 0 + b — iesin 0) (2.26)
Uy = 2 (M, — M3) = 3(— ¢ + d) |
0_2 1 3 _2 ¢
1 1
U2=§(M4+M2)=§(C+d)-

This can be inverted to give
a=(Ng— Ny)cosf —2N,sinf

b=N0+N2
c=U, - U, (2.27)
d= U2 + UO

e = —i[(Ng— N,)sinf + 2 N, cos 0] .
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The transversity amplitudes T4, were introduced by Kotanski [21, 22] in order to diagonalize crossing
matrices. For nucleon-nucleon scattering they are related to the Jacob and Wick helicity amplitudes M_,,, by
the relation

Toar = Z (- 1)b+d+1 Uct' U;fr M yay Uro Uyy (2-28)

a'b'c'd
U=i_<1 ’). (2.29)
V2 \i 1

More explicitly, the five independent transversity amplitudes are given by

with

1
T,=T,,,+ = E(M‘ + M, + My — M, — 4iM;) = (a + e) exp(i0)

T,=T____ =%(M1 + M, + My — M, + 4iMs) = (a — e) exp(— i0)

T,=T, , = %(M1 — M, + M, + M) — b (2.30)
T4sT++__=%(—M1—M2+M3—M4) - _d
T5ET+__+=%(M1—M2—M3—M4) =—-c

Formulas (2.30) are in full agreement with those used in the Argonne National Laboratory (e.g. [26]).

3. Experimental quantities in the centre-of-mass system. — We shall introduce a four-subscript notation
for all experimental quantities. The first and second subscript refer to the final state polarization of the scattered
and recoil particle, respectively. The third and fourth subscript specify the initial polarization of the beam and
target, respectively. In the c.m.s. the labels are denoted p, g, i and k, in this order. If an initial particle is unpola-
rized or the polarization of a final particle is not analyzed, the corresponding label is set equal to zero.

A « pure » experimental quantity (briefly a pure experiment) is by definition one involving only spin pro-
jections on basis vectors. The basis can be different for different particles but in the ¢.m.s. the system 1, m, n will be
used for all particles. In principle, 256 pure experiments can be defined as components of various tensors. These
are summarized in table II and are defined as follows :

A .1. The unpolarized differential cross section

o= 10000 = %TIMM-'- .
TABLE 11

Experimental quantities in the scattering of spin % particles

Unpolarized Polarized Unpolarized Polarized
beam beam beam beam
Measured Unpolarized Unpolarized Polarized Polarized
Quantity target target target target
A B C D
Differential cross-
section 1 To000 Aooio Aoook Aooi
Polarization of
scattered particles 2 P000 D00 K poor M o4
Polarization of re-
coil particles 3 Pog00 Kogio Dogox Nogix
Correlation of po-
larizations 4 Cpa00 Cpgio C ok Cpaik
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B.1.

B.2.

B.3.

C.3.

B.4.

C.4.
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Polarization of scattered particle

O-PpOOO =%TI'O'1PMM+ .

. Polarization of recoil particle

1
O-POqOO = ZTI'O'Zq MM+ .
Asymmetry in cross section due to polarized beam

O.AOOiO = %Tl‘ Mali M+ .

. Asymmetry in cross section due to polarized target

1
6A000k = ZTr MaZk M+ .

. Polarization correlation for initially unpolarized particles

1
anqOO = ZTr 01‘, 0'2‘1 MM+ .

Depolarization tensor for polarized beam

1

7 Troy, Moy M* .

GDpOio =

Polarization transfer from beam to recoil particle

1
O-KOin = ZTro'zq MO‘UM-'- .

. Polarization transfer from target to scattered particle

1
oKpOOk = Z Tl‘ Glp MO-Zk M+
Depolarization tensor for polarized target

UDOqu = %TI‘ 0'2‘1 M0'2k M+

. Asymmetry tensor for polarized beam and target

O-AOOik = %TI‘ MO'U 02k M+ .

Contribution to polarization correlation from polarized beam

1
= +
0Cppo =5Tro,,0,, Mo ; M™ .

4

Contribution to polarization correlation from polarized target

1
O'Cpqu = '4’Tr alp 62q MO'Zk M+

. Contribution to the polarization of scattered particle from beam and target polarization

O'MpOik = %Tl‘ O'lp Mo-li Ok M+

Nel
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D.3. Contribution to recoil particle polarization from beam and target polarization

1Tr Oq Moy o M

o NOqik = 2

D.4. Contribution to polarization correlation from polarized beam and target

ag Cpqik = %Tralp 0'2,1 MO'lio'zk M+
. . 1 1 1 1 . L
For an arbitrary reaction of the type 3 + ) + 3 all 256 experiments could provide independent

information. However, if parity conservation, the generalized Pauli principle and time reversal invariance
are assumed, the number of independent experiments is greatly reduced.

Under space reflection vectors  and m change their signs, whereas n is conserved. The parity conservation
thus implies that only experiments with an even number of / and m labels are non-zero.

The generalized Pauli principle (including isospin invariance for np scattering) requires an equality of
two experiments related by interchanging beam with target and scattered with recoil particle states and momenta.
It gives for a general pure experiment

Xpgae = (= DX (3.1)
where [/] and [m] are numbers of labels / and m, respectively, among p, ¢, i and k.
Parity conservation combined with the relation (3.1) gives

X ik — quki . (3.2)

pqi

The effect of time-reversal may be expressed by changing the signs of both momenta k; and k; as well as
the signs of ¢, and 6, and by interchanging the initial and final states and momenta. Therefore the basic vectors
are transformed as

1- -1, m-—m, n— —n. 3.3)
The time reversal invariance results in the relation

Xy = (= DI X,

pq

(3.4)

ikpq *

A very helpful method of demonstrating relations between different experimental quantities makes use
of invariance under reflection in the scattering plane (the so called Bohr’s rule [27]). For the nucleon-nucleon
scattering matrix this invariance implies the identity

O1nO2p Moln O2n = M (35)

which can be verified directly using formula (2.1).
Let us discuss pure experiments in the c.m.s.

(0) The differential cross-section ¢ = I, is Obviously a scalar with respect to all the discrete symmetries
considered.

(1) One-component tensors (axial vectors) P,o00, Pogoo» Aooio and Agoo. — Parity conservation implies
that the only non-zero components are P,,ooo, Po,,oo, Aoo,,0 and A4, The Pauli principle implies P,g00 = Ponoo
and Aggne = Agoon- Finally, time reversal invariance glves 2 Puooo = Aoono and Pg,o0 = Agoon- Thus out of
12 different quantities 8 are equal to zero, the remaining 4 are equal to each other.

(2) Two-component tensors Cpqoo, ppO_iO’ K‘oqio,.Kpoo,‘, Door and Agoy. — Parity conservation reduces
54 components to 30. The Pauli principle 1mp11es. Cpr000 = Cipoos Dpoio = DOpO.i’ Kook = Kopo and
Agoix = Agowi» S0 that only 18 components remain. Finally time reversal invariance implies C,,00 = 4oomns
Cuoo = 4oou- Cmmoo = Aoomm> Cmioo = — Aoomis Dmoto = — Diomo and Komio = — Koimo. reducing the

number of different experiments to 12.

Cogox» Mo and Ny — Parity reduces the number of components

paio = Capoi and Moy = Ny, Time reversal invariance implies
Cpyio = (— 1) M,,,,. Thus we are left with 13 components. These can be further reduced by making use
of the Bohr’s rule (3. 5), providing the relations : Cipmwo = — Ciings Commo = Cuio @nd Cppmo = Ciyo and relating
C,.no to the polarization C,,,, = P,g00- Finally, 9 components of the three-component tensors remain inde-
pendent.

(3) Three-component tensors C,g o,
from 108 to 52. The Pauli principle implies C
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(4) Four-component tensor C,.;. — Parity conservation reduces the number of non-zero components
from 81 to 41. The Pauli principle provides the relation C,; = C,,; and time reversal invariance implies
Cpgix = (— D™ Cy,,. We are thus left with 17 components. Using the Bohr’s rule (3.5) we can reduce some
components to components of lower-order tensors and also find two new relations among the components

of C, These relations are :

Cnnnn 1 > Cnlnl = DOmOm ’ Cnmnm = DOIOI k]
Cun = Kommo > Commn = Kono » Cim = — Cumoo > (3.6)
Cmmnn = - CllOO P Cnmln = - KOlmO s lenn = C‘lmOO .
Conin = — Diomo »
and
Cmmmm = Cllll ) Cmmml = - Clllm . (3 7)

Using the formula (2.1) directly we can find

Oom M0y = — 0y Moy + 61y Moy, + 03 Moy, (3.8)

b 10'21 Mﬂlnazm = 6“ MO'U e 10'11 Malm O-Zn - 0'21 MO-ZI
and
— 03y Moy, 05 = — 0y Moy, + ioy 05, Moy, + 6 Moy, .

By multiplying each of the equalities (3.8) by o, from the left and by ¢, M * from the right, we find three

more linear relations amongst components of C,,; and lower order tensors. These can be written e.g. as :

Cimim = Cotmi = — 1+ Dyono + Ciy
Cllmm = Cmmll = 1 - AOOnn - Cuu (3-9)
Cimm = Coputtm = — 1 + Kopno + Cyyy -

Thus only two components of C,; carry new (linearly independent) information and we choose them to
be Cy; and Cyy.

Finally, we are left with 25 linearly independent quantities. Let us now express all non-zero experimental
quantities in terms of the scattering amplitudes figuring in (2. 1). The results are summarized in table III, where
122 non-zero c.m.s. experimental quantities are given explicitly. The remaining six components of C,,;, are given
in formula (3.9).

Bilinear combinations of the amplitudes a, b, ¢, d and e expressed in terms of c.m.s. experimental quantities
are given in table I'V.

The only other independent experimental quantities are contained in the total cross-section. Indeed the
total cross-section can be written as [28, 29]

Ot = Ootor + 110(Pp Pp) + 02(Pp k) (Pr k) (3.10)

where Py and P are the beam and target polarizations and k is a unit vector in the direction of the beam. The
terms 6o,y 01 and o, can be obtained by measuring the total cross-section for appropriately polarized
initial nucleons. They are related to the amplitudes via the optical theorem

Gon = 1m[a0) + b(0)]
G = 2 Im [e(0) + d(0)] (3.11)

47
O2t0t = — r Im 4(0)

where k is the wave number. The notation ¢, and o,,,, should not be taken literally. Indeed these cross-sections
can be positive, zero or negative and only g, and 6, are positive definite.
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TaBLE 111

Centre-of-mass experimental quantities in terms of scattering amplitudes

6 = lyooo
6C,m00
aDnOnO
O-I<0nn0

aCyy

oP

oCuim =

6Cro =

— 1o+ 1clP—1dP

1

O-Cnnnn =§{|a|2+|b|2+|c|2+|d|2
1

O.AOOnn =§{|a|2—|b|2—|c|2+|d|2
1

0Dopon =§{|a|2+|b|2—|clz—|d|2
1 2

aKnOOn =§{|a|

1

TCommmm =5 {1aP + 1612 + P+ 1dI

2

0P,000 = 6Pou00 = 6Agon0 = 6Ao00on =

acnnnO = aCnnOn = aMnOnn = aNOnnn

0Cym = — 0Cppyy = — 0Cpyy =

aclmmm = O-lemm = - Ucmmlm =

0Crmo = 6Cp01 = 0Crmom =

- O-Cmmml =

= oM,01n = M pomn = oNop = 6 Nomum

0Dyomo =

O-CnIlO

0K oimo

Ci0

Cimoo

GDmOmO
O-CmnIO
oD,010
0Clumo

GKOmmO
O.CnmIO

6Doiom = — 6Dpoio = — 0Domor =

O-Cnlnm = O-Clnmn =

= acnmmO = O-CanI = acmnOm =

- aCmnln = -

4 Cnmnl

O-]‘JIOnI = UMmOnm = O-NOIIn = GNOmmn

- UNOnmm

= 0Kjoom = — 0Kmoor = — 0Komo =
= O-Cnlmn = Gclnnm = - O-Cmnnl =

- O-CmmnO = acllOn = - 6Cmm0n =
= oM,oy = — cMomm = 6Nouy =
= 0Cmoo = — 6Aoom = — 6Aoom =

= - acnnml =

= 0Domom = 6Cpy = 0Cyy,

= aCanl = - O-MIOmn = - o-]VOlnm
GDOIOI = O'Cnmnm = O'Cmnmn
GCnIOm = - O-MMOIn = - UNOmnl

= 0K,noom =0C 1y = 6Cpyy

= 0Cppot = — 0 Migum = — Noiy

Koo =

6Cimo

O'CmmOO

O'ClmnO =

Cy00
O-lenO

GKIOOI = acmmm = O-Cnmmn

6Cruom = — Mo = — Nopin
= 0Adoomm = — 0Comy = — aCy,,

6Cpion = — oM yoim = — 0Noym
= 04oou = — 6Cpmm = — 6C,mm

aclmOn = - aMnOml = - O-NOnlm

- acnnlm = O-lenn =

aClmnn

+lel’}
+lel*}
+lel?}
+lel}

—lef?}

= Rec*e
=Imc*e
= — Red*e

=Imd*e

= Re(a*b + c*d)
= Im@*b + c*d)

Re(a*b — c*d)
— Im(a*b — c*d)

Re (a* ¢ + b* d)
= Im(a*c+ b*d)

Re (a* ¢ — b* d)
— Im (a@* ¢ — b* d)
= Re(a*d + b* o)
= —Im(a*d + b*¢)
= — Re(a*d — b* ¢)
= — Im(a*d — b* ¢)

I
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TABLE IV ,
Bilinear combinations of a, b, c, d, e in terms of the c.m.s. experimental quantities

la|> =0/2{ =1+ Dy + Komo + Cunoo + 2 Cu }
161> =0/2{ 1+ Dyouo — Komo — Cunoo }
lc>=0/2{ 1= Dyouo + Komo — Cunoo }
|d? =06/2{ 1 — Dyono — Komo + Cunoo }
lel?= o{ 1-Cy}
a* b = 6/2 { Dyomo + Dioio + {Cpunio — Ciomo) }
a* ¢ = 6/2 { Kommo + Kouo + {Comio — Cuimo) }
a*d = /2 { Cmoo — Cuoo — {Cimno + Coino) }
a*e=0{P+ iCyn}
b* ¢ = 6/2 { Cpmoo + Cuoo + {Cpino — Cimno) }
b* d = /2 { Kommo — Kouo + {Crmo + Como) }
b* e = 0 { Ciyo + iDiomo }
C* d= 0'/2 { DmOmO - Dzozo + i(Clnmo + Cmnto)}
c* e =0{Cuo *+ Komo }
d*e =0 { — Cpuo + iCimoo }

In terms of helicity amplitudes we have

Cow = ST [M,(0) + M5(0)]
= S Tm My(0) (3.12)
5 = — S [M,(0) + M(0) = M0)].

The quantities 6 oo, 0 110 A0 0 5,4, are directly related to the singlet and triplet total cross-sections by
Tow = 705 T 7940 T 50+1
1
Oitot — Z (at,O - O-s) (3 . 13)
1
0210t = 3 (0':,+ 1~ O',,O)

(Wlth Oy-1 = Oy, + 1)-

In table I1I we have expressed 25 linearly independent experimental quantities in terms of 9 real parameters :
the absolute values and relative phases of the amplitudes a, b, ¢, d and e. Obviously 16 independent nonlinear
relations between the experimental quantities can be found, making use of trivial relations between complex
numbers. If for a moment we put x; = a, X, = b, x3 = ¢, X3 = d and x5 = e, we can write down evident

identities between the amplitudes

| x; [2(xy XJ)

3.14
o, ) @3.14)

x; x¥) =

fori =2,3,4,5j=123,45andj # i
Regarded as equalities between the quadratic terms of the type (x; x}), (3. 14) represents an example of a full
set of independent relations. Indeed, from (3.14) all other relations follow, such as

(x x¥) Gey x) = | x; P06 %) (3.15)
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or [30]
O xF) [O; x%) — (oo xP] + O xF) [Ga xF) — (6 x¥)] (3.16)
+ 0o x¥) [ xF) — (x;xH)] =0 '
and [31]
G xP) O xd) G xF) = 1 P 1 12 ] 12 3.17)

foralli,j, k,/=1,2,3,4,5.

The relations between observables can be written directly substituting into (3.15), (3.16) or (3.17) from
table I'V. In a similar way using table V we can obtain relations between laboratory quantities or even between
the c.m.s. and laboratory experiments. Many such relations have been discussed in the literature [30, 31, 32] and
we shall not dwell upon them here.

In a similar way we can find inequalities involving the experimental quantities. E.g. from

0<|atel

we get
4|P| < 1 + DnOnO + KOnnO + CnnOO
and
0<|ctdf
implies

| Dmomo — Dioto | < 1 = Dyopo -

Further relations can be obtained analogously.

4. Experimental quantities in the laboratory system. — In any experiment only an angular distribution is
measurable. In this section we will discuss the formula describing the angular distribution of correlated scattering
for the case when both initial nucleons are polarized. This is the most general formula for elastic nucleon-nucleon
scattering. It contains all possible experimental quantities and can be specialized to each case of interest by
setting various initial or final polarizations equal to zero or choosing them in certain directions.

We introduce the symbols 7; and P;

&

L=-TeM,M*, P ==TrM(s,n)M" 4.1)

N =
N} =

(i=12)

for the cross-section and polarization in the scattering, on analyzer 1 for the scattered and 2 for the recoil particle

with scattering matrices M, and M, and unit vectors n; and n, in the directions of the normals to the first and

second analyzing planes, respectively (we assume that the analyzing scatterings are performed on spinless

nuclei). If the ith analyzer is absent, then we put P; = 0 and M, equal to the identity matrix which implies I, = 1.
The general cross-section of correlated scattering is defined as

ZPBPT(FIaFZ) = Tr My M, pM; M{ , 4.2

where the letters Py and Py indicate the initial beam and target polarizations and p is the nucleon-nucleon density
matrix after the first, (i.e. studied) scattering. The dimension of (4.1) is the first second or third power of the
cross-section if both P, and P, are zero, only one of them has non-zero value or both are different from zero,
respectively. ~

Expanding the density matrix p in terms of the basic tensors, we obtain the general formula [32]

Zpaps(P1, Py) = I T 0 { [1 + Agoi0 P + Aoook Pri + Aooix Pai Pl +
+ 131[Ppooo + Pg; Dpoio + Pric Kpoox + Pai P Mpoud 11y
+ P[P 0q00 t Pri Kogio + Prx Dogox + Pri Pk Nogixl N2g
+ P, PZ[CpqOO + Pg; Cppio + Py Cpgox + Pai Prc Cpud nypmay } 4.3)

Summation is understood throughout over repeated labels p, g, i and k. In practice the formula is useful in a
treatment of scattering events by means of the maximum likelihood method. The angular distribution usually
measured in an experiment is described by the ratio

Zpapr(0, 0)/Z0(0, 0)
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if P, = P, = 0 (i.e. for the experiments B. 1, C.1and D.1 of table IT) and by
ZPBPT(ﬁb P'3‘2)/71 72 ZPBPT(Os O)

in other cases. The differential cross-section (A. 1 of table II) is an exception since in this experiment an absolute
measurement is necessary.

Formula (4.3) is valid in any frame of reference, but we shall mainly use it in the laboratory one (i.e. with the
stationary target), where the labels p, ¢, i and k will be replaced by a, b, cand d.

When discussing experiments in the laboratory system (1.s.) we shall use

k,k and K’ 4.4

i.e. unit vectors in the direction of the initial, scattered and recoil particle momenta in the Ls. (k = k;). Further
we use the transverse vectors

s=nxk, s=nxk, §=nxk, @.5)

wherenisdefined in (2. 2).

In pure laboratory system experiments initial polarizations are specified to be along the directionsk, s or n,
the polarization of scattered particles is measured in the directions k', s’ or n and that of the recoil particles
in the directions k”, s” or n.

Note that in the presence of a magnetic field the spins of the scattered or recoil particles can be rotated
before reaching the analysers (see comment at the end of this section).

Let us now consider individual cases of interest, making use of properties of experimental quantities, which
will be established in section 6.

A. Unpolarized beam, unpolarized target : Py = P = 0.
A . 1. Final polarizations not analysed : P, = P, = 0,1, = I, = 1.
Z200(0,0) = 0. 4.6)

A .2. Polarization of scattered particles analysed : P, = 0,1, = 1.

Zoo(P1,0) =T, (1 + P, Pny,). 4.7
A .3. Polarization of recoil particles analysed : P, = 0,1, = 1.

Z00(0, P)) = I, 6(1 + P, Pn,,). 4.8)
A .4. Both final polarizations analysed.

ZOO(ﬁlvﬁ2)=i1720(l + [Py ny, + Pyny,) P+

+ Py Py[Cproo M1n M3n + Cygroo Mg Moy + Coproo Mg Mar + Ciegroo Mawe Mo + Ciotrgo Ny ael)  (4.9)
B. Polarized beam, unpolarized target : Py # 0, Py = 0.
B.1. Final polarizations not analysed : P, = P, = 0,1, = I, = 1.
Zpg0(0,0) = o(1 + PPy,) . (4.10)
B.2. Polansation of scattered particles analysed : P, = 0,1, = 1. ‘
Zpao(P1,0) = Iy 6 {1 + PPy, + Pi[Pny, + Dyouo Py, 1y, +
+ (Dyoso M1y + Droso M) Pes + (Dyoko M1y + Dioro M) Prd } - (4.11)
B.3. Polarization of recoil particles analysed : P, = 0,1, = 1.
Zpa0(0, Py) = Lo {1 + PPy, + P[Py, + Kouno Pay 120 +
+ (Kogrso Masr + Koirso Mair) Pps + (Kogko Mo + Kowwo nx) Ped) } - (4.12)

B.4. Both final polarizations analysed.
The expression for Xp_ o(P;, P,) can be obtained from (4.3) by putting Py = 0. Thus only P, D0, Kopcos
C oo and C,, . appear in the formula.
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C. Unpolarized beam, polarized target : Py = 0, Py # 0.

C.1. Final polarizations not analysed : P, = P, = 0,1, = I, = 1.
Zop(0,0) = o(1 + PPy,) . (4.13)
C.2. Polarization of scattered particles analysed : P, = 0,1, = 1.

EOPT(PD 0)=1I0{1+ PPy, + Pi[Pny, + Kuoon Prany, +
+ (Ky00s 15 + Kioos M) Prs + (Kgoox M1y + Kook n1x) Prid) } - 4.19

C.3. Polarization of recoil particles analysed : P, = 0,1, = 1.

Zop.(0, P)) =L o {1+ PPy, + P,[Pny, + Douop Pro 112, +
+ (Dogros N2s + Doxros N2kr) Prs + (Dogror Mag + Dogrox Noxr) Pl } - 4.15)

C.4. Both final polarizations analysed.

The expression for Zp_(P,, P,) is obtained from (4.3) by putting Py = 0. It involves only P, K,904s Dopoas
Capoo and Cpoq.

D. Polarized beam and target : Py # 0, Py # 0. L

D.1. Final polarizations not analysed : Py = P, = 0,1, =1, = 1.

2Zpapr(0,0) = 6[1 + P(Pg, + Pr) + Aoomn Ppn Prs +
+ Aooss Pas Prs + Aoosk(Pes Prx + Py Pry) + Aooux Pok Pr] - (4.16)

D.2. Polarization of scattered particles analysed : P, = 0,1, = 0.

Zpopo(P1, 0) is expressed in terms of P, Agocs> Dagco> Kaooa A0d Myo.s.

D.3. Polarization of recoil particles analysed : P, = 0,1, =

Zpop-(0, P,)is expressed in terms of P, Aoocas Dopoas Kobeo a0d Nopea.

D .4. Both final polarizations analysed.

In this case all terms in (4.3) survive and the general formula, while straightforward, is quite cumbersome.
We shall not spell it out in its generality, but only consider some special cases of interest (specifying the directions
of the polarizations). We concentrate on experiments yielding interesting components of the four-component
tensor.

(i) PB = PB S,PT = PT S, ﬁl = ﬁl nl = ﬁls' S' + Plkrkl,f,2 = ﬁz 112 = st:/ s” + ﬁZk" k” [Onlythepola'
rization components in the first scattering plane are analysed, i.e. n,(n,) is a combination of s’ and k’ (s” and k”)].

ZPBPT(ﬁuF’z) = 71720{1 + Aogoss P Pr +
+ Pi[Py(Dyoso M1y + Droso M) + Pr(Kyoos iy + Kioos M1x)]
+ Py[Py(Kogrso Masr + Kowrso Maw) + Pr(Dogros agr + Doyoros Rapr)]
+ P 1 P 2ACss00 Mis Nasr + Cernoo Pis Mok + Cirgroo Piie Nagr + Ciokroo Raw Nk
+ Py Pr(Cyygs Nyg Nagr + Coprgs Ny Noger + Cgugg g Npge + Cirgg Rape M) } - 4.17)

(ll) PB = PBS, PT = Ps]-k, Pl = Pllll = Pls’s, + Plkrkl, Pz = anz = stnsu + pzkﬂk” (lll and nz
are again in the first scattering plane).

ZPBPT(ﬁl»FZ) =1 Lo {1+ Agoq Py Py +
+ P\[Py(Dyo50 m1s + Dioso i) + PrlKyook N1y + Kicook n1x)]
+ Py[PyKoyrs0 N2 + Kowrso n2xr) + Pr(Dosrox N2sr + Dowrox Nax)]
+ Py Py[Cyyg0 Nig Moy + Cyrgo Mig Nawr + Ciegroo Mk Nagr + Crexroo Pax Moy
+ Py Py(Cygg iy Nagr + Copong Ny Mypr + Crogrgg Rage Bagr + Crrge By )] } . (4.18)
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In all the above formulas it is sometimes useful to express the vector components in terms of the azimuthal
angles @, and @, between the normal to the scattering plane and the two normals to the analysing planes. These
satisfy :

cos &; = (n, ny), sin®; = (m,n; x k') = — (n, s")
. 4.19)
cos @, = (n, n,), sin®, = (n,n, x k") = — (n,, 8").

An important fact concerning all the above formulas must be kept in mind. In the absence of a magnetic
field the scalar products ny,. and n,,. are zero, since the vectors k' and k” lie in the first and second analysing
planes respectively. Thus, all components of polarization tensors involving k' or k” subscripts actually vanish
from the measured distributions. In order to observe these components it is necessary to make use of magnetic
fields in front of the analysers, rotating the polarizations. In particular, a magnetic field between the target and
the analyser 1 (2) along the direction s'(s”) will rotate the polarization of the scattered (recoil) particle in the
k', n(k”, n) plane. The scalar products n,,and ny;. (n,,and n,,.) are then to be understood as cosines of the angles
between the normals n; (n,) and the direction to which the n and k£’ (n and k") components of the scattered (recoil)
particle polarization have been rotated by the magnetic field (after the scattering under consideration).

Laboratory experiments are expressed in table V in terms of amplitudes a, b, ¢, d, e and in table VI in terms
of helicity amplitudes.

5. Relations between laboratory and c.m.s. quantities. — Relativistic formulas for the differential cross-
sections depend on the choice of the kinematic variables, are well known and will not be discussed here. We will
now transform other laboratory experiments into the c.m.s. and express them in terms of combinations of the
pure c.m.s. experimental quantities. Generally speaking, the relations can be written as

Xorea = Xpgik AR, p broq i . (5.1

A summation over repeated indices is to be understood. The symbols ag, , and bg,, are components of vectors a
and b rotated through the relativistic spin rotation angles about the normal to the scattering plane, thus repre-
senting spin directions of the scattered and recoil particles in the c.m.s. if the directions in the l.s. are a and b.

TABLE V

Laboratory experiments in terms of amplitudes a, b, ¢, d, e.

B.2.
0 0 . 0
0Dgoso = Rea*bcos|a t5)+ Rec*dcos (a —5)- Imb*esin | a +5
. 0 . 0 0
6D = — Re a* bsin *+3 + Re ¢* dsin *=5 — Im b* e cos oc+-2-
. 0 . 0 0
0Dposo = Rea* bsin xt 5|+ Re ¢* dsin o= 5]+ Im b* e cos *+ 5
* 0 . 0 . o 0
6Dpowo = Rea*bcos *+t 5 — Rec*dcos 3 — Im b* e sin a+§
B.3.
0K s = — Re a* ¢ cos (ﬂ + — Re b* dcos <ﬁ — + Im c* e sin <ﬂ +
0Koso =  Rea* ¢sin — Re b* dsin (ﬁ — + Im c¢* e cos

oK oo = — Re a* ¢sin — Im c* e cos

|
=
[¢]
o

*
QU
2)
=
=

|

+ Re b* d cos + Im c* e sin

—
= =
+ 4+
NI N N NI
N— N N N
NID NI NI DI
N— N N—
TN N TN
= = =
+ o+ o+
NI NS NI DD
— N—— . e

TN

GKOk"kO = — Re a* C COS ﬁ -

B+



C.2.

C.3.

A4.4.

B.4.

FORMALISM OF NUCLEON-NUCLEON ELASTIC SCATTERING EXPERIMENTS

0Kgo0s = Rea* ccos (oz g) + Re b* dcos (oc - —g) — Im c* esin <oc + g)
. 0 0 0
0K gor = — Rea* ¢sin [o + 5+ Re b* dsin —5)= Im c* ecos o + 5
. 0 0 X 0
0Ky00s = Rea*csin (o + 5]+ Re b* d sin —5)* Imc*ecos (o + 3
0 6 . 0
Koo = Rea*ccos (o + 3 — Re b* d cos —3)- Imc*esin {a + 5
0 0 . 0
0Dygos = — Rea* beos (f + 5 — Rec*dcos (f — 5)+ Imb*esin | + 5
. 0 0 0
0Dygor = Rea*bsin (B + ) — Rec*dsin (B — 3 )+ Imbd*ecos |f + 3
. 0 . 0 0
6Dgyos = — Rea* bsin /3+§ — Re c* dsin B_f — Im b* e cos ﬁ+§
0 0 . 0
6Dgyor = — Rea* b cos ﬁ+§ + Re c¢* dcos [)’—5 + Im b* e sin /3+§
6Cyy00 = — Rea*dcos (a + f) — Re b* ccos (@ — f) + Im d* esin (a + f)
6Chrs00 = — Rea*dsin (o + f) — Re b* ¢sin (@ — f) — Im d* ecos (a + f)
0Cyp00 = — Rea* dsin (@ + f) + Re b* csin (x — f) — Im d* e cos (o + f5)
0Cyir00 = Rea*dcos(a + B) — Reb*ccos(a — ) — Imd* esin (o« + B)
0Agoss = Rea*dcos 0 + Re b* ¢ — Im d* e sin 0
6Agosk = 6Agors = — Rea* dsin @ — Im d* e cos 0
0Aooi = — Rea*dcos 0 + Reb*c + Imd* esin 6
0Cygno = — Red*ecos (o + B) — Ima*dsin (« + B) — Im b* csin (« — f)
6Crgmo = — Red* esin (« + B) + Im a* dcos (« + B) + Im b* ccos (« — f)
0Cypmo = — Red* esin (o + ) + Im a* dcos (¢ + f) — Im b* ccos (@ — B)
6Ciimo = Red*ecos(ax + B) + Ima*dsin (@ + B) — Im b* csin (« — B)
0 . 0 . 0
0Cyn0o = Reb*ecos (o + 5 + Ima*bsin {a + 5]~ Im c* dsin 35
. 0 0
0Cpn0o = Reb*esin [a + 5 — Ima*bcos (o + 5]+ Im c* d cos -3
. 0 0 0
6Cyo = — Re b* esin o« + 5 + Im a* b cos *+ 5 + Im c* d cos )
0 . 0 . 0
6Crmo = Reb*ecos|a + 3 + ma* bsin {a + 5 )+ Im c*dsin | — 3
0 0 . 0
6C,es0 = — Re c* ecos ﬁ+§ — Im a* ¢ sin ﬁ+§ + Im b* dsin ﬁ—z
. 0 0 0
6Cyrso = — Rec*esin [ f + 5]+ Ima*ccos (f + 3 — Imb*dcos | f — 5
. 0 0 0
6C,oo = Rec*esin [p + 5 —Ima*ccos|f + 5 — Imbd*dcos (B — 3
0 0 . 0
0Cuo = — Rec*ecos|{ f + 5 — Ima*csin | + 5 ) Im b*dsin | f — 5

17
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C.4.

D.4.
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Cirron = — Cogmo » Cison = Corrmo
Cs’s"On = - Ck’k"nO 5 Cs’k"On = Ck’s”nO
0 0 0
6Cy0s = Rec*ecos |a t3)+ Ima* csin (o + — Imb*dsin |a -3
. 0 0 0
6Crnos = ~ Rec*esin [a t3)- — Im a* ¢ cos 2 + Im b* dcos (o -3
. 0 0 0
dCynor = — Re c* e sin *+3 + Im a* ¢ cos t3 + Im b* d cos *=5
0 . 0 0
6Cunor = Rec*ecos |a + 5]t Ima*csin {a + 5]+ b*dsin o — 5
0 . 0 0
0C,g0s = — Reb*ecos (B + 3 — Ima*bsin (f + 5]+ Imc*dsin [ — 3
. 0 0 0
0C,0s = — Re b* esin ﬁ+§ + Ima*bcos (B +-2— —Imc*dcos (f — 3
. 0 0 0
0C.oor = Reb*esin (f + 3 —Ima*bcos (f + 5 —Imc*dcos|f — 3
0 . 0 0
6Cor = — Reb*ecos | B + 5]~ Ima*bsin { f + 3 —Imc*dsin (B — 3
oM o5 = — 0M 01 = Red* ecos 8 + Im a* d sin 0
oM, o = — Red*esinf + Ima*dcos 6 + Im b* ¢
oM, oq = — Red*esin6 + Ima* dcos 6 — Im b* ¢
Mo = Cnok Mions = — Conor » Mo = — Cinos > Mo = Cynos
Ms’Osn = Ck’nkO > Mk’Osn = - Cs’nkO ’ Ms’Okn = - Ck'nsO ’ Mk'Okn = Cs’nsO
NOnss = - NOnkk = MnOss s NOnks = MnOsk ’ NOnsk = MnOks
NOs"ns = an"Ok ) NOk"ns = - Cns"Ok s NOs”nk = - an"Os ’ NOk"nk = Cns”Os
NOs”sn = an”kO ’ NOk"sn = - Cns"kO > NOs"kn = - an"sO s NOk"kn = Lus”so

0(Cygss + Crnrs) = — (16 1* + [ ¢ |*) cos (B — a)
0(Cyirss = Cusrs) = — (1612 + | ¢ 1) sin (B — )
0(Cyysk + Conrg) = (1B 12 = | c|?)sin (B — a)
0(Corrsi = Crgrg) = — (161> = | ¢ *) cos (B — &)

G(Cs’s"ss - Ck'k”ss) = - (l a |2 - I e |2) COs (a + ﬁ + 9)

—|d]Pcos(@+B —0)+2Ima*esin(x + B + 6)
O(Cs’k"ss + Ck’s"ss) = - (| a |2 - |e |2) sin (d + B + 0)

—|d*sin(@ + B —0) —2Ima*ecos(ax + B + 0)
U(Cs’s”sk - Ck’k"sk) = (l a |2 - Ie l2) sin (d + ﬁ + 0) -

—|d)*sin(@+ B —6)+2Ima*ecos(x + B + 6)
G(Cs’k”sk + Ck’s”sk) = - (l a |2 - |e |2) cos ((X + B + 0)

+ |dPcos(@+pB—0)+2Ima*esin(x + B + 6).
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TABLE VI

Laboratory experiments in terms of helicity amplitudes.

A.1.
=AMy P+ Mo P4 [ My 4 | Mo+ 4] My )
A.2.
oP = — Im[M*(M, + M, + My — M,)]
B.2.
6D,0n0 = Re(M¥M; — M¥M,) +2| M, |?
6Dgo0o = — Re[M¥(M, — M, + M3 + M,)]sin6; + Re (M§ M5 + M¥ M,) cos 0,
0Dyoro = Re[MXM, — M, + M, + M,)] cos 6; + %(IMI P— My ? + | My |2 — | M, |)sin 6,
6Dyoso = — Re[M¥(M,; — M, + M5 + M,)] cos0; — Re (M M; + M¥ M,)sin 0,
6Dpoo = — Re[M¥(M; — M, + M3 + M,)]sin 0; + %(IMI 2 — My |? + | My > — | M, |*) cos 8,
B.3.
oKomo = — Re (M¥ M, — M¥ M) + 2| M, |?
oKoss0 = — Re[M¥(— My + M, + M3 + M,)]sin6, — Re(M{ M, + M3 M;) cos 0,
Koo = — Re[M¥(— M, + M, + M5 + M,)] cos 0, + %(—]M1 2+ | M, *+| My |>*—| M, [*)sin 0,
oKowso = Re[M¥(— My + M, + M3 + M,)]cos0, — Re (M¥ M, + M5 M,)sin0,

. 1
aKOk"kO = — Re [M;(—M1+M2+M3+M4)] Sln92—§(— |M1 |2+ |M2 |2+ |M3 '2-1M4 IZ)COSGZ

C.2.
0Kgoos = — Re [M¥(— M, + M, + M3 + M,)]sin6;, + Re(M§ M, + M3 M;) cos 6,
0Kyooxk = Re[M¥(— M+ M, + M5+ M,)] cos 6, +%(— M, >+ | M, |+ | M3 |*— | M, |?) sin 6,
0Kyoos = — Re[M¥(— My + M, + M3 + M,)]cos0; — Re(M} M, + M5 M;)sin6,
0Kpoox = — Re[M¥(— My + M, + M3 + M,)] sin 0, +%(— IMy >+ | M, + | M5 |* — | M, |*)cos 6,
C.3.
6Dggos = — Re[M¥(M; — M, + M3 + M,)]sin0, — Re (M¥ M; + M3 M,) cos 0,
0Doyox = — Re [M¥(M, — M, + My + M,)] cos 0, + %(l M PP = | My >+ | My |? — | M, |?)sin 6,
6Doyros = Re[M¥M; — M, + M; + M,)]cos 0, — Re(MF M; + M$ M,)sin 0,
oDowron = — Re [M¥(M, — M, + My + M,)]sin6, — %u M= | My + | My 2 — | M, |?)cos 0,
A.4.
0C,00 = Re(M{ M, — M¥M,) +2|M,|?
06Cy00 = — 1200 M > + | M, > — | M5 > — | M, |*)sin 0, sin 0,
— Re(M¥ M, + M¥ M,)cos 0, cosf, + Re[M¥(M, + M, — M3 + M,)]sin (6; — 6,)
6Crso0 = — 12 My P+ | My |> — | M3 |*> — | M, |*)cos 0, sin 6,

+ Re (M} M, + MY M,)sin6,cos 0, + Re [M¥(M, + M, — M; + M,)] cos (0, — 0,)
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0Cyioo = L2IM{ >+ | M, > — | M5 > — | M, |*)sin 6, cos 0,
— Re(M¥M, + M¥ M,)cos0,sinf, + Re[M*(M, + M, — M5 + M,)] cos (6; — 0,)
06Ciioo = 120 My >+ | My 1> — | My > — | M, |*) cos 6, cos 6,

+ Re(MfM, + M¥ M,)sin0, sinf, — Re [M¥(M; + M, — M5 + M,)]sin(6; — 0,)

D.1
06Aooss = Re (Mf M, + M3 M,)
0Adoos = 0Aooks = Re [M¥ (M, + M, — M3 + M,)]
Ao = — 120 My P + | My P — | M3 > — | M, |?)
B.4.
O'Cs's"no = Im [M;:(Ml + M2 - M3 + M4) COS (01 - 02)
+ (M§FMy; — M¥My)cos0,sin0, + (M¥ M, — M3 M) sin 0, cos 0,]
0Cygmo = Im[— MI¥(M; + M, — M3 + M) sin (6, — 0,)
— (M¥fM;— M¥M)sinf,sinf, + (M¥ M, — M5 M3)cos 0, cos 6,]
6Cypmo = Im[— M¥M, + M, — M5 + M,)sin (0, — 0,)
— (MFM; — M¥My)cos0,cos0, + (M¥ M, — M} M;)sin 0, sin 6,]
Gck'k"no = Im [“' M;‘(Ml + MZ it M3 + M4) COS (01 —_ 02)
+ (MjFM; — M¥ M,)sin0,cos 8, + (MFf M, — M¥ M;)cos 0, sin 6,]
oCs'nsO - Im[— M;‘(Ml - MZ + M3 + M4)00801 - (Mik M4 + M;‘ M3)Sin 91]
6Cppso = Im[ M*IM, — M, + M; + M,)sin 6, — (M¥ M, + M} M) cos 6,]
acs'nkO = Im[— M;‘(Ml - M2 + M3 + M4)Sin 01 - (M;l‘ M2 - Msk M4)COS 01]
GCk'nkO = Im[— MS*(MI - MZ + M3 + M4) COS 01 + (Mik M2 - M;‘ M4)Sin 91]
6Cooso =Im[ M¥— M, + M, + My + M,)cos0, — (M¥ M3 + M3 M,)sin 0,]
6Chyrso = Im[ MX— M, + M, + M; + M,)sin 0, + (M} M5 + M3 M,) cos 0,]
6Choio =Im[— M¥(— M, + M, + My + M,)sin 0, — (M} M, + M} M,) cos 6,]
6Cuymo=Im[ M¥—- M, + M, + My + My)cos0, — (M¥ M, + M¥ M,)sin 0,]
C.4.
6Cypos = Im[— M¥(— M, + M, + M3 + M,)cos 0, — (M¥ M3 + M¥ M,)sin 0,]
ack'nOs = Im[ Mgk(_ Ml + M2 + M3 + M4) Sin 01 —_ (Mik M3 + M;‘ M4)C0801]
6Cypor = Im[— MX— M, + M, + My + M,)sin 0, + (MFf M, + M¥ M,)cos 6,]
6Cppor = Im[— M¥— M, + M, + My + My)cos 0, — (M} M, + M} M,)sin 6,]
O'Cnsrros = Im[ M?(Ml - M2 + M3 + M4)COS 02 - (M;k M4 + M;’= M3) Sin 02]
O-an"Os = Im[ M?(Ml - M2 + M3 + M4) Sin 92 + (Mi'g M4 + M; M3)COS 92]
6Coor = Im[— M¥(M, — M, + M3 + M,)sin 6, + (M} M, — M¥ M,)cos 0,]
O-an"Ok = Im[ M?(M1 - M2 + M3 + M4)C0592 + (Mik MZ - M; M4) sin 02]
D.2
O'Mnoss = - UMnOkk = — Im [M;‘(Ml + M2 - M3 + M4)]
oM o5 = Im (M¥ M, — M} M5)
oM, = — Im (M My — M3 M,)
D.4

1
O-(Cs's"ss + Ck’k”ss) = - E(I Ml - M2 Iz + |M3 + M4 |2) Cos (01 + 02)

1 .
0(Cyirss — Crrgrss) = — §(| M, - M, |2 + | M3+ M, |2) sin (0, + 0,)

Nel
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0(Cygge + Crwrs) = Re [(M¥ — M¥) (M5 + M,)]sin (6, + 6)

0(Cyprge — Crgrg) = Re [(MF — MF) (M3 + M,)]cos (0; + 0,)

1
0(Cygrgs — Crgrss) = [4 | M |2 - 5(' M, + M, |2 + | M3 — M, IZ)]COS 6, -6y
—2ReM¥(M, + M, + M5 — M,)sin (0, — 0,)

1 .
0(Cyprss + Crrgrs) = [4 M |* — §(| M+ M, >+ |M;— M, |2)]Sln 6, -0y
+2RCM5*(M1+M2+M3"M4)COS(02—01)
G(Cs’s"sk - Ck’k”sk) = - [4 I MS |2 — Re (Mik + M;) (M3 - M4)] sin (02 - 01)
—2RCM;(M1+M2+M3‘“M4)COS(02_01)
0(Cyrrge + Cygr) = [41 M5 | — Re (M¥ + M¥) (M3 — M,)] cos (0, — 6,)
—ZRCM;(Ml+M2+M3—M4)Sin(02—01).

The relativistic rotation angles are

Ql=0_201=2a i.e. O(=Q—01

5.2)

Q=—-n+0+20,=—-n+2p ie B==

2
0
2+02

for the scattered and recoil particle respectively, where 6 is the c.m.s. scattering angle, and #; and 6, are the l.s.
scattering and recoil angles. The nonrelativistic case corresponds to

a=0, B = T . (5.3)
2
Note that all angles 6. 6,, 6,, «, § and Q,; are not negative whereas Q, < 0.
All vectors and angles involved are illustrated on figure 1. We easily find the relations
kg, =lcosa + msina, kz, = —lcos f — msin 5.4)
sg, = — Isina + mcosa, Sg, = lsin f — mcos f ’

FIG. 1. — Nucleon-nucleon scattering kinematics in the centre-
of-mass and laboratory systems. The angles indicated are : the
c.m.s. scattering angle 6, the Ls. scattering and recoil angles 6,
and 6,. The relativistic rotation angles Q, = 2 ¢ and ,=—n+2f

for the scattered and recoil particles (in the nonrelativistic limit
we have a = 0, B = n/2). Unit vectors in the following directions
are shown : the initial and final c.m.s. momentum k; and k;, the
directions 1 ~ k; + k;,, m ~ k; — k;, the initial scattered and
recoil particle l.s. momenta k = k;, k' and k”, the directions
s=nxk, s =nxk and s’ =n x k”, where n ~ k; x k;.
Finally kg, sg,, kg, and sg, are the above vectors k’, s, k” and
s” rotated through the angle Q, (or Q,) for the scattered (recoil)
particle.
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and

6 .
k = lcosi — msmi
(5.5

s = lsing + mcos = .
2 2

Formula (5.1) is written for the four-component tensor. The formulas for lower-order tensors are obtained
by simply putting appropriate indices equal to zero and by omitting the corresponding vector components on
the right hand side.

Each of the indices p, ¢, i and k in (5.1) is equal to 0, /, m or n [see (2.2)], a [b] is equal to 0, k', s’ or n
[0, k", s” or n] and each of c and d is equal to 0, k, s or n [ see (4.4) and (4. 5)].

Let us now consider individual cases from table II and derive relations between c.m.s. and L.s. experiments

using the results of section 3.

A.2. Polarization of scattered particles analysed : P'* = P°*™ = P.

B.2. Polarized beam, scaitered particles analysed. — The well-known Wolfenstein parameters
D,oo = DpOiO ag,p C; are

D = D,,, (Ls.and c.m.s. quantities are equal)

. . . 0

R = D,y = — Dyg0 sin a sin 3~ Do SIn ( 5) D,,omo COS a cosg

. 0 0 . 0

A = Dyogro = — Dygio Sin a cos = 3 — Djgpocos [ + 3 D, om0 COS & sin 5

, 0 0 0

R’ = Do =  Dygio €Os & sin 3 + Djgmo €OS 2 + D,omo Sin o cos 5
A= Dioko =  Digio €OS o CoS 5 — D)oo SIN (a + 2) — D,omo SN o sin %

B.3. Polarized beam, recoil particles analysed. — The transfer Wolfenstein parameters satisfy

KOch - KOth szq

K = Ky,,0 (Ls. and c.m.s. quantities are equal )

. .0 . 0
R =Ky = Koo sin fsin 3 + Kgimo Sin ([3 + — Kommo €08 p cos =

4

2 2

. 0 0 .0

A, =Kooo = Koo sin B cos 5 + Kgjmo cos | B + 3 + Kommo €Os f sin >

, .6 0 . 0

R/ = Kgirs0 = — Koyo cos B sin 3~ Koo €08 | B + 5]~ Koumo Sin B cos 3

, 0 . 0 . .0
A‘ = KOk"kO = — Kouo CcoS B COoS § + Ko[mo Sin ﬁ + '2‘ + Kommo sin B sSin 5 .

C.2. Polarized target, scattered particles analysed. — We shall use small letters for the analogues of the
Wolfenstein parameters in the case of polarized target and unpolarlzed beam. We have K, 004 = Kook @r,p %
and we express K oo, in terms of Ko ;0

k, =K = K,q, (Ls.andc.m.c. quantities are equal)

. .0 . 0 0
r, = Kggos = — Koo SIn @ sin 5~ K oimo Sin (oc + 2) + Kommo COS & cos 5
. 0 0 .0
a, = Kyogor = — Kouo Sin o cos 5~ Koimo c0s | a + 3 — Kommo €OS o SIN 3
, .0 0 . 0
ry = Kyogos =  Kouo €Os a sin 5 + Koimo COS (o0 + 3 + Kopumo SIN & COS 3
, 0 . 0 . .
a, = Koo =  Kouo cos o cosy — Koimo Sin 3 — Kopumo SIN o sin 5
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C.3. Polarized target, recoil particles analysed. — We have D04 = Dogox Dr,q d and we express D,

in terms of D ;0

d=D = D,y,, (ls.andc.m.s. quantities are equal)

r= DOs Os
a = Dogor
r" = Doros
a’ = Doyrox

A.4. Polarization correlation for initially unpolarized particles. — We have C,y09 = Cpg00 g, Dr,q 50 that

D50 sin B sin g + Djgpmo Sin (ﬁ +

D,y sin B cosg + Djgmo €OS (B + + D,omo €OS B sin

NID NI NID NID

+ D,omo Sin B sin

— Dy cos B cosg + Djgpmo Sin </3 +

Cnnoo = CS'S"OO = — Cuoo Sln o Sin ﬂ + ClmOO Sin (0( + B) - Cmmoo Cos aCOSﬂ

(Ls. and c.m.s. quantities are equal)

Cunoo = Cigioo = Cugo €08 a8in B — Cipgo €08 (& + B) — Cpmoo Sin o cos

C

ni

(Ls. and c.m.s. quantities are equal)

n00 = Cer00 = Cugo Sin €08 f — Cipoo €08 (& + B) — Cpmoo €O @ sin f§
(L.s. and c.m.s. quantities are equal)

Cuioo = Cirroo = — Cugo €08 2 €08 B — Cipop sin (¢ + B) — Cpmoo Sin a sin
(1.s. and c.m.s. quantities are equal).

D.1. Cross section for polarized beam and polarized target [33]. — We have Aygq = Aoow Ci dy

B.4. Polarized beam, both final polarizations analysed. — We have C .0 = Cpgi0 Gr,p Drog Ci

. ,0 ) 0
Aooss = Coo 8iN? 5 — Cipog i 0 + Cppop COS? 5

2
1

Agosk = Aooks = 3 (Coo — Ciumoo) 8in 8 — Cypgo cos 0

— 2
Agoix = Cuoo €OS

0 . ., 0
5+ Cimoo Sin 0 + C,pmoo sin® 3

Cysmo = Cymocos(a + ) + Cppocosasin f + Cy,,o Sin a cos
Ciosmo = Cypsin (@ + ) + Cpuposin a sin f — Cy,no €O o cOs
Corno =  Cuposin (@ + ) — Cpypo cos a cos f + Cyppo Sin a sin
Crwmo = — Cupocos (@ + B)  — Coupo sin a cos f — Cpyppo €OS asin
0 0 .
Conso =  Ciyo COS <oz + 3 ) + Coupio €OS o sin 3 — Cimo Sin a cos g
0 0 0
Cinso = Ciaosin [ o + 3 + Cno Sin o sin 3 + Cpmo COS O COS 3
0 . .0
Como = — Ciyosin | o + 3 + Cio COS & COS 5+ Ciumo Sin  sin 3
0 . 0 .0
Como = Cpgocos|a + 3 + Cpno Sin a cos 3~ Ciumo €OS o Sin 3
0 .0 . 0
Coso = — Cyocos|p + 5]~ Comio €08 B sin 3+ Cumo Sin B cos 3
0 . .0 0
Curso= — Cuyposin | B + 5]~ Comio Sin B sin 5~ Cimo €08 f cos 5
0 0 . .0
Curo =  Cuyp sin <ﬁ + 5) — C o €Os f cos 5~ Coumo Sin B sin 3
0 . 0 .0
Cuoko = — Coyo COS (ﬂ + 5) — Cmio Sin f cos 5+ C.uimo €Os f sin 3

— D,,omo €Os f cos

— D,.omo sin f cos

2

2

2

5
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C.4. Polarized target, both final polarizations analysed. — We have C,p05 = Cpox AR, p br,q 4 and express

C 0k in terms of C ;0.

0 .
Cynos =  Cuyo COS (cx + ) + Comio €OS o sin 3 Cimo SIN a COS 3
Cinos =  Cupo sin (a + -2—> + C,o Sin a sin = 3 + Cimo COS O COS 3
9 . .
Cynor = — Coyo Sin +3 + C,ui0 €OS 0 COS 5+ Coumo SIn o 8in 3
0 . .
Cewor = Cuocos|a+ 3 + Como SIN o COS 3 Cimo COS a Sin 5
0 .0 .
Coo0s = — Cocos [ B + 5 )~ Comio €os B sin 5+ Ciumo SIn B cos >
0 . .
Cuos = — Cryo sin | B + 3 — Cpuup Sin f sin 3~ Ciumo €08 B cos 3
0 . .
Cion= Cpposin [+ 5~ C,mo cos B cos 3 Ciumo Sin f sin 5
0 . .
Cowor = — Cpyocos | B t5)- Como Sin f cosz + Ciumo €0s f sin 3
Cysron Cuocos (@ + B) + Cpupocosasin f+ C,,po Sin a cos
Crsion Cuno sin (@ + B)  + Cyppo sin a sin f — C,yp COS o cOs
Coron= Cypsin (@ + ) — Cpuo cos acos ff + Cpy,o sin asin f
Cirron = — Cyppcos (@ + ) — Cippo sin a cos f — C,py0 COS 0 8in f .

D.2. Polarized beam and target,

polarization of scattered particles analysed. — We have

Mpoa = MpOik ar,p G dy

and express M, in terms of C

pqio0*

1 .
M,oss = — Moo = — Cppo €08 0 — 3 (Coino + Cipno) sin 0
M, . = C inf + C in2 = — C ZQ
nOks — 1In0 s + min0 sin 2 Imn0 Ccos 2
. 0
Mo = Cyypo $in 0 — C,py0 cos® 3 + Cipo sin? 3

D.3. Polarized beam and target, polarization of recoil particles analysed. — For the experiments N, ,
see section 6.

D.4. Polarized beam and target, both final polarizations analysed. — For the relations see (6.30) and (6.31).

6. Relations between experimental quantities in the laboratory system. — The number of linearly inde-
pendent experiments is the same in any frame of reference. The 25 linearly independent laboratory frame expe-
riments can of course be chosen in many ways.
Contrary to the c.m.s., in the 1.s. we use three different bases, which together with relativistic spin rotations
complicates relations between experimental quantities following from parity conservation, the Pauli principle
and time invariance. A relatively simple way to derive them is to use transformation relations between basis
vectors in both systems. The inversion of (5.4) and (5.5) gives

1= kcos= + ssin

2

m — ksin = + scos

2

2

2

= kg, cos o — sp, sin o

= kg, sin o + s, cos

”
— kR

, €08 i + sk, sin f
6.1)
— kg, sin f — s, cos 8.

We set them into the equalities derived in section 3 and transform the results into the laboratory system.
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It is easy to see how the Bohr rule can be applied in the laboratory system. It implies that two experimental
quantities are equal up to a sign if one results from the other by replacing the label 0 by n, n by 0, k (k' and
k") by s (s’ and 5”) and s (s’ and s”) by k (k' and k”). The sign is equal to (— 1)/~ Ik ki~Ko) - where [s];
and [s]; indicate the number of s-type labels in the initial and final states and similarly for [k]; and [k];.

The parity conservation — as in the c.m.s. — implies that only experiments with an even number of %,
k', k", s, s' and s” labels are non-zero.

The generalized Pauli principle together with the parity conservation give once more

Xabea = Xpadc - 6.2)

Formula (6.2) relates pure laboratory system experiments if a and b are equal to 0 or #, ¢ and d equal to 0,
k, s or n (always with an even number of k and s labels). A substitution of (6.1) into (3.2) gives after a simple
calculation

Xipea = — Xpprge €08 (01 + 03) + Xygoye sin (01 + 6,) 6.3)
Xs'bcd = - ka"dc sin (61 + 02) - sz"dc Cos (0 + 02) ’ .

where b = O0,nand ¢, d = 0, k, s, n. Notice that the second relation is a consequence of the first one and the Bohr
rule. Using (3.2) and (6. 1) again, as well as the Bohr rule, we obtain
Xk’k"cd + Xs’s"cd - _ Xk’s”cc - Xs’k"cc
Xk's”cd - Xs'k”cd Xk'k”cc + Xs's"cc

= tan (6, + 6,) 6.4)

where (¢, d) = (0, n), (n, 0), (k, s) or (s, k). In the nonrelativistic case (6.4) reduces to
Xk’s”cd - Xs'k”cd = Xk’k"cc + Xs’s”cc =0.

Time reversal invariance implies relations of the type (3.4) in the laboratory system only if all labels are
equal to 0 or n. Other combinations of subscripts give more complicated relations amongst pure experiments,
such as :

Xivsy + Xopio Xivka — Xobsa
—_—= - ——————— =tanb,
Xivw — Xysp Xivsa + Xopra ©.5)
Xak”ck - Xas"cs — Xak"as + Xas"ak = tan 6
Xak”cs + Xas”ck Xak"ak - Xas"as 2
with a, b, ¢, d = 0,n,a # c and b # d. Both lines are related by the Pauli principle (6. 3).
Another consequence of time reversal invariance is
Xiopes SIN 07 — Xy €08 07 = X g sin 0, + X g, cOs 0, 6.6

Xk'bcs Cos 01 + Xs'bcs sin 01 = Xck"kb Sin 92 + Xcs"kb COos 02 5

where b, ¢ = 0, nand two further relations which can also be derived from (6. 6) using the Bohr rule. Putting (6. 3)
into (6. 6) we get four equalities related two by two by the Pauli principle

Xivos + Xk Kbk = Xobes ¢
—_— = — ——————— =tan 0,
Xicvok — Xy s Xives + Xopo ©.7)
Xak"kd - Xas"sd - _ Xak"sa + Xas"ka — tan 6
Xak”sd + Xas"kd Xak”ka - Xas"sa 2
wherea, b, c,d = 0,n,a # dand b # c.
Four further relations implied by time reversal invariance are
Xewea + Xosra = Kears — Xeag) sin (01 + 02) — (Xogiwe + Xeass) €08 (0 + 05)
Xesea = Xowrea = Keaks — Xeasr) €08 (01 + 03) + (Xegwe + Xeggo) sin (0, + 6,) 6.8)

Xewrea — Xesroa = Kears + Xeag) sin (0, — 01) — (Xogwe — Xeass) €OS 0, — 0y
Xesrea + Xowraa = Keas + Xeag) €08 (0, — 01) + (Xeawe — Xeass) sin (0, — 64) ,
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where ¢, d = 0, n. Notice, that if ¢ # d than X4, = — X, by the Bohr rule and the Pauli principle, which
simplifies the relations (6.8). On the other hand ¢ = dimplies X 4, = X, -

Let us discuss the individual classes of experiments.

(1) One-component tensors

PnOOO = POnOO = AOOnO = AOOOn =P (6-9)

as in the c.m.s.
(2) Two- component tensors
The Pauli principle (6.2), (6.3) and (6. 4) implies

Aoors = Aoosk » Donon = Dyono » K000 = Komno (6.10)
Doyroa = — Dyogo 8in (61 + 02) — Divgao cos (01 + 0,)

Dogr0a = — Dyoao €08 (8 + 02) + Dyogo sin (61 + 65) 6.11)
Kiooa =  Koguao sin (6 + 05) — Koyrao €08 (8 + 65)
Kyooa = — Kosrao €08 (0 + 02) — Kopego sin (61 + 0,)

ford = s, k and

Ck's”OO - Cs’k”OO

=—tan (0, + 6,). 6.12)
Crroo + Cygo0 ' z

Time reversal invariance imposes further constraints, namely (3.4), (6.5) and (6.7) giving

CnnOO = AOOnn (6‘ 13)
Dyoso + Dyoxo R’ + 4
= — = tan 6,
Dk’OkO - Ds’OsO A" — R
Dogox + Dogros @ + 17
= - = tan 0,
Dosros — Doxrox ¥ — @ (6.14)
Kioos + Kyook 1 + 4
= — = tan 0,
Kook — Kyoos @ — 1
Kosko + Koxrso A4, + R/
05"k0 ok'so _ At R'/:tanBZ.
KOs"sO - KOk”kO Rt - At
The relations (6. 8) are simplified as
Ciioo + Cysi00 = — (Aoork + Aooss) €0s (6, + 6,)
Cis00 — Coxoo = (Aoork + Aooss) sin (6, + 6,) (6.15)

Cinroo — Cyso0 = 2 Agoks SIn (8, — 01) — (Aoork — Aooss) €08 (0, — 61)
Cisi00 + Cyrroo = 2 Agos €08 (0, — 01) + (Agox — Aooss) Sin (0, — 6y) .

Thus, we are left with 12 independent quantities, €.8. Agoums Aooiks Aoosss Aoosks Pnono» three of the four
quantities Dy 50, Dioko> Ps oo Piroso s Kono and three of the quantities Kg50, Korxo> Kosko and Kogrso-
(3) Three-component tensors. — Parity conservation implies that each tensor has at most 13 non-zero
components. Consider first the tensor M, ;. Making use of the Bohr rule and (6.2) we find
M,

nOnn

=P s MnOkk = - nOss * (616)

The generalized Pauli principle, together with time reversal invariance and the Bohr rule imply [see (6.5)
and (6.7)]
Ms’Osn - Mk’Okn Ms’Ons - Mk’Onk

= = tan 0, . 6.17
Myos + Myokw  Mions + Myom ! ( )

Thus we are left with 9 linearly independent components of the polarization tensor M, in the laboratory
frame.
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The polarization of the recoil particle for both beam and target polarized is related by means of the generaliz-
ed Pauli principle to the polarization of the scattered particle M ., Using (6.2) we get

NOnnn = MnOnn =P H NOm:d = MnOdc (618)

and the inverse relations to (6.3) imply

Nowna = — Myog, 08 (01 + 0;) — M4, 8in (6, + 6,)
Nosna =  Myoa, Sin (0; + 6;) — Mg, cos (6, + 6,) (6.19)
Nowron = — Myogn €08 (0; + 0,) — Mg, sin (6; + 0,) ’

Nosren = Myope sin (01 + 0;) — M, cos (0, + 0,) .

The labels ¢ and d in formulas (6.18) and (6.19) are equal to k or s. Thus all 13 non-zero components of Ny,
are expressed in terms of M4,
The two polarization correlations tensors are related to each other. The Bohr rule gives

CabOn = - C[n X al[nx blnO0 > (6 . 20)

where a and b run through (&', s") and (k”, s”), respectively and [n x v] is label corresponding to the direction of
the vector product [n x v] for an arbitrary unit vector v. In more detail (6.20) gives

Ck’k”On = - Cs’s"nO ’ Ck's”On = Cs’k”nO (6 21)

Cs'k"On = Ck’s"nO s Cs's"On = - Ck’k"nO .

Other components of C,,;o and C,,,; are related by the Pauli principle (6. 3).
In turn, the polarization correlation tensors can be related to M, and N, Quite directly the Bohr rule
gives
Como = P, Canco = My ajornxcin » Cuvco = Nopnxpinxein s (6.22)

where a, b and ¢ run through (s’, k') (s”, k") and (s, k), respectively. The last of equalities (6.22) together with
(6.19) give

Coso0 = — Moy sin (0; + 0;) — My, cos (6, + 07)
Cusko =  Mggysin (01 + 0,) + Mo, cos (0; + 0,) (6.23)
Curso =  Mgoucos (0 + 0;) — Moy sin (0, + 0,) )
Curko = — Mg, €08 (01 + 0,) + My, sin (0, + 0,) .
The remaining components of this tensor are mutually related by the Pauli principle (6.4)
Cikmo + Cygmo
—_— — =tan (6, + 0 6.24
Ck’s"nO - Cs’k”nO ( ! 2) ( )
and with M, , by the time reversal invariance relation (6.8).
Cikrmo + Cysmo = (Myuors — Moyoq) sin (61 + 65)
Ck’s"nO - Cs’k”nO = (MnOks - MnOsk) Cos (01 + 02) (625)

Crrmo — Cyosmo = (Myors + Moyog) sin (0, — 0;) — 2 M, cos (6, — 0,)
Cisno + Corrno = (Myors + Moyog) cos (0, — 0,) + 2 Mg sin (6, — 0,) .

Thus we have directly or indirectly expressed all 52 non-zero components of the three-index tensors in
terms of 9 linearly independent components of the tensor M ;¢4

(4) Four-component tensor. — Parity conservation implies that only 41 components of C,,,; are non-zero,
namely those with an even number of labels » : none, two or four. Using the Bohr rule we immediately reduce 25
of these components to components of lower-order tensors. Indeed

Cmmn = 1 ’
Cabnn = - C[nxa][nxb]OO s Cnncd = - AOO[an][nXd] > (6 26)
Cnbcn = K O[nxbl[nxcl0 » Cnbnd = DO[n x blO[n x d] »

Cancn = D[n X al0[nxc]O » Cannd = K[n x al00[nx d] *
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In (6.26) a and b run through (s, k’) and (s”, k"), respectively and ¢, d run through k and s. The remaining 16
components are pairwise related by the Bohr rule

Ck’k"kk = Cs’s”ss s Ck’k"ks = - Cs’s"sk
Ck’s”kk = - Cs’k"ss s Ck’s"ks = Cs’k"sk (6 27)
Cornae = — Ck’s"ss P Copns = Crssk
Cs’s"kk = Ck’k"ss s Cs’s”ks = - Ck’k"sk .
Thus, we are left with 8 components, e.g. those on the right hand sides of (6.27).
The Pauli principle (6.4) imposes two further constraints, namely
Ck’k"sk + Cs’s”sk Ck’s"ss - Cs’k"ss
= — = tan (0, + 6,) . 6.28)
Ck’s"sk - Cs'k"sk Ck’k”ss + Cs’s"ss ! 2 (

One more independent relation between the six remaining components can be found using time invariance.
Indeed, in the c.m.s. we have C,,,,, = — C,;;,, which can be rewritten in the laboratory system using (6.1) and the
Bohr rule as

[(Cs'k"sk - Cs’s”ss) SiIl 92 + (Cs’s”sk + Cs’k”ss) cos 02] Ccos 01 =
= [(Cowsk = Crsss) S0 + (Cprgnge + Cpprss) 08 0,] sin 0 . (6.29)
We are thus left with five components. Instead of looking for further relations in the laboratory frame we
express eight cobinations of C,, ., components in terms of the c.m.s. quantities. Making use of the fact that

Cimim» Ciimm and Cy,,,; are linear combinations of C;;; and lower-order tensors [see (3.9)] and including the Pauli
principle (6.28) as well as the time reversal invariance (6.29) we find

Cs’s"ss + Ck’k”ss = (AOOnn - 1) COos (ﬂ - a)
Cs’ "ss C ‘'s"ss T A nn 1)si -
Kk k (Aoo ) sin (ﬁ ) (6.30)
Cs’s"sk + C'k’k"sk = - (KOnnO - DnOn()) sm (ﬁ - a)
Corrse — Crosrsk = (Komo — Dnono) cos (B — a)
Cysrss — Crrss = — 2Cycos (@ + B+ 0) + 2 Cyyy,sin (x + B+ 60)
— (Agom — D cos (o + B) cos 0
+ (KOnnO + DnOnO - 2) Sin (“ + ﬁ) Sin 9
Cs’k”ss + Ck’s”ss =-2 Cllll sin ((Z + ﬁ + 0) -2 Clllm Ccos ((x + B + 9)
— (Aooun — 1) sin (& + B) cos 0
— (Komo + Dyono — 2) cos (a + p) sin 6
(6.31)

Cosrse = Crrsk = 2Cysin(e+ B+ 0) +2Cy,cos(ax+ f+ 0)
+ (Aoomm — 1) cos (o0 + B) sin @
+ (Komo + Dyono — 2) sin ( + ) cos 0

Corrse + Crogsk = — 2Cypcos(@ + f+ 0) + 2 Cyysin (o + B + 6)
+ (Apop, — 1) sin (o0 + B) sin 0
- (KOnnO + DnOnO - 2) Cos ((Z + ﬁ) cos 0.

From (6.30) and (6.31) we see that only two combinations of C,,, are actually independent of other
laboratory experiments (they yield C;;; and Cy,,,), as expected.

7. The Pauli principle and nucleon-nucleon scattering. — The nucleon-nucleon scattering matrix, as used
in this article, is symmetric with respect to the interchange of particles 1 and 2. For proton-proton or neutron-
neutron scattering this symmetry is a consequence of the particles being identical. For neutron-proton scattering
the absence of a nonsymmetric term proportional to (6; — 6,, n) is an additional assumption, related to the
isotopic invariance of nuclear forces.

A direct consequence of this symmetry which is exploited through-out this article, is that the number of
independent experiments (in any frame of reference) is greatly reduced (see sections 3 and 6).
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Further consequences of the Pauli principle are obtained for genuinely identical particles (pp or nn scatter-
ing). The particle identity in either the final state or the initial state implies

X pqik(kﬁ ki) = quik(“ kf’ ki) = X, qui(kfa - ki) . (7- 1)

All labels in the three terms of (7. 1) refer to the basis given in (2.2) for the final and initial momenta in the
k; and k; directions. However, the experimental quantities as defined in section 3 are labelled in the frames
relative to the final and initial momentum directions actually considered, i.e. — k¢, k; for the second and k¢,
— K, for the third term in (7.1). For this reason the following transformations should be made in addition
to (7.1) :

n—> —n, l-> —m, m—- —1 for ki— —k;
and
n— —n, l1-m, m -1 for k> —k;.

Besides, k; — — k; as well as k; — — k; changes the scattering angle 6°™ = 0 to = — 0.
In more detail, formulas (7. 1) together with the relations of section 3 imply :

o(0) = o(x — 6) PO) = — P(x — 0)

Cinoo(0) = Conoo(m — 0) , Cuoo(0) = Coumoo(m — 0)

Cimoo(0) = Cimoo(m — 0),

D,ono(0) = Kopmo(m — 0), Dio1o(0) =  Kommo(n — 0)
Dyomo(0) = Kouo(m — 0), Diomo(0) = Komo(n — 6) 71.2)

Cuno(8) = Ciino(m — 0) , Cimno(0) = — Cippo(n — 6)

Crino(0) = = Couno(m — 0),  Cio(6) = — Cpyyo(n — 6)

Como0) = = Como(m — 0),  Cpuo(0) = — Cppmo(n — 0)

Cu(0) = Cu(m — 0), Cum(®) = — Cy(m — 6)

Cimim(0) = Cimm(m — 0), Ciimm(0) = Ciimm(n — 0) .

We recall that the labels /, m, n are always defined with respect to the experiment actually performed.
The above relations between c.m.s. experiments can be translated into relations amongst l.s. quantities
measured at angles 6, and 0, (these being the L.s. scattering and recoil angles) by making use of (6.1). However,
they can be obtained in a simpler manner using tables 1 and V and recalling that the transformation 6, — 0,

(6 - m — 0) corresponds to o — g — fand f — Z _ & Thus we obtain

2
a(0,) = o(0,), P,) = — P(0,) (7.3)

CnnOO(el) = CnnOO(OZ) 5 Dn0n0(91) = KOnnO(OZ) '
Cs’s"OO(ol) = Cs's"OO(gZ) P A00ss(91) = A00ss(02)

Cs'k"OO(el) = - Ck’s"00(02) s A00sk(91) = - A00sk(92)
Ck'k"OO(el) = Ck'k"oo(ez) s AOOkk(el) = Aoouc(ez)

Ds'OsO(gl) = K0s"so(92) > Ks'00s(01) = DOs"Os(BZ)

Ds’OkO(Ol) = - KOs"kO(eZ) P Ks'00k(91) = - D0s"0k(02)

Dk'0s0(01) = - KOk"sO(BZ) P Kk'00s(91) = - DOk"Os(ez)

Dk'0k0(91) = KOk"kO(HZ) s Kk’OOk(ol) = D0k"0k(92)

Cs’s”no(el) = - Cs’s"no(oz) R

Ck's"no(ol) = Cs’k"nO(oZ) (7'3)
Ck'k”no(el) = - Ck’k”nO(GZ)

Cs’nso(el) = - Cns"s0(02) 5 Cs’nOs(ol) = - Cns"Os(BZ)

Ck'nso(91) = an"sO(eZ) s Ck’nOs(el) = an"Os(02)

Cs’nko(el) = Cns”k0(02) s Cs'nOk(el) = Cns"Ok(oz)

Ck’rko(el) = - an"ko(az) s Ck’nOk(ol) = - an"Ok(BZ)
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M,ou(01) = — M,00(07)
M nO'ks(Gl) = M,04.0>)
Cs’s"ss(el) = Cs’s"ss(OZ) ’ Ck’k"sk(el) = - Ck'k”sk(OZ)
Ck’k”ss(el) = Ck’k”ss(02) B Cs’k"ss(el) = - Ck’s"ss(OZ) (7.3)
Cs'k”sk(al) = Ck's”sk(02) ’ Cs’s"sk(gl) = - Cs's"sk(02) .
Additional simple relations between experimental quantities are obtained for 6 = =n/2, i.e. for 8, = 0,.
For nn (or pp) scattering the relations follow from the fact that a,(n/2) = 0, b,(n/2) = — c,(n/2) [see table I]

(many of them can be obtained from (7.2) by puttingz — 6 = 0).
Thus we find in the c.m.s. [11]

b T 4 T
P(E) = Clmn() <§) = lenO (5) = Clllm (E) =0 P
T T n T T T
CmmOO (5) = Cuoo (5) p D, 0,0 (5) = KOnnO (5) P Diomo (5) = Komio <§> 5

T T T T
Cmn10<§> = Clan (5) = - CnmlO (5) = - CnlmO (5) P (7-4)
) n 4
|
T T
2 D,o0 <2> + Cinoo (5) + 2 Cyy (5) =1.

Since the Pauli principle implies do(n/2) = ey(n/2) = 0 we also obtain relations between nn (or pp) and np
experiments in the c.m.s. [11]

o(5) ctn(3) = 423 ) a5
( ) Cio (2) -4 (;5) Cvo (’25) @.s)
AL+ -]
= B) 1+ cam(5) - 20ma(3)] = 407(5) [1 + c3) - 2a(3) - i (3)]

Relations equivalent to (7.4) for nn or pp scattering can also be written in the laboratory system. These
relations can be obtained directly from (7.4) by performing the appropriate rotations or from the formulas of
table V, remembering that a,(n/2) = 0, b,(n/2) = — ¢,(n/2).

The laboratory system relations hold for 6, = 0, = n/4 — a = B — n/4 (ie. 0 = /2, a + f = ©/2).
The L.s. scattering angle for which this occurs is given by

s 1/2
0, = 0, = — 7.6
cos 0; = cos 6, <s+4m2> (7.6)

where s is the invariant total energy squared and m is the nucleon mass.
Let us first consider the scattering of identical nucleons. All relations (7.3) hold with 6, = 0,. Additional
relations are :

P = Agosx = Cysmo = Crno = Myoss = Cogrge = Cowsk =0 (7-70)
D50 = — Dogros = — Kygos = Koy 5
Dy oio = DOs”Ok = — Kyoox = — Kosko s
Dyogo = Doyrgs = — Kyioos = — Korso »

Dk’OkO = - DOk”Ok = - Kk'00k = KOk”kO >
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Agor — AOOss = Cs’s"OO - Ck’k"OO s
Agork + Aooss = Cunoo — 1,

2 Cyprgo = (1 = Cypoo) sin 26, ,

D. D,. 2C.
s'0k0 k’0sO s'k”00
St = — S —tanfy, i = tan 20, (7.7b)
k’0kO s'0s0 s's”00 + Ck'k"OO
Cs’nsO = - Cs’nOs = - Cns"sO = Cns”()s ’
Cinso = — Cinos = Curso = — Curos »
Como = — Cypox = Cuso = — Cugon s
(7.7¢)
Cienco = — Cymor = — Cuxo = Corok »
Cs’nsO _ Ck’nkO =t 0
Como . Como 2071
k’nsO s'nkO
Cs's"ss + Ck’k"ss = - Cs’s"OO - Ck’k”OO ’
Cs’k"ss = - Cs’k"OO ’ (77d)

Ck’k"ss - Cs’s”ss + 2 Cs’k"sk =1-2 DnOnO + CnnOO .

For identical nucleons at 6; = 6, (0 = n/2) only three amplitudes are independent, e.g. b = b,, d = d,
and e = e; (the subscript refers to isospin 7" = 1). Thus only 9 linearly independent experimental quantities
exist. Indeed, a measurement of g, C,,oo and of D,y,0 = K00, Will determine | 5 |2, | d |* and | e |>. Two inde-
pendent components of the two index tensors, e.g. Dy o0 and Dy oo Will determine Re 5* d and Im b* e, and a
measurement of any one of the quantities 4gqss, 4ookk> Cs's00 OF Cirroo Will yield Im d* e. Finally, three compo-
nents of the three-component tensors, €.8. Cy,, Cymo and M, o, will provide us with Re b* e, Im b* d and
Red*e.

The formulas (7. 5) relating nn (or pp) and np experimental quantities have their equivalents in the laboratory
system. Four independent relations of this type can be written in various forms. We find a convenient set of
relations to be the following :

6"(C% 00 — Cikroo) = 40" (Cfro0 — Cikroo)
6"(Cikmo + Cilgrmo) = 4 6"(Cihrno + Cifirno)
0™(1 + Cyioo — 2 Dygu0) = 40"™(1 + Cploo — Dpfuo — Kghro)
0"(2 Dygno — Cifirss + Clirss) = 4 0™ (Dyno + Koo — Cifirss + Cilogs

(7.8)

8. Conclusions. — In this article we have reviewed the kinematics of nucleon-nucleon scattering and
filled in many gaps in the existing formalism. We have concentrated on phenomenological aspects only, i.e.
the relations between experimental quantities and the scattering matrix and relations amongst experimental
quantities themselves. The formulas presented in this paper should be useful for experimentalists studying
nucleon-nucleon elastic scattering and for the practitioners of nucleon-nucleon amplitude analysis.

The results obtained make it possible to compare explicitly and exactly all experiments performed under
different conditions to obtain the same physical information (like various components of the polarization rota-
tion tensor D, for a polarized beam or Dy, for a polarized target, various components of the scattered or
recoil particle polarization for initially polarized beams and targets, etc.). A reasonably complete list of relations
between experimental quantities thus facilitates the use of any experimental data in the reconstruction of scatter-
ing amplitudes (e.g. via phase shift analysis). On the other hand, these relations make it possible to check various
sets of experiments, usually performed in different laboratories, for consistency between them. Since the origin
of most the relations can be traced back to various symmetries (parity, time reversal invariance and the Pauli
principle), a test of the relations is also a test of the underlying principles.

Some new formulas are contained in all of sections 3 to 7, but we specially wish to mention the detailed
study of the implications of the Pauli principle for the scattering of identical nucleons, presented in section 7.
For nn (or pp) scattering, relations are given between experimental quantities measured at the c.m.s. angles 0
and © — 0 and L.s. angles 6; and 6, (6, and 0, are the scattering and recoil angles). All constraints occurring for
0 = n/2,i.e. 0; = 0, are listed and also relations between certain nn and np quantities for the same angle.

In view of the interest in nucleon-nucleon interactions, the availability of accelerators in intermediate and
high energy regions and the increasing use of polarized proton targets we think that this is the correct moment to
present an explicit and complete exposition of the nucleon-nucleon formalism.
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We would like to reemphasize that the entire contents of this article is a formalism, i.e. pure kinematics.
As such it should be useful in any study of nucleon-nucleon scattering, either theoretical or experimental. In
particular the entire formalism is relevant for any attempts to reconstruct the nucleon-nucleon amplitudes from
data. This holds both for a direct reconstruction making use of some complete experiment, as defined by Puzi-
kov, Ryndin and Smorodinskii [5] and for a reconstruction via phase shift analysis, Regge pole theory or any
other expansion.

In the near future we plan to present some thoughts and results making use of the present formalism for
reconstructing nucleon-nucleon scattering amplitudes from experiments. One of our interests here is the ques-
tion of the uniqueness of such a reconstruction (be it a direct reconstruction or one via a phase shift analysis).
A further program in which this formalism will be used concerns a simultaneous reconstruction for all energies
(and angles) making use of previously developed two-variable expansions of scattering amplitudes (see the
review [34] and the paper [35]).
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