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and

P. WINTERNITZ
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(Reçu le 5 avril 1977, accepté le 20 septembre 1977)

Résumé. 2014 Nous présentons un exposé détaillé du formalisme de la diffusion élastique nucléon-
nucléon en ajoutant de nouveaux résultats à ceux déjà connus. Nous passons en revue plusieurs
représentations de la matrice de diffusion en tenant compte des principes de symétrie, notamment
de la conservation de la parité, de l’invariance par renversement du temps, du principe de Pauli et de
l’invariance isotopique. Les quantités expérimentales du système du centre de masse (c.m.s.) et du
laboratoire (l.s.) sont exprimées en fonction des amplitudes de diffusion. Les relations entre ces
quantités, découlant des symétries mentionnées ainsi que des relations entre les quantités du c.m.s.
d’un côté et du 1.s. de l’autre sont citées en détail. Nous discutons ensuite une relation générale
décrivant la distribution angulaire dans la diffusion corrélée qui comprend toutes les quantités
expérimentales existantes ; la formule pour chaque expérience choisie peut en être déduite en précisant
les polarisations initiales et les pouvoirs analyseurs. Enfin, nous étudions les conséquences du prin-
cipe de Pauli pour la diffusion de deux nucléons identiques. Nous exprimons les relations d’une part
entre les quantités dans le c.m.s. mesurées aux angles de diffusion 03B8 et 03C0 - 03B8 et d’autre part entre
les quantités dans le l.s. aux angles associés 03B81 et 03B82- Une attention particulière est prêtée aux angles
03B8 = 03C0/2 du c.m.s. et 03B81 = 03B82 du l.s. Le contenu de l’article est susceptible d’intéresser des expéri-
mentateurs et des phénoménologistes et plus spécialement ceux qui s’occupent de la reconstruction
des amplitudes de diffusion à partir des données expérimentales.

Abstract. 2014 A detailed exposition of the nucleon-nucleon elastic scattering formalism is presented,
reviewing known results and adding some new ones. Several différent représentations of the scattering
matrix are reviewed, paying attention to symmetry principles like parity conservation, time reversal
invariance, the Pauli principle and iso-spin invariance. Expérimental quantities in the centre-of-mass
and laboratory systems are expressed in terms of scattering amplitudes. Relations between experi-
mental quantities in each of these systems, following from the above mentioned symmetries, are
spelt out in détail, as are relations between l.s. and c.m.s. quantities. A général formula for the
angular distribution of correlated scattering is given and discussed. This formula involves all existing
expérimental quantities. It can be specialized to describe any chosen experiment by specifying the
initial polarizations and final analyzing powers. Conséquences of the Pauli principle for the scattering
of identical nucleons are studied. Relations between c.m.s. quantities measured at the c.m.s. angles 03B8
and 03C0 - 03B8 or at l.s. angles 03B81 and 03B82 (scattering and recoil angle) are obtained. Spécial attention is
paid to relations at 03B8 = 03C0/2, i.e. 03B81 = 03B82. The material contained in this paper should be useful for
experimentalists and for phenomenologists interested in the reconstruction of scattering amplitudes
from data.
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1. Introduction. - The purpose of this article is to provide a detailed study of the kinematics of nucleon-
nucleon scattering. Since a large body of literature has already been devoted to this topic during the last 25 years
or so. some parts of this article will have the character of a unifying review, while others contain new results
(for some of the original work and previous reviews see refs. [1-15]).

In section 2 of this paper we discuss the nucleon-nucleon scattering matrix M, present and relate several
different parametrizations of it and discuss the constraints on M following from invariance principles like
parity conservation, time reversal invariance, the Pauli principle and isotopic invariance. In section 3 we define
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the concept of a pure experimental quantity (or a pure experiment), i.e. one that involves only spin projections
onto certain basis vectors in momentum space. We list 256 different pure experiments in the centre of mass
system and then find all the constraints on them, following from the invariance principles discussed in section 2.
Nonlinear relations between c.m.s. experimental quantities are also discussed, as well as some inequalities
imposed on them. Pure experiments in the laboratory system are considered in section 4. A general formula
describing the angular distribution of correlated scattering for the case when both initial nucleons are polarized
is presented. Simpler formulas relating various angular distributions to laboratory system components of
polarization tensors are obtained from the general formula e.g. by assuming that one or both of the initial
polarizations are zero and/or that one or both of the final polarizations are not detected. The laboratory frame
components of the polarization tensors are expressed in terms of the scattering matrix in tables 5 and 6. The c.m. s.
and laboratory system pure experimental quantities are related to each other in section 5, taking relativistic
effects fully into account. Again, we first present a general formula for an arbitrary experimental quantity, then
consider the case where 1, 2, 3 or 4 polarizations are involved. In section 6 we establish linear relations between
laboratory system experimental quantities, following from the usual invariance principles. While these relations
are not independent of similar ones in the c.m.s., their form, taking relativistic spin rotations into account, is
considerably more complicated. In section 7 we discuss consequences of the Pauli principle. In addition to
restricting the number of independent amplitudes from 6 to 5 in the scattering matrix and thus significantly
restricting the number of independent experiments, the Pauli principle has further implications. Thus, for nn
and pp scattering we present all symmetry relations between quantities measured at the c.m.s. angles 0 and x - 0,
i.e. at laboratory system angles 0 and 92 (the scattering and recoil angles). Further, interesting relations for nn
and pp scattering are obtained when 0 = n/2, i.e. 81 = 02, as well as relations between np and say nn experi-
mental quantities. Some conclusions and future outlook are mentioned in section 8.
New results are contained in sections 3 to 7 and they mainly concern quantities involving polarized targets

and especially the more complicated experimental quantities. While we give credit in cases when we use the
results of other authors, we do not attempt to give anything like a complete bibliography of the field. We also
make little effort to relate the formalism of this article to the numerous equivalent formalisms in the literature.
A few words on conventions and notations are in order.

Throughout the paper we use one set of basis vectors in momentum space in the centre of mass system
and three different sets in the laboratory frame (relating to incident, scattered and recoil particles). One and the
same normal to the scattering plane is used in all cases. While such usage is common to many workers in the
field, it is strictly speaking not in agreement with the Basle convention [16]. Indeed, if the convention is applied
exactly, then the polarizations of the scattered and recoil particles should be related to opposite normals. The
target normal in the laboratory system is not well defined. In any case, it is a simple matter to transform formulas
from the one-normal convention to a two-normal one.

We consistently use a four-subscript notation for experimental quantities : Xpqik where p and q refer to the
scattered and recoil particle polarizations and i and k to the initial beam and target polarizations. If an initial
particle is unpolarized or a final state polarization not analyzed, the corresponding subscript is set equal to zero.
This notation should help avoid some common misunderstandings in the identification of experimental quan-
tities. It also facilitates transitions between the one-normal and two-normal conventions and the establishment
of relations between various quantities. The use of different letters for different experiments is now superfluous
but for historical reasons we still use the letter 1 for intensities (cross sections), P for polarizations, A for asym-
metries, D and K for depolarization and polarization transfer tensors, M and N for the contributions of two
initial polarizations to the final polarizations of the scattered and recoil particle and C for polarization corre-
lations.

2. Nucléon-nucléon scattering matrix. - For our purposes a convenient form of a nucleon-nucleon
elastic matrix is [3, 5, 11]

Here the amplitudes a, b, c, d and e are complex functions of two variables, e.g. the centre of mass system (c.m.s.)
energy k and the scattering angle 0. The c.m.s. basis vectors are :

where ki and kf are unit vectors in the direction of the incident and scattered particle momenta in the c.m.s.
The spin matrices 1 and 03C32 (the Pauli matrices) act on the first and the second nucleon wave functions, respecti-
vely. (The projection (6, a) of a spin matrix 6 on an arbitrary direction a will be written also as (a, a) = (ya) = a,,.)
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In (2.1) we have already taken into account parity and time reversal invariance. We have also assumed
that the particles are identical which is strictly valid for pp and nn scattering. For np scattering this assumes
isotopic invariance of the nucleon-nucleon interaction. The scattering matrix for the elastic scattering of two
nonidentical particles would contain a sixth term, namely

Still assuming isotopic invariance, we can write the scattering matrices for pp, nn and np scattering in terms
of two matrices Mo and Mi of the form (2.1), putting

where il and i2 are the nucleon isospin matrices, and Mo and Mh are isosinglet and isotriplet scattering matrices,
respectively. Obviously we have

Formulas (2.4) and" (2 . 5), unlike all the others in this paper, refer only to strong interaction scattering
matrices, ignoring the electromagnetic interactions.

The generalized Pauli principle for the nucleons implies certain symmetry conditions for the amplitudes
in (2.1), summarized in table 1 [5].

TABLE 1

Symmetry properties following from the generalized Pauli principle

Throughout this article we shall use the amplitudes a, b, c, d and e, although many different but equivalent
parametrizations are often useful.

Hoshizaki [8] uses the scattering matrix

which implies

The so-called Wolfenstein amplitudes B, C, N, G, H [1] are defined as : ,
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where S and T are the spin-singlet and spin triplet projection operators, respectively :

The Wolfenstein amplitudes are related to ours as follows :

which implies

The « singlet-triplet representation » matrix elements [17] are :

which implies

Jacob and Wick [18] have developed the helicity formalism in which states are labelled by the spin projec-
tion À onto the particle momentum (À is the helicity quantum number). Since there are some ambiguities in the
definitions of helicity states and amplitudes we shall specify our formalism here. Essentially it will coincide with
that of Jacob and Wick [18]; Martin and Spearman [19], Goldberger, Grisaru, MacDowel and Wong [15],
Hoshizaki [8], etc. Other authors. e.g. Cohen-Tannoudji, Morel and Navelet [20] and Kotanski [21, 22] use
somewhat different phase conventions (they omit the factor (- I)S-;’ for particles 2 and 4).

We use the centre-of-mass system, consider the xz plane as the scattering plane, put the z-axis along the
momentum of the incident particle and the y-axis along the normal n. The helicity states of the incident and
scattered particles are
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and

The helicity states of particles 2 and 4 are defined with a different phase as
1

and

The helicity A for a nucleon is 1/2 if the spin projection is parallel to the momentum, - 1/2 if it is antiparallel. The
helicity amplitudes are denote  Â3 03BB4 I M 1 Àl Â2 &#x3E; and can be expanded into a partial wave sum as

where À = 03BB1-03BB2,03BC = À3 - 03BB4 and d (0) are wigner rotation matrices [23] satisfying

Parity conservation, time reversal invariance and the Pauli principle imply that

respectively. These relations for the partial wave helicity amplitudes together with (2.19) and (2.20) in turn
imply that the total helicity amplitudes satisfy

Taking these symmetry relations into account and indicating only the signs of the nucleon helicities, we put :
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Substituting expression (2 /1) for M and calculating the appropriate matrix elements we obtain the relations
between the invariant c.m.s. amplitudes a, ..., e and the helicity amplitudes M1, ..., M5. With our conventions
we thus obtain

Formulas (2. 24) can be inverted to give

For forward scattering, when 0 = 0, total angular momentum conservation implies that e(O) = 0,
a(O) - b(0) = c(O) + d(O). For helicity amplitudes this obviously implies that M4(0) = M 5(0) = 0.

Obviously, infinitely many different types of nucleon-nucleon scattering amplitudes could be introduced
and indeed a very large number exists in the literature. In addition to those introduced above we wish to consider
two more, namely the transversity amplitudes [21, 22] and exchange amplitudes [24, 25], since both of these are
used by various experimental groups.

The exchange amplitudes are useful since in the high energy limit they correspond to the exchange of definite
quantum numbers (Regge poles) in the t channel (the amplitudes No, Ni, N2 correspond to natural parity
exchange, Uo and U2 to unnatural parity, the subscript denotes the amount of t-channel helicity flip). The
exchange amplitudes are related to the s-channel helicity amplitudes and the a, ..., e amplitudes by the relations

This can be inverted to give
i
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The transversity amplitudes Tcdab were introduced by Kotanski [21, 22] in order to diagonalize crossing
matrices. For nucleon-nucleon scattering they are related to the Jacob and Wick helicity amplitudes Mcdab by
the relation

with

More explicitly, the five independent transversity amplitudes are given by

Formulas (2. 30) are in full agreement with those used in the Argonne National Laboratory (e.g. [26]).

3. Expérimental quantities in the centre-of-mass system. - We shall introduce a four-subscript notation
for all experimental quantities. The first and second subscript refer to the final state polarization of the scattered
and recoil particle, respectively. The third and fourth subscript specify the initial polarization of the beam and
target, respectively. In the c.m. s. the labels are denoted p, q, i and k, in this order. If an initial particle is unpola-
rized or the polarization of a final particle is not analyzed, the corresponding label is set equal to zero.

A « pure » experimental quantity (briefly a pure experiment) is by definition one involving only spin pro-
jections on basis vectors. The basis can be different for different particles but in the c.m.s. the system 1, m, n will be
used for all particles. In principle, 256 pure experiments can be defined as components of various tensors. These
are summarized in table II and are defined as follows :

A. 1. The unpolarized differential cross section

TABLE II

Experimental quantities in the scattering of spin -1 particles
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A . 2. Polarization of scattered particle

A. 3. Polarization of recoil particle

B. 1. Asymmetry in cross section due to polarized beam

C. 1. Asymmetry in cross section due to polarized target

A. 4. Polarization correlation for initially unpolarized particles

B. 2. Depolarization tensor for polarized beam

B . 3. Polarization transfer from beam to recoil particle

C . 2. Polarization transfer from target to scattered particle

C. 3. Depolarization tensor for polarized target

D. 1. Asymmetry tensor for polarized beam and target

B. 4. Contribution to polarization correlation from polarized beam

C. 4. Contribution to polarization correlation from polarized target

D. 2. Contribution to the polarization of scattered particle from beam and target polarization
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D . 3. Contribution to recoil particle polarization from beam and target polarization

D . 4. Contribution to polarization correlation from polarized beam and target

For an arbitrary reaction of the type 1 + - + 1 all 256 experiments could provide independenttype 2 2 2 2 p p p

information. However, if parity conservation, the generalized Pauli principle and time reversal invariance
are assumed, the number of independent experiments is greatly reduced.

Under space reflection vectors 1 and m change their signs, whereas n is conserved. The parity conservation
thus implies that only experiments with an even number of 1 and m labels are non-zero.

The generalized Pauli principle (including isospin invariance for np scattering) requires an equality of
two experiments related by interchanging beam with target and scattered with recoil particle states and momenta.
It gives for a general pure experiment

where [1] and [m] are numbers of labels 1 and m, respectively, among p, q, i and k.

Parity conservation combined with the relation (3.1) gives

The effect of time-reversal may be expressed by changing the signs of both momenta ki and kf as well as
the signs of al and a2 and by interchanging the initial and final states and momenta. Therefore the basic vectors
are transformed as

The time reversal invariance results in the relation

A very helpful method of demonstrating relations between different experimental quantities makes use
of invariance under reflection in the scattering plane (the so called Bohr’s rule [27]). For the nucleon-nucleon
scattering matrix this invariance implies the identity

which can be verified directly using formula (2.1).
Let us discuss pure experiments in the c.m.s.

(0) The differential cross-section Q = Ioooo is obviously a scalar with respect to all the discrete symmetries
considered.

(1) One-component tensors (axial vectors) Ppooo, Poqoo, Aooio and Aoook. - Parity conservation implies
that the only non-zero components are P.000, POnOo, A00no and Aooon. The Pauli principle implies PnOOO = POnOO
and AOONO = A000n. Finally, time reversal invariance gives : Pnooo = Aoono and PONOO = Aooon. Thus out of
12 different quantities 8 are equal to zero, the remaining 4 are equal to each other.

(2) Two-component tensors CpqOO, Dpoio, Koqio, KpOOk, DOqOk and A00ik. - Parity conservation reduces
54 components to 30. The Pauli principle implies Cpqoo = CqpoO, Dpoio = Dopoi, KpOOk = KO.ko and
Aooik = AOOki so that only 18 components remain. Finally time reversal invariance implies Cnnoo = A00nn@
C1100 - Aooll., Cmm00 - Aoomm, Cm100 - - AOoml, Dm010 - Djo,0 and KpmlO ’-’ KOlmo, reducing the
number of différent experiments to 12. -

(3) Three-component tensors CpqiO’ Cpq0k, Nlpotk and No.ik- - Parity reduces the number of components
from 108 to 52. The Pauli principle implies Cpqlo = Cqpoi and M.Oik = Nopki. Time reversal invariance implies
Cpqlo = (- 1)[m] Miopq. Thus we are left with 13 components. These can be further reduced by making use
of the Bohr’s rule (3. 5), providing the relations : CmmnO = - CllnO, CnmmO = CnllO and CmnmO = Clnio and relating
CnnnO to the polarization CnnnO = Pnooo’ Finally, 9 components of the three-component tensors remain inde-
pendent.
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(4) Four-component tensor Cpqik. - Parity conservation reduces the number of non-zero components
from 81 to 41. The Pauli principle provides the relation Cpqik = Cqpki and time reversal invariance implies
Cpqik = (- 1)[m] Cikpl, We are thus left with 17 components. Using the Bohr’s rule (3.5) we can reduce some
components to components of lower-order tensors and also find two new relations among the components
of C pqik. These relations are :

and

Using the formula (2. 1) directly we can find

and

By multiplying each of the equalities (3. 8) by Q 1 l from the left and by O"u NI + from the right, we find three
more linear relations amongst components of Cpqik and lower order tensors. These can be written e.g. as :

Thus only two components of Cpqik carry new (linearly independent) information and we choose them to
be Clili and Cilim.

Finally, we are left with 25 linearly independent quantities. Let us now express all non-zero experimental
quantities in terms of the scattering amplitudes figuring in (2.1). The results are summarized in table III, where
122 non-zero c.m.s. experimental quantities are given explicitly. The remaining six components of Cpqik are given
in formula (3.9).

Bilinear combinations of the amplitudes a, b, c, d and e expressed in terms of c.m.s. experimental quantities
are given in table IV.

The only other independent experimental quantities are contained in the total cross-section. Indeed the
total cross-section can be written as [28, 29]

where PB and PT are the beam and target polarizations and k is a unit vector in the direction of the beam. The
terms (70tot, (1ltot and (12tot can be obtained by measuring the total cross-section for appropriately polarized
initial nucleons. They are related to the amplitudes via the optical theorem

where k is the wave number. The notation 6ltot and U2,.t should not be taken literally. Indeed these cross-sections
can be positive, zero or negative and only O"tot and 0" Otot are positive definite.
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1

TABLE III )

Centre-of-mass experimental quantities in terms of scattering amplitudes
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TABLE IV 

Bilinear combinations of a, b, c, d, e in terms of the c.m.s. experimental quantities

In terms of helicity amplitudes we have

The quantities (10tot, (1ltot and (12tot are directly related to the singlet and triplet total 
cross-sections by

(with 03C3t,-1 i = 03C3t, + 1 ) 
In table III we have expressed 25 linearly independent experimental quantities in terms of 9 real parameters :

the absolute values and relative phases of the amplitudes a, b, c, d and e. Obviously 16 independent 
nonlinear

relations between the experimental quantities can be found, making use of trivial relations 
between complex

numbers. If for a moment we put xl = a, x2 = b, x3 = c, x4 = d and xs 
= e, we can write down evident

identities between the amplitudes

for 1 = 2, 3, 4, 5, j = 1, 2, 3, 4, 5 and j # 1. of a fullRegarded as equalities between the quadratic terms of the type (Xi i (3.14) represents 
an example ofafull

set of independent relations. Indeed, from (3.14) all other relations follow, such as
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or [30]

and [31]

for all i, j, k, 1 = 1, 2, 3, 4, 5.
The relations between observables can be written directly substituting into (3.15), (3.16) or (3.17) from

table IV. In a similar way using table V we can obtain relations between laboratory quantities or even between
the c.m.s. and laboratory experiments. Many such relations have been discussed in the literature [30, 31, 32] and
we shall not dwell upon them here.

In a similar way we can find inequalities involving the experimental quantities. E.g. from

we get

and

implies

Further relations can be obtained analogously.

4. Expérimental quantities in the laboratory system. - In any experiment only an angular distribution is
measurable. In this section we will discuss the formula describing the angular distribution of correlated scattering
for the case when both initial nucleons are polarized. This is the most general formula for elastic nucleon-nucleon
scattering. It contains all possible experimental quantities and can be specialized to each case of interest by
setting various initial or final polarizations equal to zero or choosing them in certain directions.

We introduce the symbols li and P

for the cross-section and polarization in the scattering, on analyzer 1 for the scattered and 2 for the recoil particle
with scattering matrices Ml and M2 and unit vectors ni and n2 in the directions of the normals to the first and
second analyzing planes, respectively (we assume that the analyzing scatterings are performed on spinless
nuclei). If the ith analyzer is absent, then we put Pi = 0 and Mi equal to the identity matrix which implies Ii = 1.

The general cross-section of correlated scattering is defined as

where the letters PB and PT indicate the initial beam and target polarizations and p is the nucleon-nucleon density
matrix after the first, (i.e. studied) scattering. The dimension of (4. 1) is the first second or third power of the
cross-section if both Pl and P2 are zero, only one of them has non-zero value or both are different from zero,
respectively.

Expanding the density matrix p in terms of the basic tensors, we obtain the general formula [32]

Summation is understood throughout over repeated labels p, q, i and k. In practice the formula is useful in a
treatment of scattering events by means of the maximum likelihood method. The angular distribution usually
measured in an experiment is described by the ratio
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if Pl = P 2 == 0 (Le. for the experiments B. l, C .1 and D .1 of table II) and by

in other cases. The differential cross-section (A. 1 of table II) is an exception since in this experiment an absolute
measurement is necessary.

Formula (4. 3) is valid in any frame of reference, but we shall mainly use it in the laboratory one (i.e. with the
stationary target), where the labels p, q, i and k will be replaced by a, b, c and d.

When discussing experiments in the laboratory system (l.s.) we shall use

and

i.e. unit vectors in the direction of the initial, scattered and recoil particle momenta in the l.s. (k = ki). Further
we use the transverse vectors

where n is defined in (2. 2).
In pure laboratory system experiments initial polarizations are specified to be along the directions k, s or n,

the polarization of scattered particles is measured in the directions k’, s’ or n and that of the recoil particles
in the directions k", s" or n.

Note that in the presence of a magnetic field the spins of the scattered or recoil particles can be rotated
before reaching the analysers (see comment at the end of this section).

Let us now consider individual cases of interest, making use of properties of experimental quantities, which
will be established in section 6.

A. Unpolarized beam, unpolarized target : PB = PT = 0.

A .1. Final polarizations not analysed : Pl = P2 = 0, Il = 12 = 1.

A. 2. Polarization of scattered particles analysed : P2 = 0, 12 = 1.

A. 3. Polarization of recoil particles analysed : P1 = 0, Il = 1.

A. 4. Both final polarizations analysed.

B. Polarized beam, unpolarized target : PB =1= 0, PT = 0.
N N N

B.1. Final polarizations not analysed : Pl = P2 = 0, l i = I2 = 1.

B.2. polanzationofscatteredparticlesanalysed P2 = 0,12 = 1.

B. 3. Polarization of recoil particles analysed : Pl = 0, Il = 1.

B . 4. Both final polarizations analysed.
The expression for EpBo(P1, P2) can be obtained from (4.3) by putting PT = 0. Thus only P, DaOco, KObco,

Cab00 and Cabco appear in the formula.
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C. Unpolarized beam, polarized target : PB = 0, PT * 0.

C .1. Final polarizations not analysed : Pl = P2 = 0, Il = 12 = 1.

C. 2. Polarization of scattered particles analysed : P2 = 0,12 = 1.

C . 3. Polarization of recoil particles analysed : Pl = 0, Il = 1.

C. 4. Both final polarizations analysed.
The expression for 03A3OPT, P2) is obtained from (4.3) by putting PBG = 0. It involves only P, K"00d, DObOd,

CabOO and C.bOd-
D. Polarized beam and target : PB 0, PT =F 0. - -

D. 1. Final polarizations not analysed : Pi = P2 = 0, Il = 2 = 1 -

D. 2. Polarization of scattered particles analysed : P2 = 0,12 = 0.
PBPT (P 1&#x3E; 0) is expressed in terms of P, &#x3E; A OOcd, D a0c0, K a00d and MaOcd*
D. 3. Polarization of recoil particles analysed : Pl = 0, il = 1.
03A3PBPT(0,P2 P2) is expressed in terms of P, AOOcd, DObOd, KObco and NObcd’
D. 4. Both final polarizations analysed.
In this case all terms in (4.3) survive and the general formula, while straightforward, is quite cumbersome.

We shall not spell it out in its generality, but only consider some special cases of interest (specifying the directions
of the polarizations). We concentrate on experiments yielding interesting components of the four-component
tensor.

(i) PB = PB s, PT = PT s, P1 = P1 ni = Pls’S’ + Plk’ k’, P2 = Ê2 n2 = P2," S" + Êlk" k" [only the pola-
rization components in the first scattering plane are analysed, i.e. nl(n2) is a combination of s’and k’ (s" and k")].

(ii) PB = PB S, PT = Pr k, Pl = pl n, = P1s, s’ + P1k’ k’, P2 ’ P2 n2 = P2s" s" + P2kll k" (ni and n2
are again in the first scattenng plane).

LE JOURNAL DE PHYSIQUE. - T. 39, N- 1, JANVIER 1978
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In all the above formulas it is sometimes useful to express the vector components in terms of the azimuthal
angles 4’l and 03A6 between the normal to the scattering plane and the two normals to the analysing planes. These
satisfy :

An important fact concerning all the above formulas must be kept in mind. In the absence of a magnetic
field the scalar products n1k and n2k" are zero, since the vectors k’ and k" lie in the first and second analysing
planes respectively. Thus, all components of polarization tensors involving k’ or k" subscripts actually vanish
from the measured distributions. In order to observe these components it is necessary to make use of magnetic
fields in front of the analysers, rotating the polarizations. In particular, a magnetic field between the target and
the analyser 1 (2) along the direction s’(s") will rotate the polarization of the scattered (recoil) particle in the
k’, n (k", n) plane. The scalar products nin and nlk- (n2n and n2k") are then to be understood as cosines of the angles
between the normals nl (n2) and the direction to which the n and k’ (n and k") components of the scattered (recoil)
particle polarization have been rotated by the magnetic field (after the scattering under consideration).

Laboratory experiments are expressed in table V in terms of amplitudes a, b, c, d, e and in table VI in terms
of helicity amplitudes.

5. Relations between laboratory and c.m.s. quantities. - Relativistic formulas for the differential cross-
sections depend on the choice of the kinematic variables, are well known and will not be discussed here. We will
now transform other laboratory experiments into the c.m.s. and express them in terms of combinations of the
pure c.m.s. experimental quantities. Generally speaking, the relations can be written as

A summation over repeated indices is to be understood. The symbols aRIP and bR2q are components of vectors a
and b rotated through the relativistic spin rotation angles about the normal to the scattering plane, thus repre-
senting spin directions of the scattered and recoil particles in the c.m.s. if the directions in the l.s. are a and b.

TABLE V 

’

Laboratory experiments in terms of amplitudes a, b, c, d, e.
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TABLE VI

Laboratory experiments in terms of helicity amplitudes.
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The relativistic rotation angles are

for the scattered and recoil particle respectively, where 0 is the c.m.s. scattering angle, and 01 and 02 are the l.s.
scattering and recoil angles. The nonrelativistic case corresponds to

Note that all angles 0, 81, 02, OC, fi and f2i are not negative whereas 03A92 0.
All vectors and angles involved are illustrated on figure 1. We easily find the relations

FIG. 1. - Nucleon-nucleon scattering kinematics in the centre-
of-mass and laboratory systems. The angles indicated are : the
c.m.s. scattering angle 9, the l.s. scattering and recoil angles B1
and 82. The relativistic rotation angles 03A9 1 = 2 a and Q 2 = -’Tt + 2 {3
for the scattered and recoil particles (in the nonrelativistic limit
we have a = 0, _ 7r/2). Unit vectors in the following directions
are shown : the initial and final c.m.s. momentum k; and kf, the
directions 1 - k; + kf, m N kf - k;, the initial scattered and
recoil particle l.s. momenta k = ki, k’ and k", the directions
s = n x k, s’ = n x k’ and s" = n x k", where n - k; x kf.
Finally kRl, sRl, kR2 and sR2 are the above vectors k’, s’, k" and
s" rotated through the angle Sll (or Sl2) for the scattered (recoil)

particle.
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and

Formula (5.1) is written for the four-component tensor. The formulas for lower-order tensors are obtained
by simply putting appropriate indices equal to zero and by omitting the corresponding vector components on
the right hand side.

Each of the indices p, q, i and k in (5.1) is equal to 0, 1, m or n [see (2.2)], a [b] is equal to 0, k’, s’ or n
[0, k", s" or n] and each of c and d is equal to 0, k, s or n [see (4. 4) and (4.5)].

Let us now consider individual cases from table II and derive relations between c.m.s. and I.s. experiments
using the results of section 3.

A. 2. Polarization of scattered particles analysed : P15 - P°ms - P.
B.2. Polarized beam, scattered particles analysed. - The well-known Wolfenstein parameters

Daoco - D,Oio aRIP ci are

D --_ Dnono (l.s. and c.m.s. quantities are equal)

B. 3. Polarized beam, recoil particles analysed. - The transfer Wolfenstein parameters satisfy
KObco = KOqio bR2q Ci’

C. 2. Polarized target, scattered particles analysed. - We shall use small letters for the analogues of the
Wolfenstein parameters in the case of polarized target and unpolarized beam. We have K,,00d = KPOOK aR1P dk
and we express Kpook in terms ofKoqio 

’

kt = K = Knoon (l.s. and c.m.c. quantities are equal)
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C. 3. Polarized target, recoil particles analysed. - We have DObOd = Dog0k bR2q dk and we express Doqok
in terms of Dp0i0

d - D = Dnono (l.s. and c.m.s. quantities are equal)

A. 4. Polarization correlation j’or initially unpolarized particles. - We have CabOO = CpqOO aRIP bR2q so that

D .1. Cross section for polarized beam and polarized target [33]. - We have Aoocd = Aooik Ci dk :

B. 4. Polarized beam, both final polarizations analysed. - We have C,,b,O = CpqiO aRIP bR2q Ci
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C. 4. Polarized target, both final polarizations analysed. - We have CabOd = CpqOk aR1P bR2q dk and express
Cpqok in terms of Cpqio.

D . 2. Polarized beam and target, polarization of scattered particles analysed. - We have

M.Ocd =-- MpOik aRIP Ci dk
and express MOik in terms of Cpqi..

D. 3. Polarized beam and target, polarization of recoil particles analysed. - For the experiments Npbcd
see section 6.

D. 4. Polarized beam and target, both final polarizations analysed. - For the relations see (6. 30) and (6. 31).

6. Relations between experimental quantities in the laboratory system. - The number of linearly inde-
pendent experiments is the same in any frame of reference. The 25 linearly independent laboratory frame expe-
riments can of course be chosen in many ways.

Contrary to the c.m.s., in the l.s. we use three different bases, which together with relativistic spin rotations
complicates relations between experimental quantities following from parity conservation, the Pauli principle
and time invariance. A relatively simple way to derive them is to use transformation relations between basis
vectors in both systems. The inversion of (5. 4) and (5 . 5) gives

We set them into the equalities derived in section 3 and transform the results into the laboratory system.
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It is easy to see how the Bohr rule can be applied in the laboratory system. It implies that two experimental
quantities are equal up to a sign if one results from the other by replacing the label 0 by n, n by 0, k (k’ and
k") by s (s’ and s") and s (s’ and s") by k (k’ and k"). The sign is equal to ( - 1 ) 112([slf - [sli + [k]i - [k]f)@ where [s];
and [s]f indicate the number of s-type labels in the initial and final states and similarly for [k]; and [k]f.

The parity conservation - as in the c.m.s. - implies that only experiments with an even number of k,
k’, k", s, s’and s" labels are non-zero.

The generalized Pauli principle together with the parity conservation give once more

Formula (6.2) relates pure laboratory system experiments if a and b are equal to 0 or n, c and d equal to 0,
k, s or n (always with an even number of k and s labels). A substitution of (6.1) into (3.2) gives after a simple
calculation

where b = 0, n and c, d = 0, k, s, n. Notice that the second relation is a consequence of the first one and the Bohr
rule. Using (3.2) and (6.1) again, as well as the Bohr rule, we obtain

where (c, d ) = (0, n), (n, 0), (k, s) or (s, k). In the nonrelativistic case (6.4) reduces to

Time reversal invariance implies relations of the type (3.4) in the laboratory system only if all labels are
equal to 0 or n. Other combinations of subscripts give more complicated relations amongst pure experiments,
such as :

with a, b, c, d = 0, n, a i= c and b # d. Both lines are related by the Pauli principle (6. 3).
Another consequence of time reversal invariance is

where b, c = 0, n and two further relations which can also be derived from (6. 6) using the Bohr rule. Putting (6. 3)
into (6. 6) we get four equalities related two by two by the Pauli principle

where a, b, c, d = 0, n, a #- d and b # c.

Four further relations implied by time reversal invariance are
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where c, d = 0, n. Notice, that if c # d than Xdkk = - Xcdss by the Bohr rule and the Pauli principle, which
simplifies the relations (6. 8). On the other hand c = d implies Xcdks = Xcdsk’

Let us discuss the individual classes of experiments.
(1) One-component tensors

as in the c. m. s.

(2) Two- component tensors
The Pauli principle (6. 2), (6. 3) and (6. 4) implies

for d = s, k and

Time reversal invariance imposes further constraints, namely (3.4), (6. 5) and (6.7) giving

The relations (6. 8) are simplified as

Thus, we are left with 12 independent quantities, e.g. Aoonn, AOOkk, Aooss, AOOsk, DnOnO’ three of the four
quantities DS-oso, Dk’ok0 Ds’OkO, Dk,oso ; Konno and three of the quantities Kos"so, KOk"kO’ KOs"kO and KOk"sO.

(3) Three-component tensors. - Parity conservation implies that each tensor has at most 13 non-zero
components. Consider first the tensor MaOcd’ Making use of the Bohr rule and (6.2) we find

The generalized Pauli principle, together with time reversal invariance and the Bohr rule imply [see (6.5)
and(6.7)]

Thus we are left with 9 linearly independent components of the polarization tensor MaOcd in the laboratory
frame.
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The polarization of the recoil particle for both beam and target polarized is related by means of the generaliz-
ed Pauli principle to the polarization of the scattered particle MaOcd’ Using (6.2) we get

and the inverse relations to (6. 3) imply

The labels c and d in formulas (6.18) and (6.19) are equal to k or s. Thus all 13 non-zero components of NObcd
are expressed in terms of MaOcd-

The two polarization correlations tensors are related to each other. The Bohr rule gives

where a and b run through (k’, s’) and (k", s"), respectively and [n x v] is label corresponding to the direction of
the vector product [n x v] for an arbitrary unit vector v. In more detail (6.20) gives

Other components of CabiO and Caboi are related by the Pauli principle (6.3).
In turn, the polarization correlation tensors can be related to M,,Od and NObcd’ Quite directly the Bohr rule

gives 

where a, b and c run through (s’, k’) (s", k") and (s, k), respectively. The last of equalities (6.22) together with
(6.19) give

The remaining components of this tensor are mutually related by the Pauli principle (6.4)

and with M nOcd by the time reversal invariance relation (6.8).

Thus we have directly or indirectly expressed all 52 non-zero components of the three-index tensors in
terms of 9 linearly independent components of the tensor MaOcd’

(4) Four-component tensor. - Parity conservation implies that only 41 components of Cabcd are non-zero,
namely those with an even number of labels n : none, two or four. Using the Bohr rule we immediately reduce 25
of these components to components of lower-order tensors. Indeed
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In (6.26) a and b run through (s’, k’) and (s", k"), respectively and c, d run through k and s. The remaining 16
components are pairwise related by the Bohr rule

Thus, we are left with 8 components, e.g. those on the right hand sides of (6.27).
The Pauli principle (6.4) imposes two further constraints, namely

One more independent relation between the six remaining components can be found using time invariance.
Indeed, in the c.m.s. we have Cl.,, = - Cillm which can be rewritten in the laboratory system using (6.1) and the
Bohr rule as

We are thus left with five components. Instead of looking for further relations in the laboratory frame we
express eight cobinations of Cabcd components in terms of the c.m.s. quantities. Making use of the fact that
C1mlm, Cllmm and C1mml are linear combinations of Cmi and lower-order tensors [see (3.9)] and including the Pauli
principle (6 . 28) as well as the time reversal invariance (6 , 29) we find

From (6.30) and (6.31) we see that only two combinations of Cabcd are actually independent of other
laboratory experiments (they yield Cmi and Clllm), as expected.

7. The Pauli principle and nucleon-nucleon scattering. - The nucleon-nucleon scattering matrix, as used
in this article, is symmetric with respect to the interchange of particles 1 and 2. For proton-proton or neutron-
neutron scattering this symmetry is a consequence of the particles being identical. For neutron-proton scattering
the absence of a nonsymmetric term proportional to (al - 62, n) is an additional assumption, related to the
isotopic invariance of nuclear forces.

A direct consequence of this symmetry which is exploited through-out this article, is that the number of
independent experiments (in any frame of reference) is greatly reduced (see sections 3 and 6).
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Further consequences of the Pauli principle are obtained for genuinely identical particles (pp or nn scatter-
ing). The particle identity in either the final state or the initial state implies

All labels in the three terms of (7.1) refer to the basis given in (2.2) for the final and initial momenta in the
ki and kf directions. However, the experimental quantities as defined in section 3 are labelled in the frames
relative to the final and initial momentum directions actually considered, i.e. - kf, ki for the second and kf,
- ki for the third term in (7.1). For this reason the following transformations should be made in addition
to (7. 1) :

and

Besides, kf - - kf as well as ki - - k, changes the scattering angle Ocms = 0 to x - 0.
In more detail, formulas (7.1) together with the relations of section 3 imply :

We recall that the labels 1, m, n are always defined with respect to the experiment actually performed.
The above relations between c.m.s. experiments can be translated into relations amongst I.s. quantities

measured at angles 01 and 02 (these being the l.s. scattering and recoil angles) by making use of (6.1). However,
they can be obtained in a simpler manner using tables 1 and V and recalling that the transformation 01 ---&#x3E; 02

(0 - x - 0) corresponds to a --+ 03C0 - fl and fi ) 7r oc. Thus we obtain
2 2
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Additional simple relations between experimental quantities are obtained for 0 = 03C0/2, i.e. for 03B81 = 02-
For nn (or pp) scattering the relations follow from the fact that a1(03C0/2) = 0, b1(n/2) = - C1(03C0/2) [see table I]
(many of them can be obtained from (7. 2) by putting - 0 = 0).

Thus we find in the c.m.s. [11]

Since the Pauli principle implies do(03C0/2) = eo(03C0/2) = 0 we also obtain relations between nn (or pp) and np
experiments in the c.m.s. [11]

Relations equivalent to (7.4) for nn or pp scattering can also be written in the laboratory system. These
relations can be obtained directly from (7.4) by performing the appropriate rotations or from the formulas of
table V, remembering that a1 (03C0/2) = 0, b1 (03C0/2) = - C1(7r/2).

The laboratory system relations hold for 01 = 02 = n/4 - a = 03B2- Tr/4 (i.e. 0 = 03C0/2, a + 03B2 _ n/2).
The l.s. scattering angle for which this occurs is given by

where s is the invariant total energy squared and m is the nucleons mass.
Let us first consider the scattering of identical nucleons. All relations (7. 3) hold with 02 = 03B81. Additional

relations are :
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For identical nucleons at 01 = 02 (0 = 03C0/2) only three amplitudes are independent, e.g. b = bl, d = dl
and e = el (the subscript refers to isospin T = 1). Thus only 9 linearly independent experimental quantities
exist. Indeed, a measurement of u, Cnnoo and of Dnono - KnOOn will determine b 2, d 2 and 1 e12 . Two inde-
pendent components of the two index tensors, e.g. DS-oso and Dsoko will determine Re b* d and Im b* e, and a
measurement of any one of the quantities Aooss, AOOkk, Cs’s"oo or Ck,k-oo will yield Im d* e. Finally, three compo-
nents of the three-component tensors, e.g. CS’nsO’ CS’nkO and Mnoks will provide us with Re b* e, Im b* d and
Re d* e.

The formulas (7 . 5) relating nn (orpp) and np experimental quantities have their equivalents in the laboratory
system. Four independent relations of this type can be written in various forms. We find a convenient set of
relations to be the following :

8. Conclusions. - In this article we have reviewed the kinematics of nucleon-nucleon scattering and
filled in many gaps in the existing formalism. We have concentrated on phenomenological aspects only, i.e.
the relations between experimental quantities and the scattering matrix and relations amongst experimental
quantities themselves. The formulas presented in this paper should be useful for experimentalists studying
nucleon-nucleon elastic scattering and for the practitioners of nucleon-nucleon amplitude analysis.

The results obtained make it possible to compare explicitly and exactly all experiments performed under
different conditions to obtain the same physical information (like various components of the polarization rota-
tion tensor DaOcO for a polarized beam or DObOd for a polarized target, various components of the scattered or
recoil particle polarization for initially polarized beams and targets, etc.). A reasonably complete list of relations
between experimental quantities thus facilitates the use of any experimental data in the reconstruction of scatter-
ing amplitudes (e.g. via phase shift analysis). On the other hand, these relations make it possible to check various
sets of experiments, usually performed in different laboratories, for consistency between them. Since the origin
of most the relations can be traced back to various symmetries (parity, time reversal invariance and the Pauli
principle), a test of the relations is also a test of the underlying principles.

Some new formulas are contained in all of sections 3 to 7, but we specially wish to mention the detailed
study of the implications of the Pauli principle for the scattering of identical nucleons, presented in section 7.
For nn (or pp) scattering, relations are given between experimental quantities measured at the c.m.s. angles 0
and n - 0 and I.s. angles 01 and 02 (01 and 02 are the scattering and recoil angles). All constraints occurring for
0 = 03C0/2, i.e. 01 = 03B82 are listed and also relations between certain nn and np quantities for the same angle.

In view of the interest in nucleon-nucleon interactions, the availability of accelerators in intermediate and
high energy regions and the increasing use of polarized proton targets we think that this is the correct moment to
present an explicit and complete exposition of the nucleon-nucleon formalism.
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We would like to reemphasize that the entire contents of this article is a formalism, i.e. pure kinematics.
As such it should be useful in any study of nucleon-nucleon scattering, either theoretical or experimental. In
particular the entire formalism is relevant for any attempts to reconstruct the nucleon-nucleon amplitudes from
data. This holds both for a direct reconstruction making use of some complete experiment, as defined by Puzi-
kov, Ryndin and Smorodinskii [5] and for a reconstruction via phase shift analysis, Regge pole theory or any
other expansion.

In the near future we plan to present some thoughts and results making use of the present formalism for
reconstructing nucleon-nucleon scattering amplitudes from experiments. One of our interests here is the ques-
tion of the uniqueness of such a reconstruction (be it a direct reconstruction or one via a phase shift analysis).
A further program in which this formalism will be used concems a simultaneous reconstruction for all energies
(and angles) making use of previously developed two-variable expansions of scattering amplitudes (see the
review [34] and the paper [35]).
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