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ON THE THEORY OF COLLISIONS OF ATOMS IN RYDBERG STATES
WITH NEUTRAL PARTICLES

A. OMONT 

Radioastronomie (*), Observatoire de Meudon, 92190 Meudon, France, et Université Paris 7, France

(Reçu le 3 mai 1977, accepté le 18 juillet 1977)

Résumé. 2014 On rediscute de façon unifiée la théorie des transitions par collisions entre états de
Rydberg et de l’élargissement et du déplacement des raies optiques impliquant un de ces états. On
montre que le potentiel de Fermi peut être généralisé en utilisant la matrice de réaction de la collision
d’un électron libre avec le perturbateur, de façon à obtenir les courbes de potentiel adiabatiques de la
quasi-molécule sous une forme analogue à celle de la théorie du défaut quantique. Un critère d’adiaba-
ticité est proposé pour distinguer entre les collisions nettement inélastiques et les collisions quasi
élastiques. L’approximation de la longueur de diffusion et des fonctions d’onde JWKB sont utilisées
pour obtenir une expression approchée des sections efficaces des collisions quasi élastiques (An = 0),
pour des valeurs de n intermédiaires (n ~ 15-20). On montre aussi qu’il est possible d’expliquer le
comportement observé de l’élargissement et du déplacement des raies optiques pour les gaz rares et
les alcalins pour des valeurs de n intermédiaires ou élevées.

Abstract. 2014 The theory of transitions between Rydberg states induced by thermal collisions,
and of the broadening and shift of optical lines involving such states, is reconsidered. It is shown that
the Fermi potential can be generalized in terms of the reaction matrix of the collision between a
free electron and the neutral perturber. Adiabatic potential curves of the quasi-molecule are thus
obtained in analogy with quantum defect theory. An adiabaticity criterion is proposed to distinguish
between inelastic and quasi-elastic collisions. The scattering length approximation and JWKB
wave-functions are used to obtain an approximate expression for cross-sections of quasi-elastic
collisions (0394n = 0) for intermediate n values (n ~ 15-20). It is also shown that it is possible to explain
the observed behaviour of the broadening and the shift of optical lines by noble gases and alkalis
for intermediate or high n values.
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1. Introduction. - In Rydberg states the valence
electron is very loosely bound to the remaining atomic
core. Accordingly, the interaction of an atom in a
Rydberg state with a particle B is dominated by the
properties of the interaction of e- with B. As a result,
charged particles, and especially electrons, are gene-
rally much more efficient than neutral ones in perturb-
ing Rydberg states, as in ionization, transitions bet-
ween adjacent energy levels, line broadening, etc.

The theory of collisions of atoms in Rydberg states
with charged particles has been studied in great
detail, using in particular the semi-classical methods
developed by Percival and his collaborators (see
e.g. [1]).
On the contrary, when B is neutral, the range of the

interaction e--B is very short. Consequently, the

perturbation induced by B in the electron wave func-
tion is relatively weak when the effective principal
quantum number n* is very large. Accordingly,
when n* &#x3E; 10 cross-sections for collisions with neu-

(*) Laboratoire associé au CNRS e 236.

tral particles are generally much smaller than the
geometrical cross-section n*4 na’ even for quasi-
elastic processes. On the other hand, because of their
low velocity, thermal neutral particles are very ineffi-
cient in inducing transitions with a change of n* for
n*  10. Thus, although some cross-sections can
reach very large values - almost of the order of
n*4 na’ for n*  10 - for quasi-elastic processes
such as line broadening and resonant l-mixing,
Rydberg states as a whole are not so sensitive to
collisions with neutrals as may be expected.
The theory of collisions of Rydberg states with

neutrals has been periodically revisited during the
last forty years, following the development of experi-
mental studies. Measures of shift and broadening of
optical lines have been performed continually during
this period [2-6] ; reviews of early work can be found
in different places (see e.g. [7-9]). The development
of tunable lasers will certainly produce a strong revival
of these line broadening studies. The corresponding
theory, first formulated by Fermi [10] and slightly
refined by following workers [11-16], is very successful
in directly relating the shift of very high Rydberg
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levels (n* &#x3E; 20) to the scattering length of e - -B

collisions, especially when B is a noble gas atom

(see also [17-18]). The corresponding line broadening
is also rather well explained. However, the situation
is much less satisfactory in the case where the per-
turber B is an alkali, despite a certain amount of.
effort [19]. Furthermore, there does not yet exist a
satisfactory theory for any perturbers in the case of
intermediate n* values (5  n*  15).
Transitions between different Rydberg levels induc-

ed by collisions with neutrals have to be considered
in the determination of the statistical equilibrium in
plasmas. They can play an important role in the ca e
of low-lying states in a weakly-ionized medium, but
they are generally negligible compared to collisions
with charged particles. This is particularly true for
the very high Rydberg states studied in astrophysics
through observation of recombination lines. The

corresponding theory has been developed for rather
large n* values mainly using semi-classical methods,
in particular by Flannery (see [20] and references
therein). The problem is more difficult [21] for small
n* values, where only certain special cases have been
treated for which the interatomic potential has been
determined [22]. Here we shall not consider at all
the related problem of ionization by neutrals and the
accompanying processes (association, attachment,
etc. (see e.g. [23, 24] and references therein)).

The use of tunable lasers now allows more selective

experiments to be performed and direct measure-
ments of well-defined transition rates to be made.
The magnitude of the cross-sections depends strongly
on the energy of the transition : they are several orders
of magnitude larger for l-mixing transitions between
nearly-degenerated levels [25] than for transitions

involving s or p levels [26, 27]. Simple theories of
nearly-degenerated 1-mixing transitions have appeared
recently [28, 29]. They describe the qualitative beha-
viour of the cross-sections well, but they need to be
refined and extended to inelastic collisions.

The purpose of the present work is first to try to
relate the different previous studies, and then to dis-
cuss their limits of validity and a number of possible
improvements :

i) extensions of the Fermi potential to derive an
interatomic potential in a close and explicit form,
using the exact behaviour of e- scattering by B, and
directly relating the position of the adiabatic energy
levels to the electronic scattering phase shifts, in

analogy with quantum defect theory [30] (section 2).
ii) Discussion of collision-induced transition pro-

babilities in terms of the adiabaticity criterion, and
a rough derivation of the qualitative behaviour of
1-mixing transitions (section 3).

iii) Discussion of some aspects of line broadening
and shift in the case of perturbation by alkalis, and
for intermediate values of n in the case of perturba-
tion by noble gases (section 4).

2. The pseudo-potential. - 2.1 INTRODUCTION. -
As already stated, all the treatments of the interaction
of a very excited atom A* with a neutral perturber B
are based on the fact that the dimensions of A* are
much larger than those of B. The problem is thus
reduced to the highly-localized interaction of B with
the excited electron, which is very loosely bound to
A + , and finally to the properties of e--B collisions (1).
The situation is particularly simple when B is located

in the region of classical motion of the electron, and
when the wave function P(r) of the electron is well
represented by the semi-classical (JWKB) approxima-
tion. In the neighbourhood of B, Y’(r) is then a super-
position of plane waves of the same energy (see
eqs. (2.25), (2. 3 5) and (2. 38)), and one has essentially
to project the corresponding scattered wave onto
the wave functions of the different eigen-states of A.

In the case of very large values of n, one need
consider only the region of classical motion and assume
that the interaction is zero outside. However it is

possible, using a certain method, to extend the same
treatment to the external region where Y’(r) exponen-
tially decreases, or even to any position of B if one
describes the e--B scattering by the approximation
of the scattering length L. In this case, as discussed
again below (eq. (2.43)), the potential of a non-
degenerate level is just [12, 31-33] (’)

As the wave function ’l’Cr) is distributed over a

very large volume, the very localized interaction with
B does not perturb it very much. In the present sec-
tion, we intend to show that eq. (2. 1) may be very
simply generalized in terms of the reaction R-matrix
of e--B scattering. We thus obtain an expression for
the pseudo-potential V(R) describing the modifica-
tion of the eigen-states and eigen-energies of A due
to the presence of B at the point R.

2.2 PSEUDO POTENTIAL AND R MATRIX. - Let us
denote by VA(r) the (essentially coulombic) interaç-
tion potential of the electron with the core A’ . Assum-
ing the perturber B is at rest at point R, we will suppose,
in order to simplify the discussion, that the e--B inter-
action can be represented by a potential VB(r - R)
(the effects of the interaction of A+ with B will be
discussed in section 2.6).

(1) This treatment presents some analogies with the impulse
approximation (see e.g. [35] p. 683). However, we do not suppose
that the kinetic energy of B is much larger than the electron binding
energy.

e) Atomic units will be used throughout : e = m = 11 = ao = 1.
The values of some other units are : energy (hartree) Eo = 27.21 eV,
velocity vo = ac = 2.188 x 10’ cm/s, time

transition rate Ko = a’ 0 vo = 6.126 x 10-9 cm3/s.
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Let X be the hamiltonian of the electron and G
its resolvent [35]

One looks for an approximate expression of G in
terms of the resolvent of JCA :

One has formally :

However, although its resultant effect on V’(r)
is relatively small, the localized interaction of B with
the electron, represented by vB, is generally strong and
cannot be represented by a perturbation expansion
(Born approximation). Therefore we will look for an
expansion of G not in terms of the powers of VB,
but in terms of the reaction matrix R (’) defined for
the collision of an electron of (kinetic) energy

R satisfies the equation (see e.g. ref. [35] eq. (362b)).

where

and S denotes the Cauchy principal value.
It is shown in appendix A that G satisfies the expan-

sion

We are interested in determining the perturbation of
a set a of degenerate or quasi-degenerate states corres-
ponding to n,,, (n,,, » 1). In the products of eq. (2.8) the
closure relation introduces intermediate states ni’
For n i values far enough from, n« (j ni - n,,, 1 » 1),
one may replace the distribution of discrete levels i

by a distribution continuous in Ei and symmetric
with respect to Ea. In this energy range, there is

consequently cancellation between GA and G1R in
the different terms of the r.h.s. of eq. (2. 8). This is
particularly clear for the continuum states of A

(Ei &#x3E; 0). For very small energies (Ei  E,,,), it is seen

(3) Note that the reaction matrix is very often denoted by K.

that the compensation holds only if ni » 1, which
implies n,,, » 1.

In_these conditions, one may replace R in eq. (2. 8)
by R restricted to states i of energy relatively close to
Ea (typically | ni - na  na). Assuming further that
the matrix elements of R are approximately constant
in this energy range, one may neglect the terms contain-
ing G’,, so that 

+

g AR

which is just the expansion of

Accordingly, we will adopt as a pseudo-potential’

This is essentially the result recently proposed by
Ivanov [16]. We will see in the following subsections
how one can use the expression of R(E.) in terms
of scattering phase shifts to find the position of the
adiabatic energy curves of A-B either by perturbation
theory or by a direct diagonalization Of JCA + ii lead-
ing very naturally to results comparable with those
of the quantum defect theory [30].

2.3 EXPRESSION OF V(R) IN TERMS OF PHASE SHIFTS.
- In the case of atomic diamagnetic perturbers
(Jp = 0), such as noble gases, VB is a central potential
independent of the electron spin. The matrix elements
of R between two plane waves ka and kb (ka = kb = k)
have simple expressions in terms of phase shifts il, l

(sexe e.g. Ref. [34], eqs. (XIX-51) and (XIX-52)) :

where

In order to compute the matrix elements of R(ER)
between two eigenstates i and j of atom A, it is always
possible to expand, their wavefunctions in terms of
planè waves by mean of the Fourier transformation :

so that

However, only values of r and r’ close to R make
an important contribution to this integral. Accor-
dingly, in eqs. (2.16 and 2.17), p and p’ remain
close to kR = 2(E - vA(R)) since the wavelength
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of the electron is well-defined and nearly constant
in the neighbourhood of R. One may therefore use
eq. (2.14) for ( p’ ! 1 R 1 p). It is then easy to show
that eq. (2.17) may be written

Thus, the first two terms are

In the limit of very small energies kR’12, all RI are
zero except Ro which becomes independent of kR
and is equal to half the scattering length,

which is the well-known result of the Fermi approxi-
mation [10] (see eq. (2.1)).

If the long-range part of VB, - 1oc Ir - R 1-’,
where a is the polarizability of B, is not negligible,
one can use the expressions for the phase shifts q§
given by Spruch et al. (see e.g. [37]), so that

where d is of the order of the dimension of atom B.

In fact, as pointed out for instance by Ivanov [16],
the terms of first order in ak in Ro and R, do not
contribute to forward scattering.
For eq. (2.22) to be valid,

and

With these conditions, the terms corresponding
to the effective range ro are always negligible. One
also sees that in such a case kR, « 1 and Il’  1.

Values of L and a for the different noble gases
are given in table I. As k - n - ’, it is seen that for
He and Ne, conditions (2.24) are satisfied for n values
as small as 5. For Ar, and a fortiori for Kr and Xe,
larger n values are needed (n &#x3E; 10). In such condi-
tions the logarithmic term of eq. (2.22) is always
very small, except for n - 10 for heavy noble gases.
The second term of eq. (2.22) is often significant,
especially for Ne. However, as already stated, it
does not contribute to line shifts, but only to transition
probabilities implying rather large changes in the
momentum k of the electron.

TABLE 1

Values of the scattering lengths of electrons by
noble gases, and of polarizabilities of noble gases and
alkalis, in atomic units.

Note that the JWKB wave function of a E state
in the neighbourhood of R (see eqs. (2.35) (2.38))
is :

Accordingly,

Smirnov [32] and Roueff [33] have given a very similar
expression for a wave function of the form e-Or in
the neighbourhood of R. Note that the cross term
cos (2 kR R + 2 ({Jo) is zero when averaged with

respect to R.
In the same way, for a Il state :

and one finds, neglecting the cross term,

again similar to Smirnov’s result [32] which lacks
the factor 1(l + 1). However, as kR R - n, this term
is generally negligible compared to ( E 1 V(R) 1 l ).
These results may obviously be generalized to

the case where the ground state of B is a 81/2 state
(hydrogen, alkalis, etc.) by defining the matrices

Rs and RT of singlet and triplet states, respectively.
For very small k values, RSl and RTL satisfy eq. (2. 22).

However, typical values of polarizabilities and scatter-
ing lengths of alkalis [41, 42] are much larger than
in the case of noble gases (see table I). Accordingly,
eq. (2. 24) require much larger values of k-1, and
hence of n, to be valid ; typically n :&#x3E; 30.
When conditions (2.24) are not fulfilled, exact

values of RI(ER) are needed [41-43]. However, Ri can
be rather large, and even diverge in the case of reso-
nances. Typical resonances appear in particular in
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the ’P phase shifts of alkalis in the vicinity of k - 0.1
[41, 42, 43]. In such cases it is obviously not possible
to use a perturbation expansion in terms of R, and
a complete diagonalization of 3CA + R is required
(section 2.5). Furthermore, when ak2 &#x3E; 1, one has
to take into account the interaction between B and
the electron at distances larger than k-1. One should
then consider whether this interaction is still suffi-

ciently localized to be well-represented by the R
matrix.

2.4 DIFFERENT REPRESENTATIONS OF V(R). - As
in any collision problem, one has to make a choice
between different basis states which determines the
matrix elements of V(R). In many cases the potential
may be approximated by the Fermi potential

Accordingly, one should choose a basis which
contains as many wave functions as possible equal
to zero at the point R.

In the case of very large n values, the Rydberg
states are essentially hydrogenic. However, the degene-
racy of the n2 states pertaining to the same value of n
is not perfect for small values of 1, where the energies
are well-approximated by a quantum defect ô, :

Some values of quantum defects b, are given in
table II. The energy shifts are thus equal to - bzln3.
In a similar way, the fine structure splittings, for
instance between J = L + 1/2 levels of alkalis, can
be approximated in many cases by AE = d/n3.
Some values of d are also given in table II.

TABLE II

Approximate mean values of quantum defects b,
for n - 10 [50, 51]. The numbers in brackets give the
order of magnitude of the variation of b, due to fine
structure (doublet) splitting.

Assuming nevertheless an ideal hydrogenic situation
of n2 completely degenerate states, it is straight-
forward using the n2 wave functions "i(r), to build
n2 - 1 functions equal to zero at point R. They
correspond to n2 - 1 states which remained degene-
rate and non-perturbed. The only shifted state is
then given by

where

It is shifted by the amount [19, 44]

We will use these expressions to find the exact
values of the eigen-energies of JCA + V(R). However,
we will see that they are not always, very useful in
the treatment of the collision (see section 3). Further-
more they do not account for the non-degeneracy
of small 1 levels. Therefore, we will also use other
atomic representations, with the usual n, 1, m quantum
numbers.

In the first one (see e.g. [29]), the internuclear
axis AB is taken as the quantization axis. Only atomic
states with m = 0 have a wave function different from
zero at the point R (they essentially correspond to E
molecular states) :

where Rd(r) is the radial part of the wave function tp da
of the r state corresponding to nl.
A fixed axis system is often preferable for a classical

path treatment of the collision. We will choose the
z-axis perpendicular to the collision plane and the
x- and y-axes parallel to the impact parameter b
and to the relative velocity v respectively (Fig. 1).
Accordingly, 0 = Tr/2 and ç is the angle between AB
and b :

where

FIG. 1. - Collision axes.
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As regards the explicit expression of Rd(R), in
the case of not too large n values one may use the
exact hydrogenic functions. However, their JWKB
approximations are simpler to use and well suited
to the discussions of both the potential and the
collision. One may recall their form [45] :

where pr is the radial impulsion :

and r 1 and r2 are the roots of pr which delimit the
region of classical motion.
From this expression, it is easy to rederive the

result of Presnyakov [19] for the value of A n (’)(R)
(eq. (2 . 33)), by using for instance eq. (2. 34) :

The JWKB approximation for Rnl(R)2 is used,
and the summation over 1 is replaced by an integral
limited to 1 values such that pr is real (eq. (2.39)).

Replacing the sine squared by 1/2, one then obtains :

hence

which is the result of Presnyakov (ref. [19] eq. (29)).
In the case of non-degenerate levels (small 1),

their first-order shift is obviously given by Fermi’s
result :

2.5 COMPLETE DIAGONALIZATION DF Je A + VeR). -
The validity of first-order perturbation theory is

obviously limited to the cases where the energy shift
dnl is much smaller than the energy splitting 1/n3,
i.e. 

In order to find the eigen-energies for any value
of the phase-shift, we first assume that all thé 
are equal to zero, with the exception of il’ 0 which can
take any value. The matrix elements of V are still

given by eq. (2.19). Accordingly, we will consider
only its matrix elements between the different (p.

(eq. (2.31)). A(’) as given by eq. (2.42) is a slowly
varying function of n. Therefore we may assume
that all matrix éléments qJn 1 V 1 (pw &#x3E; are equal
to A(’), if n - n’ 1 « n.
We show in appendix B how to diagonalize the

resulting matrix. The result is very simple in the case
of pure hydrogenic levels. To each value of n there
corresponds a level shifted by the amount

One immediately sees the complete analogy with
the quantum defect theory [30]. The short range
interaction e--B produces a shift of the s-wave rela-
tive to B in the same way as the short range inter-
action e--A+ produces a shift - Jzln3 of the 1-wave
relative to A ’ ; and in the limit of vanishing energy [30],
ôi = nlln, where ni is the phase-shift for e--A+
scattering.

Eq. (2.45) may obviously be extended to the other
phase shifts ili", so that to every pair of values of n
and l’ there corresponds a level (2 l’ + l)-times
degenerate and shifted by the amount

Of course, this result implies that, from the n2
hydrogenic wave functions relative to n, it is possible
to build as many approximately independent l’ m’-
wave functions as necessary relative to B. Accor-

dingly, the highest value of l’ to be considered must
be such that 1,2 .. « n2.
Where this last condition holds, one may also

consider that the s, p, d waves (relative to A+) are
nearly independent of these l’ m’-waves relative to B.
It is then shown in appendix B, that in the case
when q§, = 0 (1’ 7 0), the shift of the level nia is

where the additional quantum defect, satisfies

In particular, when the scattering length approxi-
mation holds (eqs. (2.15) (2.21))

where LkR cotg nô, 1 « 1.
In the case of large n, this last condition is generally

well satisfied except when ô, « 1. The correction
to d n is therefore more important in the case of
small bl, as for the d states of Na. However, it can
be seen that the line shifts are then no longer directly
related to the adiabatic level shift L1,,a.

2.6 TERMS OF THE POTENTIAL RELATED TO THE INTER-
ACTION A +-B, AND CONCLUSION. - AS the pro-
bability of finding B very close to the core A+ is
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very small, the interaction A+-B is dominated by
the long-range electrostatic interaction. One may
distinguish two types of interactions : those which
result from the direct interaction of B and A+ as
if they were alone, and those which introduce a

modification in the interaction of A+ with the electron
through the polarization of B. These effects have
been known for a very long time (see e.g. Fermi [10]
and Firsov [12]). Therefore we shall just recall the
conclusions of these authors.
When B has neither a permanent dipole nor a

quadrupole moment, the leading term in the long-
range A+-B electrostatic interaction is

where a is the polarizability of B.
We will assume that, for very highly-excited levels,

this potential may simply be added to the generalized
Fermi potential V(R) previously discussed. For

low-lying states, and in particular for the ground
state, one should of course use a complete exact
potential VAB(R). However its effect is generally
negligible compared to the perturbation of Rydberg
states by V(R) or U(R).

U(R ) is obviously completely negligible in evaluat-
ing collision induced transition probabilities between
Rydberg states, as long as it does not perturb the
trajectory of B. However, it can affect optical line
shifts appreciably, and even dominate line broaden-
ing as discussed for instance by Reinsberg [11] and
Alekseev and Sobelman [13] (see section 4).
As concerns the second type of effect, i.e. the inter-

action of e- (or A+) with the dipole induced in B
by A+ (or e-), the essential result is very simple.
The presence of gas B inside the electronic orbit
modifies the dielectric constant and hence the position
of the energy levels. However the effect is always
small and negligible in practice.

In conclusion, for very large values of n, the inter-
action of A and B should be well-represented by
U(R) + V(R). General methods of diagonalization
and perturbation can be applied to V(R), with the
express condition of excluding distant levels such
as the continuum. The positions of adiabatic energy
levels are very simply expressed in terms of e--B
scattering phase shifts by an extension of the quantum
defect theory. However several problems remain,
for instance :

- a precise discussion of the values of n for which
this potential is valid would require a complete
study of the A-B potential. The result obviously
depends on the value of the scattering length L of B,
and also on its polarizability a. However, one might
think that, in most cases, this potential is a good
approximation for n &#x3E; 10. In many cases, it seems
that it might be used in the range 5  n  10. How-

ever, the region forbidden to classical motion may
then be important in the derivation of transition

probabilities and of line broadening. Moreover,

it is known that the same type of approximation
provides an order of magnitude estimate of the poten-
tial, even for still smaller n values and for distances
into the region forbidden to classical motion where
the wave function decays exponentially ;
- in the case where B is an alkali, the very large

values of a and of e--B scattering cross sections
make the validity conditions more restrictive. Further-
more, the scattering phase shifts are still rather
uncertain for most of the alkalis at the very low

energies implied. As a result there remains a large
uncertainty in the potential of interaction of Rydberg
states with alkali atoms in their ground states ;
- even when the adiabatic energy levels are known

exactly, the computation of the effect of the collision
on transition probabilities, line shifts and broadenings
may be difficult. In particular, because of the very
large number of states involved, great care should
be exercised in the use of perturbation theory. In the
limit of rapid motion, as discussed in sections 3
and 4, the determination of adiabatic levels is often
useless. On the contrary one should then express
transition probabilities, line shifts and broadenings
directly in terms of the transition T matrix of e - -B
scattering, as is done by Alekseev and Sobelman [13].
However, this limit of rapid motion is valid only
for rather large n (typically n &#x3E; 30, see section 3-1).
Accordingly, detailed knowledge of the matrix
elements and of the eigen-energies of V(R) is necessary
for the intermediate values of n.

3. Collision matrix and transition probabilities. -
3.1. PERTURBATION TREATMENT IN FIXED AXES AND

CORRELATION TIME. - We shall here assume that it is
justified to represent the interaction of atoms A
in a Rydberg state with the gas B in terms of inde-
pendent binary collisions. One may consider a

quantum treatment of the collision (see e.g. [13, 29]).
However because of the very long range of the poten-
tial, the classical-path method seems appropriate.
Furthermore, it is clear that the trajectory of B is
rectilinear to a very good approximation, except
in the effective range of the R - 4 potential (4). In
the present section, we are interested in computing
the probabilities of transitions between Rydberg
states, postponing the discussion of optical line

broadening and shift to section 4. Accordingly,
assuming first a straight line path, we neglect the
R - 4 potential and we consider only the Fermi

(4) The cross-section for orbiting by the R-4 potential is given
by the Langevin relation (see e.g. [46]) :

which is equal to 95, 130 and 270 for collisions with He, Ne and Ar
respectively. These cross-sections are much smaller than the cross-
sections measured for quasi-elastic transitions [25], but of the same
order of magnitude as the cross-sections for inelastic transi-
tions [26, 27].
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potential V(R), and especially its simplified form
in terms of the scattering length (eq. (2.29)).

Schroedinger’s equation during the collision is
then

where V(R) depends on t through R :

First-order time-dependent perturbation theory
yields the collision matrix :

and the transitions probabilities

where OJij = E; - Ej.
We will discuss the validity of perturbation theory

in subsection 3. When eq. (3.4) is valid, the transition
probabilities are proportional to the square of the
Fourier component of Vj(t) at the frequency, coij.
Accordingly, they are directly related to the corre-
lation time Te of V(t) ; they are very small if

Usually, in collision theory, Le is of the order of

magnitude of the duration, Te, of the collision.
Such is not the case here, because Vij(t) oscillates

strongly during the collision. In order to explain
this point, let us consider the shape of ’Pi(t) in the
vicinity of the point R(t). One may write (see eqs. (2. 3 5)
2. 38)) :

where Fi,,,(R) is a slowly-varying function of R and
hence of t, and kia = kR. In the vicinity of R, Vij(t)
is thus the sum of terms oscillating at frequencies
(kjp - ki,,,).v. The transition probability is therefore
very small, if during the whole collision

and in particular if

or, with

which implies, in the case of On = 1, n values larger
than 30 or 100 for v equal to 10-’ or 10-4 (2.2 x 104
or 2.2 x 105 cm/s).
One may also say that the correlation time is

while the duration of a collision is

When Wij Tr - Anl(nv) « 1, one may certainly neglect
the factor exp(iwij t) in the computation of Pij
(eq. (3.4)). The question is much less clear when

Pij may then be large and can differ appreciably
from the result obtained on neglecting the term

exp(iúJij t), as was done for instance by Gersten [28].
When the condition

is satisfied almost everywhere during the collision,
the transition probability may be assumed to be
concentrated in the vicinity of stationary phase
points, such as :

which is just the expression of momentum conser-
vation in the direction of v. One could then use the
usual stationary phase method to derive Sij and hence
Pij. However, it should require numerical compu-
tations, and its conditions of validity are not well
satisfied for a given transition.
Using JWKB wave functions (eq. (2.38)) in a

representation in which the z-axis is perpendicular
to the collision plane, the transition probabilities
may be explicitly written :

where pR,, etc., is given by eq. (2.39) and

One thus sees that

We shall use eq. (3.16) to estimate the values of
sums of P nlm,n’l’m’ over m’, m, l’, 1 and n’.
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3.2 APPROXIMATE SUMMED CROSS-SECTIONS. - It iS
not generally possible to measure the individual
transition probabilities P nlm,n’l’m’, but only their sum
over m’ and m, and, in certain cases, l’, 1 or n’. We
shall obtain rough estimates of these discrete sums by
replacing them by integrals. We shall distinguish
between two cases, according to whether the energy

levek with n’ # n are accessible or not (see inequality
(3.10)).

3 . 2.1 Sum with respect to n’ (n’ » v-1). - When
condition (3.10) is not fulfilled for levels n’ close
to n, i.e. when

one may, in Y replace n’ by n in all terms
n’

of eq. (3.16) except in eXP[ia)ni(t - t’)], and write

We then obtain

where sin’ PR and sin’ PR have been replaced by 1/2,
and use has been made of the relation :

Furthermore,

The cross-sections,

are then easily derived :

and

One thus recovers the result of Alekseev and
Sobelman [13] ; the collision rate in state i is just the
rate for a free electron :

where 4 nL 2 is the scattering cross-section of a free
electron in the approximation of the scattering length,
and  v,, , &#x3E; , t is the mean velocity of the electron in
state i. Eqs. (3.25), (3.26) are easily derived by using
the distribution Wno(v,,) = 4 nn-l(l + n2 vé)-2 (see
e.g. ref. [13] eq. (23)) for states such that 1  n, and
the distribution Wn(Ve) = 32 n - 1 n’ V2(j + n 2v 2)-4
(see e.g. ref. [20a] eq. (28b)) for the whole set of sub-
levels of n.

It is thus seen that the probability of leaving state i
is the-same as that of elastic scattering for free elec-
trons with the same velocity distribution, if condi-
tion (3.19) is met, i.e. if the distribution of accessible
states may be considered as continuous. This condition

typically implies n values at least of the order of 50.
Contrary to the assertion of Alekseev and Sobel-
man ([13] p. 885), eq. (3.27) is valid only in these
conditions, where the Rydberg electron essentially
undergoes inelastic collisions.

3.2.2 Transitions An= 0. - We now assume
the factor exp { iúJij(t - t’) 1 in eq. (3.16) is negligible,
as in the case An = 0 for instance, and we first per-
form the summation with respect to l’and m’ and
then the average with respect to 1 and m in order
to calculate the mean probability of leaving the initial
state nlm

This summation is equivalent to summing over
all possible directions of the wave-vectors k and k’
of the electron. It is shown in appendix C that the
element of solid angle of k at point R is

It will be seen (eq. (3.31)) that the summation over
S2k and Qk, again introduces the function b(t - t’).
Accordingly, we replace R’ by R in all terms of

eq. (3.16) except in exp ± ip., R’. Eq. (3.1) may
then be written

and, using the relation

Finally, the cross-section is easily derived by
using 2 Jtb db dt = V-l 4 nR2 dR :
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It is obvious that this expression can also be used
for unn, if n - n’ 11(n2 v)  1 (cf. eq. (3.10)), and
if the assumption of classical motion of B is justified,
which implies n’ - n Iln’ « kB T, i.e. n » 10 for
n’=n+1.
The average over a thermal distribution of the

transition rate vu,,n yields exactly eq. (68) of Flan-
nery [20a] for transitions n’ = n ± 1 :

This shows that our method and the treatment of

Flannery are équivalent ; both are semi-classical and
use a binary instantaneous interaction.
The probability of leaving a particular 1 state can be

estimated in the same way :

Assuming that one may replace R’ by R as before,

where the summation over kR involves the summation
over m and over the two possible orientations of
the projection of kR onto R included in sin PR. The
integration over Dk, yields

where u denotes the cosine of the angle of kR and
R - R’. As positive and negative values of u are
equally probable, the integral over x may be replaced
by 7T. Consequently,

and

which is equal to (f n,n (eq. (3.33)). Accordingly, in
this approximation, the probability of leaving the
state 1 is independent of 1.
The dependence of unn on n and v is thus very

different from that of ad and Un (eqs. (3.25) (3.26)).
One sees that (fn,n = Un when n2 v = 3 Tr/16, of the
order of magnitude of the limit of validity of eqs. (3 . 25)
(3.26).
On the other hand, the validity of the perturbation

treatment used to derive unn implies weak collisions
for all values of b, which is certainly not true for
n  10 as discussed in the following subsection.

ItJs interesting to compare the values predicted
for Knl,n by eq. (3.34) with the experimental results
in the case of d levels of sodium [25]. For the largest n
studied, n = 15, where the assumption of weak
collision is approximately justified, the respective
values in the case of collisions with He, Ne and Ar
are as follows : measurements [25] : 3.7, 0.41 and
4.8 ; eq. (3. 34) : 4.5, 0.32 and 19.

Besides the use of this semi-classical model (JWKB
wave-functions, continuous summations, ô-functions,
etc.), there are some other obvious sources_of error :

- The scattering length approximation is not well
justified for Ne and Ar; the introduction of the
corrections of eqs. (2.22) (2.23) should make the
agreement better for Ne and Ar.
- Eq. (3. 39) includes transitions to s, p and d

levels which do not contribute to the experimental
results ; transitions to d levels for obvious reasons,
transitions to s and p levels because of the large
energy gap which makes them much less probable
and negligible [26].
- Collisions are not completely weak (cf. sub-

section 3) especially in the case of Ar.
- The quantum defect of d levels of Na is perhaps

not entirely negligible.
- Transitions with An * 0 are perhaps not

completely negligible, especially in the case of He.
On the other hand, only the values for Ne exhibit

approximately the predicted n- 3 dependence. The
slower decrease observed for He and Ar is probably
due mostly to strong collisions.

3.3 STRONG COLLISIONS AND ADIABATIC REPRE-

SENTATION. - An obvious limitation of the validity
of the weak collision approximation is that the total
probability P,,,. of leaving the state nl must remain
smaller than unity. From eq. (3.38) it can be seen

that, for 1 « n, P nl,n is approximately (to within
about 10 %) equal to

Accordingly, Pnl,n remains smaller than unity for
most of the collisions when

which yields approximately 9, 7 and 12 for collisions
of Na with He, Ne and Ar respectively.
However, this condition is not sufficient in itself

to ensure the validity of first-order time-dependent
perturbation theory (eq. (3.4)), or even the conver-
gence of the perturbation expansion. For instance,
this perturbation treatment is certainly not valid
when the adiabaticity condition is satisfied :
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which is roughly equivalent to the inverse of the
inequality (3.41). It thus appears that eq. (3.40)
certainly overestimates P nl,n in the region where
n - (L/nv) 1/3. As proposed by Gersten [28], one

can think of using the Anderson approximation [47]
to represent strong collisions : Pd,,, = A for b  bo
such that P nl,n(bo) = A, with A = 1 - 9 n - ’ for
1 = 2. However, it is not surprising that this approxi-
mation used with eq. (3.40) gives cross-sections
much larger than the experimental results [25],
probably because Pu,. remains appreciably smaller
than unity in strong collisions. It should be noted
in particular that the measured cross-sections are

at least one order of magnitude smaller than the
geometrical cross-sections 4 nn 4 a2
An exact treatment of strong collisions appears

difficult because there are at least about n2/2 coupled
differential equations to be considered. It seems

therefore preferable to look for approximate treat-
ments. The two-level model used by Olson [29] is

certainly much too crude ; there is no obvious reason
why one should consider only transitions between
DSj2 and F 5/2 levels and neglect rotational coupling.

It would seem preferable to use, as usual (see
e.g. [48]), a fixed axis basis at long range, and an
adiabatic basis at short range ; and to try to reduce
as much as possible the number of relevant coupled
equations in both regions, with the use of perturbation
methods, when these are justified.

3.4 INELASTIC COLLISIONS. - The measured cross-
sections [26, 27] for inelastic collisions (An* - 1)
with noble gases are generally smaller than 100 aô,
i.e. much smaller than those of quasi-elastic colli-
sions [25] ’" 101_104 a2. On the contrary, inelastic
collisions are again of the order of 104 a2 for collisions
with alkalis [26].

Thus, inelastic transitions with noble gases are

probably the result of very short range interactions.
The computation of such cross-sections should take
into account the R -4 potential, abandoning the

straight line path assumption (see footnote (4)),
and using a more elaborate potential than the one
proposed in section 2.
On the other hand, transitions induced by alkalis

mainly occur at long range, where the trajectory
is approximately linear. The very large inelastic
rates observed are certainly due to the great strength
of the interaction of the Rydberg electron with the
alkali B, and probably to the existence of crossings
between the adiabatic potential energy curves. Such
avoided crossings occur when a phase shift il’, of
the scattering of e- by B equals nb" where ô, is the
quantum defect of the initial level. Accordingly,
a crossing is almost certain in the presence of a
resonance of n’, in the range of kinetic energy of the
Rydberg electron. As a resonance seems to exist
for every alkali in the vicinity of 0.1 eV [41, 42],

at least for the 3P wave, one can expect crossings for
very large values of b : b : 100-300 ao for n &#x3E; 10.

One can then obtain a very rough order of magnitude
of the transition probability in the following way,
by the Landau-Zener formula (Ref. [45] p. 309) :

where U is the potential matrix element between
the levels crossing. For instance in the case of an
s’-wave, U is given by eqs. (2.19) and (2.31) (see
also eq. (2.48)). Although it is actually an oscillating
function of R, U is therefore, to an order of magnitude
(see eq. (2.41))

On the other hand, 

so that

which shows that one can expect non-negligible
transition probabilities for n  20. The order of

magnitude of the observed cross-sections [26] is
therefore not surprising.

4. Broadening and shift of optical lines. - 4. 1
INTRODUCTION. - The broadening and shift of

optical lines involving a Rydberg state are entirely
dominated by the perturbation of the Rydberg state
itself, so that one can completely ignore the pertur-,
bation of the lower level of the transition. In general,
the shift is govemed by the long-range part of the
interaction and provides an estimate of the mean value
of the potential. On the other hand, the major part
of the broadening can come from shorter range
interaction. In addition, it is essential to distinguish
between the impact and quasi-static line broadening
theories.

Up to now, most optical line measurements have
been performed at rather high pressures (’" 1 atm)
because of the large apparatus widths of conventional
spectroscopy (’" 1 cm-1). Such conditions, as dis-
cussed by Alekseev and Sobelman [13], correspond to
the transition between impact and quasi-static regimes.
However, in order to simplify, and in anticipation of
new experiments using high-resolution spectroscopy,
we will restrict ourselves to the discussion of the

impact theory. Nearly all existing experimental results
concem absorption in principal lines of alkalis perturb-
ed either by a foreign gas (mainly noble gases) or by
the alkali vapour itself. For very high members
(n &#x3E; 30) and noble gas perturbers, the agreement
between experiment and theory is excellent (see
e.g. [5a-b, 13, 16]).

The shift is dominated by the Fermi interaction
(eq. (2.1)) with a small contribution of the polariza-
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TABLE III 

Broadening and shift rates in atomic units. K:c and Ks are deduced from the scattering lengths of
table 1 (eqs. (4. 1) and (4.4)) ; K:c is computed for n = 30. The polarization rates are calculated with the
mean relative velocity corresponding to 760 K, and to Na* in the case of perturbation by noble gases. We
recall that the atomic rate unit Ko = 6.126 x 10- 9 cm3 . .S-l = 0.874 cm-1/amagat.

tion (R - 4) potential. In the scattering length approxi-
mation, the Fermi shift is written

A more precise value, taking into account eq. (22),
is given by Ivanov [16].
The polarization shift is (ref. [13] eq. (34)) :

On the other hand, the broadening can come mainly
from the polarization interaction [11, 13]. The cor-
responding half-width at half-height is (ref. [13]
eq. (34)) (5) :

As discussed in section 3 (eq. (3.25)), the expression
given by Alekseev and Sobelman [13] of the broaden-
ing due to the scattering of e- by B is

corresponding to inelastic collisions from the nl
level considered, to adjacent levels n’. It is valid only
for n values large enough to satisfy the non-adiaba-
ticity criterion (eq. (3.10)) (n &#x3E; 30-50).
The different broadening and shift rates are tabulat-

ed in table III. We note the large values of these rates
and of the corresponding cross-sections :

in the case of Na*-Ar collisions for n = 30.
We will now discuss two cases where the preceding

results do not apply : alkali-noble gas collisions for
intermediate n values, and alkali-alkali collisions.

4.2 ALKALI-NOBLE GAS COLLISIONS. INTERMEDIATE
n VALUES. - For very small values of n* (n* 6)
both the broadening and the shift of the principal
lines of alkali perturbed by noble gases exhibit a
sharp increase with n ; these levels are not proper

(5) The broadening derived by Reinsberg [11] and quoted in
references [6, 9] is too large by a factor of approximately 2.

Rydberg states, and we shall not discuss them here.
For intermediate values of n*, the width decreases
strongly (factor - 3) between n* - 6 and n* N 15,
and then rapidly reaches its asymptotic value
for larger n (see e.g. Fig. 2). We now propose an
approximate interpretation of this behavior. 
The experiments of Mazing et al. [5b] on Cs perturb-

ed by Ar were performed at T - 570 K, at relatively
low pressure (p N 0.2 atm) so that one can consider
that the conditions of application of the impact
approximation were satisfied. However, for the values
of n under consideration, one cannot consider inde-
pendently the effects of the polarization potential
and of the Fermi potential. Furthermore, the broa-
dening is certainly not due to inelastic collisions,
since the quenching rates of p levels, measured in
similar conditions [26], are smaller than the broaden-
ing rates by nearly two orders of magnitude. The
fine structure interval dE between ZP1/2 and 2 P3/2
levels equals approximately 3 x 10-2/n*3. Accor-

dingly, the adiabaticity criterion (3.10) is approxima-
tely satisfied for n*  10 (v = 2.9 x 10-4), and we
will neglect, in a first approximation, the transitions
between the two levels of the doublet. The broadening
is therefore essentially produced by elastic colli-

sions, which are necessarily rather strong, since the
broadening and the shift have the same order of

magnitude.
In addition, we will assume that the interaction can

be approximated by the isotropic part of the potential,
avoiding a detailed calculation of transitions between
Zeeman substates. This approximation together with
the neglect of hyperfine transitions certainly modifies
the broadening rates, but we believe only slightly.
Accordingly, we take as a first-order potential

This potential will be used alone in order to obtain
a first estimate of the broadening.

In the semi-classical approximation :
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The perturbation expansion of the S-matrix is then

where

It can be shown that an approximate expression
for W is (see eq. (3. 40»

The two terms of the r.h.s. are equal for

which varies from 23 to 41 for 6.4  n*  10.4, in
the case of Cs*-Ar. For b  bo the Fermi potential
can be neglected ; the polarization potential is negli-
gibleforb » bo. The cross-section for optical broaden-
ing is defined as usual from the half-width at half-
height y/2, by the relation

In the Anderson approximation [47]

where the Weisskopf radius hw is defined by

An estimate of the cross-section Q is given by

where Qp would be the cross-section if the polarization
potential were present alone :

and Op is the cross-section corresponding to the
action of the Fermi potential VF alone in the range
bi  b  2 n2. If one defines the Weisskopf radius
corresponding to VF alone :

it is straightforward to see that

The corresponding broadening rates K are plotted
in figure 2, in the case of Cs lines broadened by Ar
at 570K (L=-1.7, a=11, v=2.9x10-4, bl=34).

FIG. 2. - Broadening rates K7 of the caesium absorption lines
in Ar. Experimental results [5b] : 0 6 2S1/2-n 2pl/2 components ;
o 6 2S1/2-n 2P3/2 components. Theoretical estimâtes : CD eqs
(4.17) and (4.11); (D same as (l) plus broadening by Cs [5c];
(j) same as (D plus Ky (eq. (4.4)) for n &#x3E; 30. (1 amagat =
2.69 x 1019 cm-3 (1 atmosphère at 0 OC), 1 cm-1/amagat =

7.01 x 10-9 cm3 s-1 = 1.14 atomic unit.)

All existing experimental results seem questionable :
the old results of Fuchtbauer et al. [3] must probably
be corrected as pointed out by Unsôld quoted by
Alekseev and Sobelman (ref. [13] footnote (5)). The
more recent results of Mazing et al. [Sb] seem to have
to be corrected for the broadening by Cs [5c], which
for n &#x3E; 20 can amount to 30 % of the observed

broadening; furthermore, it is not completely clear
how the theoretical results presented in figure 2 of
reference [Sb] were derived ; the value calculated in
table 3 for n - 30, in agreement with the numerical
value of yp in reference [13] p. 886, is about 20 %
smaller than the value of reference [5b]. These expe-
rimental results are also plotted in figure 2. It is seen
that the agreement with our theoretical estimates is
quite reasonable if one takes into account the correc-
tion for broadening by Cs (curve 2) and a possible
effect of K§§ (eq. (4.4)) for large n (curve 3).

Accordingly, for small values of n*, the broadening
is mainly due to elastic scattering by the Fermi poten-
tial, and is dominated by the polarization potential
for larger values of n*. It should be noted that, as
demonstrated by the results of Gounand et al. [26],
the inelastic collisions can account for at most 2 %
of the observed broadening for n  20.
The difference observed by Mazing et al. [5a-b]

between the shifts of the two components of the dou-
blet of Cs perturbed by Ar for n*  10.4, seems harder
to understand. Its sign is contrary to that expected
from the second-order potential, which repels the
levels of the doublet. Accordingly, a detailed study
taking into account the exact potential and computing
the exact collision matrix appears necessary.

4.3 BROADENING AND SHIFT BY ALKALIS. - The
measurements performed mainly concem self-

broadening and shift : K*-K [5c, 6a], Rb*-Rb [6],
Cs*-Cs [5] ; and also K*-Cs [6a]. Earlier measurements
by Kusch et al. [6a-b] must not be considered since,
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for Rb*-Rb, they differ from later results presented
by the same group [6c] by as much as a factor 5. The
other results are summarized in table IV. In all cases,
the broadening and the shift appear nearly constant for
30  n  50. In the cases of K*-K and Rb*-Rb,
the width decreases monotonically for 20  n  30,
whereas the width and the shift of Cs*-Cs present
well-behaved oscillations in the same range; the

shift of K*-K exhibits a maximum at n - 20.

TABLE IV

Measured self-broadening and shift in atomic units

(6.126 x 10-’ cm3 . s-1 - 0.874 cm-l/amagat).
Broadening cross-sections (eq. (4. 11)) in atomic units
(0.280 A2).

It is seen from table IV that the results of Mazing
and Serapinas [5] on K* and Cs appear hardly consis-
tent with those of Wendt and Kusch [6c] on Rb,
especially for large n. Accordingly, new experimental
results are clearly needed. The theoretical situation is
no clearer. As seen in tables III and IV, the polariza-
tion broadening is approximately four times smaller
than the smallest experimental result [6c] (6). Accor-
dingly, the main part of the broadening probably
comes from the generalized Fermi potential, as pointed
out by Presnyakov [19]. However, it seems hardly
possible to attach a precise value to the expression for
the broadening given by Presnyakov (ref. [19] eq. (33)).
This result seems to have been deduced from the

following model : the absorbing level p is taken as the
superposition

where 1 qJn &#x3E; is the state defined by eq. (2.31) shifted
by the amount A n (1)(R) (eq. (2 . 42)), and ! 1 ONS &#x3E; is a
non-shifted level. The elements of the S-matrix are

respectively

(6) The agreement claimed by Wendt and Kusch [6c] between
their results and the polarization broadening cannot be considered
as relevant : the Reinsberg value drawn on figures 6 and 7 of refe-
rence [6c] does not correspond to the Reinsberg formula (eq. (8)
of reference [6c] and numerical estimate p. 268 of reference [6b]),
which itself overestimates the polarization broadening (see, foot-
note (5)).

which yields eq. (33) of reference [19]. Accordingly,
Presnyakov does not take into account the very large
quantum defect of the p levels, and the presence of
the n - 2 other levels ; nor does he allow for non-
adiabatic effects.

Nevertheless the real situation can have a similarity
with the Presnyakov model in the vicinity of the cross-
ing of ! 1 qJn ) with the unshifted p level, which is then
strongly mixed with ! 1 qJn ).
However, it is not impossible that the non-crossing

region could account for the main part of the observed
broadening. The corresponding cross-section is given
approximately by

where L1nlu is given by eq. (B. 12), so that

This yields a 3 x 10’ for n = 32 and
Q = 1.2 x 105 for n = 16, which is smaller than but
not incompatible with the experimental results of
Wendt and Kusch for Rb [6c], when allowing for the
roughness of this theoretical estimate. The measured
shifts also appear compatible with the mean value
of I1nla/3 (eq. (B. 12», as discussed by Norcross [41].

Accordingly, it appears desirable to perform ait

careful calculation of the broadening and of the shift
from the potential derived from the best estimates of
the different scattering phase shifts. In this respect,
for n xl 30, it is probably well justified to restrict the
calculation of the collision matrix to the three p
sublevels, and to ignore the other channels. This
calculation should thus be much simpler than the
evaluation of transition probabilities and can hope-
fully provide a practical test of the theory of low
energy electron scattering by alkalis.

5. Conclusion. - In the present work we have
followed the usual procedure of the theory of thermal
collisions and of line broadening ; i.e. derivation of
the adiabatic energy curves, and then of the collision .,

S-matrix. It is obviously not the only one possible.
In particular, the semi-classical methods developed
by Percival et al. [1] for charged particles, and by
Flannery [20] for neutral particles have proved very
powerful. However, we think that the methods we
have discussed are very well suited to the problems
involving not too high n values, such as n2 v  1
(eq. (3.10)) i.e. n - 30.

In this domain, the expressions of section 2 (eqs.
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(2.45-2.48)) should give reasonable estimates of adia-
batic potential curves in terms of electronic scattering
phase shifts, when the latter are accurately determined.
However, it still remains to specify the exact limit of
validity of such potentials for small n, and also for
short ranges for any value of n. In these regions, it
will probably be necessary to develop the method
already used for lower levels, despite the difficulty
due to the very large number of states involved. It is
obvious that, in any case, the derivation of the poten-
tial is much more difficult for perturbation by alkalis
than by noble gases.

As regards the calculation of transition probabilities
by using these potentials, we believe that the distinc-
tion between quasi-elastic (LBn* 1’-’ 0) and inelastic

(An* k 1 for n  30) collisions is essential as attested
by the order of magnitude of experimental results,
and as predicted by the adiabatic criterion (3.10).
The main difficulty is obviously the very large number
of open channes which makes approximate methods
absolutely necessary. For quasi-elastic collisions, the
accuracy of the simple formula (3.39) is probably not
much worse than other existing calculations [28, 29].
For weak collisions it should be carefully checked
by comparison with nûmerical computations and
improved as discussed in section 3.2b. The problem
of strong collisions is certainly not so simple. Some
efforts should be made to extend the usual approxi-
mate methods of collision theory in such a way as
to solve it at a reasonable cost. Similar methods should
also be applied to the calculations of inelastic colli-
sions ; however, a quantum treatment is then probably
unavoidable, and a good knowledge of the short-
range potential is essential. Finally, inelastic transi-
tions induced by alkalis require a special treatment
because of the very long range of the interaction.
It is possible that a semi-classical computation with
a Landau-Zener approximation provides a reaso-

nable accuracy.

The shift by noble gases of optical lines involving
large n is very well described by the Fermi theory
and its extensions. Their broadening is also well
understood. For intermediate n, and also for large n
in the case of perturbation by alkalis, a more elaborate
theory is required. It is certainly easier than the com-
putation of transition probabilities by collisions,
because the levels studied are generally isolated. In
most of the cases, inelastic collisions can therefore
be neglected in the calculation of broadening, which is
essentially determined by the quasi-elastic part of the
S-matrix involving a very small number of states.
Accordingly, when the potential is known, usual
semi-classical methods can be directly used to compute
the broadening and the shift, as well as the depolari-
zation and the fine structure transfers. The rough
estimates of section 4 show that most of the observed
features can thus be explained, but not all of them,
especially oscillations in the broadening of Cs by Cs.

Detailed numerical computations are obviously neces-
sary.

It appears quite desirable to perform new experi-
ments involving higher n values, other elements,
other 1 values and other perturbers, in order to 
complete the experimental knowledge of transition
probabilities and of broadening, and to extend them
to the measure of depolarization and of fine structure
transfers. It also seems necessary to confirm certain
results already available, concerning in particular
the broadening by alkalis. Finally, it should also
be necessary to improve the theory of electron scatter-
ing by heavy alkalis, if one wants to derive a useful
check of this theory from the study of Rydberg
states.

Appendix A : Expansion of the résolvent in terms
of the reaction matrix (eq. (2.8)). - We will show
only that the r.h.s. of eq. (2.8) is formally equal to G
when all quantities appearing are numbers; and we
will suppose that eq. (2.8) also holds when operators
are involved. When GA, G1r and R are numbers,
the r.h.s. of eq. (2.8) may be written

In the case of numbers, eq. (2. 6) yields

so that

and since

Appendix B : Diagonalization of the adiabatic

potential. - 1. PURE HYDROGENIC LEVELS. - We

assume that only s-wave scattering of e- by B is

important. Then, the only matrix elements of V to be
considered relate two statues lep n &#x3E; and lep n &#x3E; defined
by eq. (2. 31), where n and n’ are nearly equal. Accor-
dingly, by an obvious generalization of eq. (2.42),

Therefore, the secular determinant yielding the

energies
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of the adiabatic levels may be written

where A stands for A n (’)(R) and a = lln’.
Subtracting the middle column (p = 0) from each

of the others yields

or

The r.h.s. of eq. (B. 5) just equals n cotg (nslot)
(see ref. [49] eq. (4.3.91)). One immediately deduces
(see eq. (B .1))

2. INFLUENCE OF A NON-DEGENERATE LEVEL. - We
consider the model where just one non-degenerate
level nl is added to the hydrogenic levels. One has to
add to the determinant (B . 3) one line and one column,
all terms of which equal dE, where

except the diagonal term equal to e - ab - s, where ô
is the quantum defect of the nl level.

After subtraction of the middle column multiplied
by E/d from this additional column, eq. (B . 4)
becomes

or

which yields eq. (2. 48) on writing

Eq. (2.48) may be written

so that

when q§ is very different from 1tb, which yields
And

in the vicinity of the level crossing l’ 0 = nô.
Accordingly, there is an avoided crossing with

a level distance of the order of n-4 sin il’. The region
of the crossing can be defined by a variation of il’ 0
equal to

where à and yyo are assumed large.
It is difficult to estimate the corresponding AjR,

since it depends on dil’/dR. However, it seems that,
in the case of large values of il’, dR is more often
;$ n than of the order of n2.

Appendix C : Dérivation of eq. (3.29). - At
point R, the impulsion of the electron is (eq. (2.39))

where l = 1 + 1/2. Its polar angles satisfy (see
eq. (3.18))

it is thus straightforward to show that

By using the Stirling formula in eq. (2. 36), it is

easy to show that for large 1, m and 1 - m :

for 1 - m = 2 p. However, the mean value Ylm of
YÎ (n/2, 0) is two times smaller since -y;n( n/2, 0) = 0
if 1 - m = 2p + 1.
Combining eqs. (C.4) and (C.5) immediately

yields eq. (3.29).
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