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THE PARABOLIC FOCAL CONIC : A NEW SMECTIC A DEFECT

Ch. S. ROSENBLATT, R. PINDAK, 
N. A. CLARK and R. B. MEYER

Gordon McKay Laboratory, Division of Applied Sciences, Harvard University
Cambridge, Massachusetts 02138, U.S.A.

(Reçu le 14 mars 1977, accepté le 31 mai 1977)

Résumé. 2014 Le cas spécial d’un domaine focal dans lequel les lignes forment une paire de paraboles
focales (un domaine focal parabolique) est observé dans la phase smectique A du composé cyano-
benzylidène octyloxyaniline. La géométrie de ces défauts est étudiée et utilisée pour determiner les
interactions qu’ils ont soit avec les surfaces frontières, soit entre eux. On montre que la texture
polygonale obtenue par dilatation d’une structure plane d’un smectique A ou cholestérique est un
réseau de domaines focaux paraboliques. La génération et la structure de ces réseaux sont discutées.

Abstract. 2014 The special case of a focal conic defect in which the line discontinuities form a pair of
confocal parabolae (a parabolic focal conic) has been observed in smectic A cyanobenzylidene
octyloxyaniline. The geometry of these defects has been studied and used to determine their interac-
tions with bounding surfaces and with each other. The polygonal texture obtained by dilation of
smectic A and cholesteric plane textures is shown to be an array of parabolic focal conic defects. The
generation and structure of such arrays will be discussed.
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1. Introduction. - The smectic A phase may be 
described as a stack of two-dimensional liquid layers,
which are easily curved and flow over one another, but
whose thickness is nearly constant. The rod-like
molecules comprising this phase ,have their long axis
oriented normal to the layers. This makes the system
optically uniaxial, with a large anisotropy in the index
of refraction.
The textures formed by this phase depend critically

on the kinds of defects it can contain. If one assumes
that the layers are well defined with precisely constant
thickness, and that they are curved smoothly except
at a system of line defects along which cusps in the
curvature can occur, then, by classical geometrical
arguments, one can show that the line defects must
occur as pairs of confocal ellipses and hyperbolae.
The associated smectic layers form a family of surfaces
known as Dupin cyclides, the singularities of which
are the cusps whose loci form the confocal line
defects [1, 2]. Their characteristic geometrical form
was an early clue to the underlying layer structure of
this phase. Although the geometry of an isolated
confocal pair of defects is known, fundamental

problems concerning focal conics and defects in
smectic A samples remain unsolved. These include
understanding the structure of complex arrays of
defects which are observed in smectic A samples and

mechanisms of generation of focal conics. In this paper
we address these questions.

Theoretical studies [3] of the problem of filling
three-dimensional space or a bounded slab of smectic
material with an array of focal conic defects have

produced predictions which do not agree well with
observations, and simply do not predict the full range
of observed behaviour. For example, in experiments
which start with planar texture smectic A or cholesteric
samples and proceed by deforming them under a
dilative stress normal to the layers, one observes a
sequence of elastic and plastic strain patterns which
finally appear as a polygonal array of focal conic
defect lines. Intuitively it appears that within a given
volume of the sample the observed defect structure
can relax the small internal strain to a nearly dilation
free structure (with a minimum energy). Following the
lead of F. Grandjean and G. Friedel, Bouligand has
made elegant geometrical analyses of observed poly-
gonal focal conic textures in long pitch cholesterics [4]
which have done much to clarify some of these struc-
tures. The specific details of Bouligand’s models,
however, require a large layer tilt relative to the
initial planar geometry. That is allowed by the very
weak anchoring of the cholesteric helix at the glass
plates, whereas in our sample the anchoring of the
smectic layers seems to be strong. Moreover, we find
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that the polygonal texture appears at very small

sample dilation, suggesting that it involves only small
rearrangements of the molecules from their initial

structure, rather than large reorientations. We will
propose in this paper a different defect structure which

produces a polygonal array, and which is compatible
with small dilation of the sample and small deviation
from a planar texture.
We begin by describing observations of a particular

defect structure which appears to be a limiting case of
the focal conic form in which each of the two lines is a

parabola passing through the other’s focus. We refer
to these defects as parabolic focal conics (PFC’s). These
structures fit into the general scheme described in the
preceding paragraph and appear to be a principal
dilative strain relaxation mechanism in planar samples.
In the next section we describe our observations. We
then discuss the ideal confocal PFC structure. Finally,
we consider how these defects interact with one
another and with the sample surfaces, how they fill
space, and how they relieve dilative strains of initially
perfect planar textures.

2. Observations. - 2. 1 SAMPLE PREPARATION. -

Observations were made on single domain smec-
tic A samples of cyanobenzylidene octyloxyaniline’
(CBOOA) in both the parallel and perpendicular
geometries by means of polarized optical transmission
microscopy. (By parallel we mean that the long
molecular axis is parallel to some unique direction in
the plane of the glass slides containing the sample. By
perpendicular we mean it is perpendicular to the slides.)
The slide surfaces were treated for parallel orientation
by oblique evaporation of a 100 A thick striated SiO
layer. For perpendicular alignment, the surfactant

hexadecyltrimethylammonium bromide (HTAB) was
used. The CBOOA was obtained from Eastman Kodak
and was not further purified. In the smectic A phase
excellent alignment was obtained upon cooling from
the nematic phase, as long as the sample was not
permitted to crystallize between the slides. Crystalli-
zation always degraded the orienting ability of the SiO
and HTAB, leading to incomplete extinction between
crossed polarizers.

2.2 PARALLEL GEOMETRY. - Two types of focal
conic defects were observed in parallel samples. The
familiar cylindrically symmetric form [1] with line
defects consisting of a circle parallel to the undisturbed
layers and a straight line passing through the center of
the circle was occasionally found. However, the far
more numerous and more easily generated defect
structure appeared as lines in the form of various sized
wish-bones, oriented with their tails normal to the
undisturbed layers (Fig. 1) and appearing under the
application of a dilative strain. In an effort to charac-
terize these defects quantitatively, measurements of the
wishbone opening y vs. z (see Fig. 1) were made on a
number of defects. Typical results are plotted in

figure 2 for the range of defect sizes over which

FIG. 1. - Transmission micrograph of parabolic focal conic defects
obtained in parallel-oriented samples of smectic A CBOOA at

T = 78 °C (Thickness = 125 u).

FIG. 2. - A log-log plot of wishbone spacing y vs. z for three sizes
of defect. The horizontal axis of each data set is translated (i.e.,
y values scaled) to make the data asymptotic with y = Z2 for
small z. Key: : (2022) z=0.086 7 y2; (A) z = 0. 130 y2 ; (x) z=0.187 y2

solid line represents z = y2.

measurements could be made reliably. This range was
limited on the lower end by optical resolution of the
lines in small defects and on the higher end by the size
of the largest defects found, which had focal lengths
fmax ~ 4 p for a sample thickness t of t = 125 u.
We found that fmax decreases with decreasing sample
thickness down to t = 2 u.

For z  30 g, the curves appear to be parabolic.
At large y values deviations from this form were
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observed with (z - ay2) positive and increasing with
increasing y in every case. For purposes of plotting
figure 2, the y values of the three data sets were scaled
to make each set asymptotic with z = y2 for z  30 J.1.
The actually asymptotic parabolae z = ay2 are also
indicated in the figure caption. The focal lengths
f = (4 a)-1 of the asymptotic parabolae are 2.9 g (o),
1. 9 g (A) and 1.3 u ( x ). The deviations from parabolic
shape at large z are evident beginning at roughly the
same value of z for the different sized defects.

Further evidence for the nature of these defects came
from adjusting the focus of the microscope. This
showed that the parabolic line was generally in a plane
parallel to the glass slides. The tail of the wishbone,
however, appeared to be in focus a distance s above
the plane of the parabola for a given defect ; s increased
as 1 - z I increased. Occasionally the parabola was
somewhat tilted with respect to the slides, in which
case the tail of the wishbone appeared to split into a
narrow parabola. A similar effect occurred if the

sample itself was tilted about the z axis. This suggested
a possible structure consisting of intersecting para-
bolae oriented antiparallel and rotated 90° about
the z axis with respect to each other (point group D2d).
The case in which the two line defects are identical

parabolae passing through each other’s foci appeared
to be appropriate. We now discuss its geometry in
detail.

3. Parabolic focal conics (PFC’s). - We consider
here an ideal smectic A phase (elastic compression
constant B = oo) in which layers are everywhere of
thickness d. In such a structure, the only line disclina-
tions are ideal focal conics. The smectic layers form a
family of Dupin-cyclides, i.e., the envelope of spheres
whose centers lie in a plane and are simultaneously
tangent to two circles in that plane [5]. In particular,
consider the case of two circles in the y-z plane,
circle a having radius = ra and circle b having radius
rb = oo (a straight line) as indicated in figures 3a, b.

It can be shown that the spheres tangent to these two
circles can also be specified by the combination of the
circle of infinite radius and a parabola, as indicated
in figures 3a, b. The generating spheres are then defined
to have their centers on the parabola and to be tangent
to the circle b. The enveloping surface so generated
will define a layer of smectic liquid crystal.

Obtaining an equation for the surface of a smectic
layer is straightforward. The parabola is defined as

where f is its focal length.
With this choice of the parabola, and taking

circle b to be located at z = c, circle a must be centered
at z = f/2 and have a radius ra = c + 3 f/2. We
then define a function u(x, y, zo) which is the dis-

placement, parallel to z, of the point (x, y) on the
smectic layer originally in the plane zo to its new posi-

FIG. 3. - (a) Generating circles a and b and parabola for a typical
case in which circles a and b do not intersect (c  - f/2). Dotted
curves represent the generating spheres, the envelope of which is a
smectic layer. For certain cases when circles a and b are non-
intersecting, the smectic layer is multiply-connected in a bridge-
tunnel arrangement. (See Fig. 4b, c.) (b) Same as (a) for case where
circles a and b intersect. The distortion u of a smectic layer in the
focal conic is defined such that u = (±) fin the limit of large
x

(y) . Note formation of a conical cusp at the parabola.

tion [u(x, y, zo) + zo] in the same smectic layer
(Fig. 3b). To obtain u(x, y, zo) we write the equation
for the generating sphere centered about some point
(y’, z’) on the parabola :

This radius is then set equal to the perpendicular dis-
tance from (y’, z’) to the line at z = c and the resulting
equation is solved for z. We then set dzldy’ = 0 and,
together with the equation for z, eliminate the para-
meter y’. The resulting equation F(x, y, z) = 0 yields
the roots z(x, y). Upon making the required transfor-
mations c = zo - f and u = - f + z - c = z - zo,
we find the following equation for u(x, y, zo) :

(2)
It is possible to generate a family of surfaces by

varying the initial layer location zo. There are three
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distinct regions of zo to consider. For zo &#x3E; f/2 the
surface is singly connected (Fig. 4a). Slicing the surface
with the x = 0 plane (Fig. 3b), one finds an arc of a
circle (circle a) joining two semi-infinite line segments
(circle b). The intersections form cusps, whose locus
(with zo as parameter) represents the upward parabola.
The cusps in a given smectic layer are conical, having
cylindrical ,symmetry about a line tangent to the para-
bola where it intersects the layer. As zo -+ oo, the
cusps tend to become less sharp, the cone angle 0

varying approximately as 0 - 7r f (Fig. 3b).rY g pp Y 2 zo 0 
g )

In the region zo  - f/2 we obtain a similar situa-
tion, where the system for zo &#x3E; f/2 has effectively
been rotated by x/2 about the symmetry (z) axis and
by x about the x or y axis (Fig. d, e, f). It should be
pointed out that for y values between the cusps, F has
three real roots in the region zo &#x3E; f/2. Two of these
roots represent continuations of the circular arc and
line segment (Fig. 4 f ) and are discarded.
The region for - f/2  zo  f/2 is of some

interest, since here the smectic layers are predicted to
be multiply connected. To visualize what happens in
this region, let us first consider the evolution of the
layers as zo approaches f/2 from above, i.e., zo &#x3E; f/2.
As zo approaches f/2, the conical cusps on the parabola
become sharper and closer together, until they finally
meet at the point (0, 0, - f/2) when zo = f/2 (Fig. 4a).
As zo continues toward zero (Fig. 4b), a hole is poked
through the sheet where the two cusps met, closing off
the crest and thereby creating a bridge-tunnel combina-
tion. When zo passes through zero and becomes

negative, the tunnel continues to grow and the bridge
to shrink (Fig. 4c). Finally, at zo = - f/2, the bridge
separates into the other pair of conical cusps (Fig. 4d).

In the parabolic focal conic then, the smectic layers
curve smoothly except for the lines of point disconti-
nuity forming conical cusps on the two parabolae.
Because the smectic A phase is locally uniaxial with the
optic axis normal to the layers, the cusps represent the
regions of largest refractive index inhomogeneity. They
are thus the observable feature of the defects. The

complex structure at the core of the defect (I zo I  f )
should also have some characteristic appearances
under the microscope. This, however, was not observed
because of the small dimension of the core region
( ~ 2 f ) and because a dust particle was frequently
located in the core.
We have now completed the presentation of the

structure of ideal parabolic focal conic defects. Our
microscopic observations detailed in section 2 lead us
to the conclusion that the observed wishbone defect
is a structure closely related to parabolic focal conics.

4. Discussion. - 4.1 ISOLATED PFC’s. - For the

general case of an isolated complete focal conic defect
structure consisting of a confocal ellipse and hyperbola
and the associated family of Dupin cyclides, for dis-
tances from the focal region large compared to the
dimensions of the ellipse, the Dupin cyclides approach
the form of spherical surfaces, with weak cusps where
the hyperbola cuts the surface. In contrast, for an
isolated PFC, the structure far from the focal region
approaches flat smectic layers, in the sense that the

FIG. 4. - Computer plots of smectic layer surfaces for various values of z when f = 3 g. The undistorted layer is an (x, y) plane located
at zo half way between the surfaces of x -+ oo and y -+ oo ; lines drawn on surfaces are contours of constant u. For figure 4d, zo = - f /2,
the cusps actually touch, although in the figure they do not appear to. This is a result of the digitizing process in the plotting routine.

Fig. 4f shows an extraneous blob due to non-physical components of F(u).
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gradient of the layers approaches zero everywhere,
with weak cusps defining the parabolae. Therefore it is
easy for PFC’s to exist as isolated defects in an other-
wise planar smectic single crystal. The one other focal
conic structure that is compatible with a planar sample
is a hybrid structure described by another limiting
case, in which the line defects are a circle and straight
line normal to the center of the circle. In this case, if the

Dupin cyclides are terminated at the surface of the
right circular cylinder defined by the circular disclina-
tion, a smooth junction to flat layers outside this

cylinder is possible [14]. The fact that PFC’s are much
more commonly observed in our samples than the
circle line pairs might be explained by two facts. First,
the generation of defects by stress relaxation, as

discussed below, seems especially compatible with
the PFC structure, while it is not obvious how it would
be accomplished by circle-line defects. Second, a
circle-line pair of visible size involves the inter-

connection, through the center of the circle of radius r,
of a large number (r/d) of smectic layers ; in this sense
it is a gross defect, difficult to generate from an initially
planar sample. By contrast, the multiple connection of
smectic layers in a PFC is confined to the small focal
region, only of the order of a few microns in size for the
largest PFC’s we have seen.

4.2 INTERACTIONS OF PFC’S WITH BOUNDING SUR-
FACES. - There is evidence from our observations
that PFC’s interact both with the boundary surfaces
and with each other : (a) PFC’s, even isolated ones,
are nearly always found with one parabola oriented
parallel to and the other normal to the confining
plates (see Fig. 1); (b) larger PFC’s tend to be found
centered between the glass plates in the parallel
samples; (c) PFC’s which have coplanar parabolae
and are next to each other are always oriented with the
coplanar parabolae extending in the same direction, as
depicted in figure 5a. In an attempt to understand
these effects, we have calculated the far field distortion
of an ideal PFC, i.e.

In this limit we find, using eq. (1) :

so that u is independent of zo for large r. Using polar
coordinates ( y = r sin 0, x = r cos 0), u(x, y, zo)
becomes :

The distortion in the ideal case does not die out for

large r but approaches + f along the x axis and - f
along the y axis as r -+ oo, independent of zo.
We have used this result to estimate in a very crude

way the energy of interaction of an ideal PFC with a

bounding plate enforcing parallel orientation. The
geometry is shown in figure 6a. We assume an aniso-

FIG. 5. - (a) Commonly observed arrangement of coplanar PFC’s.
(b) Not observed.

tropic surface energy at the plate, tending to orient
molecules parallel to z, to be the dominant energy
term. The surface energy E, per unit area, will be given
by :

FIG. 6. - (a) Geometry for calculation of the interaction of a PFC
with an orienting wall. The heavy lines indicate the planes of the
parabolae. (b) Ideal defect oriented optimally with respect to wall
according to observations. Shaded areas indicate positive u (layer
is moved toward reader). Lines indicate as follows : ( o o -):
u = 0 ; ( ) : OulDO = 0, u = - f (upward parabola);
(- - -) : ayae = 0, u = + f (downward parabola). This geo-

metry minimizes (OulOO)’ at the wall close to the defect.
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Assuming the far field layer distortion u(x, y) is that
of the ideal PFC, the energy of interaction s of the PFC
with the wall, per unit length, in the z direction is given
by :

Eq. (6) shows that the PFC will experience a net
force F, per unit length,

away from the wall, independent of its orientation
angle T. Therefore, on the basis of this model, no
argument can be made concerning the orientation of
the defects. It should be noted, however, that the
observed orientation (T = 0) tends to reduce ouloy in
the vicinity of y = 0, i.e., close to the PFC. This
orientation is diagrammed in figure 6b, where the
upward (downward) parabola opens toward (away
from) reader.
From eq. (6) it is clear that a PFC between two

plates will have minimum energy when located in the
midplane. This model then correctly predicts that
PFC’s should be found near the center of the cell as we
have observed under the microscope. Extending these
considerations to more general cases presents some
rather formidable difficulties. Any realistic calculation
would have to include the effects of finite smectic

layer compressibility as well as a layer distortion
caused by the boundary conditions. This would be very
difficult. It is clear from the PFC geometry, however,
that the average molecular tilt angle away from
the z axis increases as the center of the defect is

approached. Hence, it seems likely that even in the
most general case a PFC should be repelled by a
boundary characterized by eq. (4).

4. 3 MUTUAL INTERACTIONS. - The preferred arran-
gement of defects in an array should be that which
minimizes elastic energy, which in turn is that which
allows the easiest match-up of adjacent far field dis-
tortions. By this criterion we propose the fundamental
arrangement indicated in figure 7a. It is in general
agreement with our observation in parallel samples
that coplanar PFC’s are oriented in the same direction,
since a row of PFC’s in figure 7a would appear as in
figures 7b and 5a. This fact, however, cannot be taken
as evidence for the arrangement of figure 7a because
of the influence of the bounding glass plates. In
the perpendicular orientation, on the other hand,
boundary effects in planes parallel to z are not of
importance, and a test of the proposed arrangement
of figure 7b is possible.
To this end we produced and studied focal conic

FIG. 7. - (a) Fundamental arrangement of PFC’s in thick sample.
(b) In thin parallel sample (typically observed in 125 u sample).

arrays in single domain perpendicular CBOOA
samples of thickness t = 500 u. The focal conic arrays
were generated by applying a dilative strain normal to
the layers. The details of the generation process will be
discussed in the next section. For a sufficiently large
strain, the perpendicular sample, normally dark
between crossed polarizers, began to transmit light,
indicating a tilting of layers from the planar geometry.
The transmitted intensity is characterized by a poly-
gonal array of line defects [6]. This strain-induced
polygonal array, which is also observable in cholesteric
planar textures [4, 7], is a form of focal conic texture,
but the exact structure has, until now, not been
determined. We have observed the spatial arrange-
ment of line defects in the polygonal array by tilting
the sample and varying the microscopic plane of focus.
On the basis of this study and of our understanding
of PFC geometry, we propose for the ideal polygonal
texture the line defect structure indicated in figure 9 -
a square array of parabolic focal conics in which
the PFC’s join smoothly to each other to fill space. This
arrangement is precisely that of figure 7a, which was
arrived at on the basis of the easiest matching of PFC
far field distortions, with the added feature that the
parabolae of adjacent defects meet at the sample
surfaces. This feature leads to the following relation
for ideal PFC’s of focal length f, sample thickness t,
and parabola width at the surface 2 R :

Evidence for this arrangement is given in figures 8a, b
which show transmission micrography between cross-
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FIG. 8. - Photographs of perpendicular samples : (a) 500 g thick
sample of CBOOA in smectic phase. A large dilatation (3d &#x3E; 3 1tÀ)
has created an array of PFC’s. Here microscope is focussed at the
top surface; the arrow indicates a typical convergence point of
four parabolae. (b) Same as (a) except that focal plane is midway
between slides; arrows indicate grid of the four PFC cores (crosses).
(c) 125 p thick sample of p-ethyloxybenzylidene-p-B-methylbu-

tylaniline (EBMBA) in cholesteric phase; pitch = 2 000 A.

ed polarizers of the defect structure with the micro-
scope focussed at two heights in the sample. As the
focus is moved down from the top of the sample, there
appears at the top surface a regular array of black
spots (Fig. 8a) produced by the intersections of the
upward parabolae with the top surface (see Fig. 9). As
the focus continues downward the cores of the defects

FiG. 9. - Three-dimensional structure of the four-fold grid pattern
in figure 8.

come into focus ; they appear as an array of crosses,
with each crossbar on a line connecting two of the
surface black dots (Fig. 8b). One bar comes into focus
first with two sharp points moving into the center along
it and then out on the other bar as the focal plane is
lowered; this is as would be expected for the crossed
parabola structure. With the sample parallel to the
microscope stage, no further structure can be discerned
as the focus is lowered. However, upon tilting the
sample, the complementary array of dots on the
bottom surface (see Fig. 9) can be brought into focus.
This effect is probably a result of the optical distortion
to be expected in such a thick, nonuniform, uniaxial
system. Tilting also provides direct evidence for
the PFC’s in that upon tilting the crosses turn into
wishbone-like structures. Finally, figure 8c depicts
EBMBA in the cholesteric phase. Again the texture is
essentially identical to the smectic A phase in figure 8b.
A PFC array will have the ideal square polygonal

texture when all parabolae have the same width at the
surface. This requires that the PFC’s all have the same
focal length and all have their cores in the sample
midplane. Breakdown of these conditions leads to the
disordered polygonal texture that is frequently observ-
ed. An example is diagrammed in figure 10, obtained
from a photograph of a CBOOA smectic polygonal
texture. The elements of this array, the PFC’s, are
shown in figure 10a (see caption for key). Note that
a PFC not in the sample midplane will have different
parabolae widths at the top and bottom surfaces,
hence dashed and solid line segments of differing
lengths. This array is quite typical, showing a small
ideal region having solid and dashed segments of equal
lengths between dots and forming a four-fold coordi-
nation at the dots. This ideal region is bounded by a
less ordered array composed of PFC’s with solid and
dashed lines of unequal lengths, having from three-
fold to six-fold coordination of the dots. The arrow
indicates one such defect for which the upward para-
bola is wider at the top surface than the downward

parabola is at the bottom surface. Hence the core of
this PFC is in the bottom half of the sample. PFC’s
which are centered but are of larger focal length are
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FIG. 10. - (a) Diagrammatic non-ideal PFC array element. Key :
Heavy cross : PFC core; solid lines (-) : : upward opening
parabola (toward reader) ; dashed lines (- - -) : downward opening
parabola; closed dots (2022) : parabolae intersection at top surface;
open dots (0) : parabolae intersection at bottom surface; shaded
areas indicate layer displacement toward reader. Ideally the cross
should be at the center of the dashed and solid line segments.

(b) Typical non-ideal array of PFC’s in smectic A CBOOA.

also evident. In general crosses are centered on their
line segments, although some stretching is necessary,
indicating that distortion of PFC’s is energetically
preferable to not having adjacent parabolae meet.
Another observation in a perpendicular sample

supporting our picture of the polygonal structure and
the rules governing interactions of PFC’s is the occa-
sional formation of an isolated row of defects; this
appears to be precisely the structure depicted in

figure 5a, with one set of parallel parabolae meeting
at a line of points along one of the sample surfaces.
Such rows often exist as the last remnants of an array,
and the spacing of the defects is approximately that
observed in the array. On the other hand, we do not see
stable isolated PFC’s in perpendicular samples. The
rare isolated defects appear to be circle-line structures,
with the circle attached to one glass plate. They are
probably associated with local imperfections in the
surface treatment, allowing molecules to lie parallel to
the surface in a small region.
To summarize, we believe that the polygonal texture

which appears in a single domain smectic A upon
dilation is a PFC array. We now turn to the question
of why such a distortion should appear at all.

4.4 DILATIVE STRAIN RELAXATION BY PFC’S. - The

key feature of the generation of focal conic domains in
single domain smectic A samples is that they are
produced by dilative strain. The mechanism of gene-
ration is indicated in figure 11. Consider a smectic

sample of N layers and thickness t between glass
plates (Fig. lla). If a dilative stress is applied so that
t -+ t + bt (bt  t) and bt is sufficiently small, then a
fractional expansion of each layer, bdld equal to 6t/t
occurs (Fig. 11 b). However, if the layers are fluid, they

FIG. 1 l. - Evolution of layer distortion under applied dilation :
(a) Initial equilibrium sample. (b) For 6d  A, layers simply dilate.
They can, however, lower their dilative elastic energy by tilting as
shown in (c). Uniform tilt, however, is not compatible with perpen-
dicular boundary conditions; hence, an undulating texture is
assumed with a partial relaxation of dilative strain and the creation
of splay distortion as shown in (d). For large strain (e) perpendicular
boundary conditions break down slightly and splay distortion
condenses to line disclinations in a PFC array; this depicts a cut

through a row of parabolae.

can flow over one another and tilt to relax the strain

(Fig.11c). A tilt through an angle 0 such that

will completely relax the dilative strain bdld. Thus
layers tilting through only very small angles can readily
relax applied strains.

Because of the boundary conditions, u(x, y) = 0 at
the glass plates, the simple tilt distortion of figure 11 c
is not possible at small 8t/t, and tilt can be achieved
only at the expense of layer curvature; this curvature
is associated with splay elastic energy :

Here K is the Frank splay elastic constant. The layer
distortion to be expected is obtained via a minimization
of the total (dilative + splay) elastic energy :

B is the compressional elastic constant.
Minimization leads to the prediction of a dilation-

induced undulation instability [6,8], wherein for
6t  btv = 2 7rA = 2 7r .,IK-IB, the layer distortion to
be expected is that indicated in figure 11 b - simple
dilation. For bt &#x3E; bt,, however, the distortion is of the
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form depicted in figure l ld - dilation plus a layer
undulation bu(x, y, zo) [9], ,

Hence, for bt &#x3E; bt,,,, the layers tilt to achieve a par-
tial strain relaxation in some regions. The key
features of this model are borne out by experiment for
0  6t % 1.5 ðtc [10, 6].

For bt Z 1.5 bt,, on the other hand, a second

instability occurs which is not predicted by the above
model. This second instability is characterized by the
appearance of the polygonal focal conic texture,
indicated schematically in figure 11 e. From the dis-
cussion of the previous section we have identified this
structure as a PFC array.

Several important changes are associated with the
appearance of the PFC array. The continuously
distributed splay deformation partially condenses
into localized disinclinations. Just how much this

changes the free energy is hard to calculate precisely.
Probably more important, the transition to a PFC
array relaxes dilative strains, the increased total

sample thickness being accommodated by the increa-
sed average layer tilt and by the change in the number
of layers due to the multiple connectivity of layers in
the PFC core region. At the same time it appears that
the perpendicular boundary conditions are slightly
relaxed and that in the vicinity of the points where
parabolas meet there are some smectic layers which
terminate probably at the surfaces. Figure 12 depicts
the PFC array whose average distortion pattern
matches the two dimensional undulation structure.

Figure 13 shows the change in conformation of a pair
of typical smectic layers located symmetrically above
and below the midplane of the sample, near the sur-
faces. Where four parabolas almost meet, the shape of
a smectic layer resembles the groined arch of a vaulted
ceiling.
One of the features of the continuous undulation

pattern is that the smectic layers in contact with the
surfaces before dilation remain in contact with them.
It would be interesting to see if this condition is

preserved through the transition to a PFC array. This
would require bt = 2 f If we assume that the period
of the PFC array matches that of the undulation

pattern, then the characteristic half width of the

parabolas at the surfaces is

From the equation for the parabola,

FIG. 12. - Diagram of layer distortion in the undulating texture (a)
and distortion in the PFC array whose far field distortion matches

the undulations. See figure 10 for key.

FIG. 13. - Distortion of layers in the vicinity of the sample surface
(i.e., 4 - t/2). (a) In the crossed undulation texture. (b) In the
matching PFC texture. Shaded planes indicate location of parabola

in a PFC.
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Then,

If the PFC array appears at 6t - 1.5 tc = 3 x£, then

in contrast to the conjecture that 2 f = bt. The geo-
metry of the PFC array scales with sample thickness
in the same way as the undulation instability, making
the two structures reasonably compatible. The dis-
crepancy between the value of f estimated from the
period of the array and that estimated from the

boundary condition proposed above might be explai-
ned in three ways. First, the parabolae may meet
precisely at the surface, as we have proposed, and
there is still some residual dilative strain just after they
form. Or, a few extra layers may have been generated
to account for the difference between 2 f and bt ; only
a few are required, since 6 t is only of the order of a few
layers thickness anyway. Or, in fact 2 f may equal bt,
and the parabolae could meet before reaching the
sample surfaces.
This last possibility is not unreasonable. As is clear

in figure 1, pairs of neighbouring parabolae tend to
meet and continue together as a single line. The same
could happen to four. This would tend to reduce the
core energy of the disclination array. After the four

parabolae had joined into one disclination, the smectic
layer structure around the line would probably evolve
from four-fold symmetric to cylindrically symmetric,
closely resembling the structure around the straight
line disclination of a circle-line focal conic pair. The
observations necessary to test this speculation would
have to be very precise. One point in support of it is

that as 6t changes, we should find Ro = It-6t; in the
non-periodic arrays, we do see a small increase in the
mean Ro, as 6t is increased.
The foregoing discussion presents a mechanism for

relaxation of dilative strains in the planar smectic A
texture which is both self-consistent and accounts for
the observations, but which is also speculative and not
precisely quantitative. The quantitative features are
based on the assumption that the PFC’s are ideal, i.e.,
that the line defects are parabolic. In figure 2 and the
related text this has been shown not to be true. A better
treatment of strain relaxation by PFC’s would have to
include a calculation of the exact line defect structure.
We believe that the deviation of PFC structure from
the parabolic shape is a result of the finite layer
compressional elasticity (B finite), allowing an ideal
PFC to relax some splay distortion at the expense of
layer dilation.
De Gennes has calculated [11] the effect of finite B

on the structure of a conical cusp, showing a core
region of high splay and dilative energy to have a
radius rc = 2 A/(7r/2 - 0), where cone angle 0 is
indicated in figure 3b. This result is relevant to the

present discussion in several ways. First, it indicates
that the overlap of adjacent parabolae near the sur-
faces in the PFC arrays (see Fig. 9) would eventually
occur as they approached within rc of one another.
The flattening of the line defects from their parabolic
shape at large z should make such overlap very effec-
tive in reducing core energy and may in fact result
from the effective attraction between cores. Second,
De Gennes’ result allows an estimation of the visibility
of the line defects, if the assumption is made that to be
visible a cusp has to have a radius of curvature

r,,  Àv/2, where Avis the optical wavelength employed
in the medium. With this assumption cusps, and hence
the parabolae, will be visible (Fig. 1) as long as :

where z(y) gives the cusp location. Measurement

of z(y) and observation of line visibility (Section 2.2)
showed this estimate to be a reasonable one. An ideal

parabola on the other hand has dy/dz - 3 x 10-2 at
z ~ 4 000 f For f = 1 Jl, the parabola would be
visible for up to z - 4 mm [12]. It also seemed

possible that the deviation from parabolic shape of
the PFC’s in the parallel sample arose from an

imperfect degeneracy, i.e., that the line parallel to the
glass plates is an ellipse of large but finite major axis.
However, calculation shows that any ellipse having
the correct parabolic asymptotic behaviour at small z
ought to be visible out to very large z ( z I ~ 3 mm).
Hence the observed visibility to only I z ~ 300 p
should eliminate this possibility.
The picture presented so far is based on the obser-

vation of metastable defect arrays and the conditions

necessary for their appearance. The detailed dynamics
of their appearance is hard to observe, but the gradual
disappearance of an array is easily studied. It occurs
by the growth of perfect homeotropic regions boun-
ding the array. The boundary is sharply defined, and
moves by the sudden disappearance of individual
PFC’s along the boundary. This behaviour supports
the general view, essential to the entire discussion, that
the interaction between PFC’s is not nearly as strong as
would have been predicted from the strict geometrical
view of focal conic arrays. The fact that an individual
PFC can disappear without greatly disturbing its

neighbours indicates a basic plasticity of the structure,
which may be due to the existence and high mobility
of sub-visible defects such as dislocations.

Finally, in addition to the evidence obtained from
microscopy for the [undulation PFC] transition, a
dramatic‘ change in the light scattering from smectic
layer distortion for 6t &#x26; 1.5 tc is observed. In the

undulating texture one observes a single cone of
scattered light. This corresponds to scattering with a
small change in the z component of wave vector, i.e.,
AKz = {(Kincident)z - (Kscattered)z } ~ nit [13, 6]. For

large 6t, however, the cone splits and several rings
of scattered light are observed, corresponding to
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AK &#x3E;&#x3E; nit. It seems likely that this effects will be
understood in terms of the structure of the PFC
texture and calculations are being carried out to test
this point.

5. Conclusion. - We have presented evidence for,
and a detailed discussion of, the structure of parabolic
focal conics, a hitherto neglected form of focal conic
defect, which we observe commonly in nearly perfect
smectic samples. We have shown, by means of quali-
tative physical and geometrical arguments, that PFC’s
are the primary macroscopic defect structures which
can be generated from a planar smectic A or chole-
steric texture; they are consequently the principal
dilative strain relaxation mechanism for large strains
in such systems.

Several aspects of this problem present fruitful
avenues for further study. First, there is the question
of the effects of finite layer compressibility on the
defect structure, the understanding of which will make
geometric arguments more precise. Second, we do not
at this time have an elastic theory which will predict
the kind of splay condensation that we have observed.
Development of the appropriate non-linear equations

would be most useful. Third, the idea that interaction
between macroscopic focal conic defects is mediated
in part by other sub-visible defects such as dislocations
should be investigated further. Fourth, it would seem
that a light scattering study of the PFC array would
offer one means of obtaining information on its

generation and growth. Finally, a comparative study of
the polygonal arrays described here with those
discussed by Bouligand would be very interesting.
The macroscopic features of the two kinds of array
are remarkably similar, but their internal structures
are completely different. It should be especially
illuminating to compare the conditions necessary for
the generation of the two types of arrays.
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