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Résumé. 2014 L’adsorption de chaînes polymériques sur de petits objets en solution, tels que des
micelles, est étudiée en utilisant les résultats fournis par les lois d’échelles pour écrire l’énergie de
confinement. Les adsorptions sur des petites sphères et des groupes de petites sphères sont discutées
et les lois de puissance des énergies et des dimensions sont dérivées. Pour des objets sans interaction
la ségrégation d’une phase dense, analogue à un gel, est prédite. La relation avec des solutions micel-
laires est considérée brièvement.

Abstract. 2014 The adsorption of polymer chains on small objects in solution, such as micelles, is
discussed using scaling results to describe the confinement energy. Adsorption on small spheres and
on clusters of such spheres is discussed and appropriate power laws for the dimensions and energies
are derived. For non-interacting objects the segregation of a dense, gel-like phase, is predicted.
The direct relevance to solutions which can form micelles is also discussed briefly.
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1. Introduction. - Adsorption of polymer chains
on a surface is determined by a balance between the
surface attraction and a repulsion resulting from the
chain confinement. Scaling concepts have recently
been applied to this problem by de Gennes [1]. Our
purpose here is to apply the same ideas to adsorption
on small objects whose surface area is too small to
allow the polymer to spread to the extent correspond-
ing to the same parameters on a free surface. Specifi-
cally we have in mind the adsorption of hydrophilic
polymers on micelles which has been studied recently
by Cabanne [2, 3]. To avoid the complications of the
problem of micelle formation and of their equilibrium
shape and size, we discuss adsorption on small spheres
of given radius. To discuss an experimental situation
involving micelles one would, of course, have to

combine these results with some description of the
micellar equilibrium itself.

Using a scaling description of the confinement

energy of the chain [4] we calculate the adsorption
energy and dimensions of a single chain adsorbed
on a sphere as a function of the sphere radius, chain
length and strength of the adsorption. The weak
adsorption situation where the adsorbed layer is thick

and the average adsorption energy per monomer is
small is discussed in section 2. Strong adsorption is
discussed in section 3 where we also show why a long
polymer adsorbed on a small sphere must still be

regarded as adsorbed uniformly while configurations
with only a small segment adsorbed are unstable.
Contrary to the case of adsorption on a free surface [I a]
it is found that both the three-dimensional and the
two-dimensional regimes of reference [4] can occur.
To investigate the equilibrium in a solution one has
to consider the formation of clusters containing more
than one sphere. This is done in section 4 for non-
interacting spheres. It is found that at equilibrium the
only stable solutions have the polymer adsorbed
in a 2-dimensional regime with a suitable number of
spheres. Smaller numbers, per polymer, can however
be stabilized by repulsion between the spheres.
In section 5 we discuss the segregation of a phase
dense in polymers and spheres. It is found that such
segregation is always favoured by the adsorption
energy for non-interacting spheres. Explicit expres-
sions for the energy and volume are derived for
situations where the condensed phase can be regarded
as a 3-dimensional semidilute solution.

2. A single chain weakly adsorbed on a sphere. -
We first consider the weak adsorption limit for a
single chain of length N adsorbed on a sphere of
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radius R.. When the confined chain is in a 3-dimen-
sional regime the free energy can be written

where 6 is the net adsorption energy per monomer,
k is a numerical constant (- 1) and V is the volume
to which the chain is confined as a result of the adsorp-
tion. For convenience all lengths are in units of the
chain link (a) and energies in units of kB T.
As in section 2 of reference [1] the first term on

the r.h.s. of eq. (2.1) is the adsorption energy and the
second term the repulsive confinement energy. The
density (c = N/ V ) determines a coherence length :

where we have chosen the numerical constant so that

ç = RF( ~ N3/S) when V becomes equal to the free

volume 4 n 3) .volume 4 R3F .
Eq. (2.1) and (2.2) assume that the adsorbed

polymer can be treated as a 3-dimensional semidilute
solution. The range for which this is valid will become
evident below.

It is convenient to define

Minimizing eq. (2.1) then gives

There are two limits for the validity of these expres-
sions.

a) The weak adsorption limit :

leading to

When the inequality (2 . 7) is violated the adsorption
is too weak to confine the polymer. One then has

b) As in the usual adsorption case discussed in
reference [1] there is a transition to a confined two-
dimensional regime when the adsorption becomes

strong. The cross-over occurs when ( becomes equal
to the layer thickness (D). Thus

At the lower limit one has

so that

where we have eliminated RS and N to emphasize the
equivalence with the adsorption results in reference [1].
One also notes that the two inequalities (2.7) and

(2.9) can only be consistent when the spheres are
small

For larger spheres the 3-dimensional semidilute
regime cannot occur for any value of 6.

In addition one obviously requires that the adsorp-
tion (i.e. 6) should be sufficiently strong to confine the

1. 

chain in the first place :

where Çmin is given by eq. (2 .11 ). For very small 6 the
polymer is never confined and the energy is given
by eq. (2.8). The adsorption energy per polymer and
sphere is then of order kB T at most.

Since they describe cross-over all limits given
above (eq. (2. 7)-(2.14)) should obviously be regarded
as qualitative. The numerical coefficients are given as
derived but are not significant.
At the lower limit of the range (2. 9) there is a cross-

over to a 2-dimensional confined regime [4]. Assum-
ing D  RS we can write the energy :

where, as in reference [1] the second term is the repul-
sive energy of 3-dimensional blobs of size D and the
third term is the repulsive energy of the two-dimen-
sional chain of blobs confined to an area 4 7rRs’.
Matching to the 3-dimensional repulsive energy

in eq. (2 .1 ) requires
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The two-dimensional coherence length [3] is

Minimizing eq. (2 .15 S) gives

In the relevant regime one must have

where the upper limit is given by eq. (2.11) [5] and the
lower limit by the large R. limit. Finally :

3. Strong adsorption and the possibility of inhomo-
geneous solutions. - The discussion in section 2 did
not involve any explicit limitations on the strength of
the adsorption (i.e. the magnitude of 6). A trivial
limitation is obvious. Clearly one must have

Thus, when the parameters of the system are such
that eq. (2.19) would give a smaller thickness the
expression we have used for the repulsive energy
(the second term on the r.h.s. of (2.15)) is no longer
adequate. The problem then becomes that of the
2-dimensional adsorption of a monolayer.
A more subtle point involves the assumption of a

uniform density which was essential in all the dis-
cussion of section 2. Intuitively it does not seem
obvious that this is justified in the present case. In
particular for strong adsorption (b &#x3E; 1) one is

tempted to consider configurations where only a small
segment of the chain is adsorbed on the sphere while
the rest of the chain is essentially free. This is however
misleading, because a chain cannot change its density
in an important way in regions where there are no
external forces. In the case we are considering we are
presumably neglecting a weak radial variation of the
density but no dramatic effects. It is of interest to
show this explicitly. We assume strong adsorption

Now let the number of monomers in the strongly
adsorbed first layer be Nl. The rest of the chain

(N - N1 monomers) does not interact with the
surface directly. It will be attached to the directly
adsorbed segments at n attachment points. In calculat-
ing the configuration of the free segments one therefore
has to include the entropy associated with the distri-
bution of the attachment points on the chain. The
contribution to the free energy is

where the last expression on the r.h.s. assumes that n
is small :

One notices immediately that (3.3) has the same
form as the adsorption energy with 6 replaced by
In (N - Nl ) . Ni . Thus since

the free part of the chain is very strongly adsorbed on
the first layer. Moreover, in most cases

and, since n cannot be larger than Ni

when N &#x3E; Nl. The argument is valid also for sub-
sequent layers until the length N is exhausted and
implies an essentially uniform or slowly varying
density. For an ideal chain this sort of argument would
indeed imply an exponential decay of the density with
a very high value on the surface [5]. For real (self
avoiding) chains the attractive surface adsorption
energy has to be balanced against the repulsion of the
monomers. This leads to the approach we have used
in section 2. While the assumption of a constant
density is actually quite good for real chains in a good
solvent our approximation would still be valid, and
qualitatively correct, if the density varied exponentially
as for an ideal chain. The essential point is that the cost
in entropy of separating a short segment from the
chain, and allowing it to adsorb strongly, is extremely
high.

It is obvious that the argument applies to weak
adsorption (6  1) just as well.
One notes that this situation is quite different from

the case where the number of attachment points (n) is
fixed e.g. for adsorbed copolymers as discussed in
references [6] and [7]. Since n is determined self-

consistently, one does not find stretched segments in
the present case.

4. Equilibrium conditions and clusters. - In practice
one is of course interested in solutions with finite
concentrations of spheres (cs) and of polymers (cp).
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We shall assume that the adsorption energy of a single
sphere (FSS) is large

and concentrations such that :

The interesting questions relate to situations where
there is a surplus in one of the constituents. We shall
assume that the spheres are small so that constituents
with more than one polymer attached to a given
sphere can be disregarded. The equilibrium conditions
in solution are then :

where cn is the concentration of polymer with n
adsorbed spheres, Fn is the internal free energy of such
a cluster and cs and cp are the concentrations of free
spheres and free polymers respectively. These free
concentrations (and the related chemical potentials)
are of course in practice determined by the actual
constraints on the system. For our discussion we

regard them as given. The equilibrium conditions are
then determined by F . Within the approximations
we have used, the adsorption energy depends only on
the surface area. Thus one has :

where the expressions on the r.h.s. are given by
eq. (2. 8), (2. 6) and (2. 20) respectively by replacing Rs
by nRs , and A (I  A  2) is a geometrical factor.
The regimes (4.5b) and (4.5c) only exist when 6 is
sufficiently large so that the inequality (2.14) holds.
Otherwise only the uninteresting weak adsorption
regime occurs.

It can be seen that Fn can only become convex in

n 02F in the two-dimensional regime ofn -5n-I &#x3E; 0 in the two-dimensional regime of
an2 

g

eq. (4.5c). This implies that the chemical potential for
the spheres (- OF10n) has a maximum and stable
solutions (of eq. (2.4)) will always have a most
probable n(= n-) in the two-dimensional regime.
Specifically (from (4.5c) the condition o2F/on2 &#x3E; 0

implies :

with a larger thickness :

We emphasize that we have assumed that any direct
interaction between the spheres can be neglected.
When such an interaction exist it has to be included
in Fn for n &#x3E; 1. A repulsive interaction will tend to
reduce n and can stabilize the 3-dimensional regime.
In particular it can lead to situations where the cluster
with a single adsorbed sphere is stable in equilibrium.

5. Clustering and phase separation. - The above
discussion has a serious defect resulting from the
geometry of the problem. The clusters we have

envisaged have spheres embedded inside a deformed
polymer. The resulting cluster however also has an
outer surface which, at the given density, is strongly
attractive to spheres and will tend to attach additional
spheres on the outside. The outer free surface of these
spheres is in turn attractive to polymers. There is
therefore an effective attractive interaction which can

produce phase separation. The condensed phase
would be concentrated in polymers and spheres. The
effect is expected to be largest when the equilibrium n
(eq. (4.6)) is N 1 and the outer surface therefore

relatively large.
Since a discussion of the condensed phase in the

analog of the two-dimensional regime is complicated
by geometrical considerations we restrict ourselves
to 3-dimensional regimes where the polymers can be
regarded as semidilute solutions.
For a dense polymer solution of concentration cp

in which a concentration cs of spheres is immersed
one finds, in complete analogy to eq. (2.4)-(2.6) :

where V is the free volume available to the polymers :

The expressions (5.2) and (5.3) remain valid when
the adsorption layer gets thin so that the free volume
is not fully occupied, as long as ç remains small
compared to the separation of the spheres, but the
expression for the layer thickness which replaces
eq. (5.1) then depends on the geometry.
The expression for the energy (eq. (5.3)) cannot

represent a stable solution. It is in fact unstable with
respect to both c. and cp. For the spheres one has

in analogy to our discussion of eq. (4.6). For the
polymers one has
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i.e. F can be decreased by decreasing Np. (Note that
the average energy (F/Np) is still negative.) This is

clearly not a stable regime. In general this implies that
the stable solutions are in the 2-dimensional adsorp-
tion regime which essentially represents the adsorption
of the polymers on the free surfaces of an aggregate of
spheres. The geometrical considerations do however
become fairly delicate and we shall not attempt
detailed estimates.
An interesting alternative can occur when the

spheres are small i.e.

where Df is the adsorbed thickness of the polymer on
a flat surface with the same 6. One notes that the
volume F cannot shrink indefinitely (as implied by
eq. (5 .1 )). The geometry sets a lower limit

where the r.h.s. is the free volume in the closed packed
limit. Assuming this limit for the volume and mini-
mizing the free energy one finds

where

where we have omitted the less obvious constants in
the last expression and retain only the power laws.
We note however that the inequality (5.7) implies :

and corrections to the free expression for the polymer
repulsive energy are certainly required. It is also not
obvious that completely different arrangements could
not be more favourable under these circumstances.
Thus eq. (5. 9) and (5 .11 ) should only be regarded as
qualitative. It is however clear that as long as the

adsorption energy per polymer and per sphere is large
compared to kB T one does indeed expect condensa-
tion to occur. The gain in free energy of the condensed
phase should be comparable to the single sphere
adsorption energy and will dominate at fairly low
concentrations, when no other interactions are impor-
tant.

In practice there may be difficulties in observing
this transition which depend on the method of pre-
paration because the times involved could become
extremely long. A state with small clusters as the
dominant species is locally stable. Thus even in the
presence of a nucleus of the condensed phase its

growth might very well be dominated by the very low
concentrations of free chains and spheres.

6. Relevance to micelles. - As noted in the intro-
duction the most obvious application of our results is
to the adsorption of polymers on micelles. Stoichio-
metric adsorption of polymers on single micelles has
been observed and studied in detail by Cabane [2].
Our results seem to imply that such behaviour must be
stabilized by an effective micelle-micelle repulsion,
presumably the same interaction responsible for

stabilizing spherical micelles in the first place. Thus
the results of section 2 should apply and the parameters
of the system can be determined from the experimental
results. One notes however that these results imply a
surface tension which depends strongly on the chain
length. One would expect this to affect the micelle size
(and shape), which would compete with the fixed
micelle clustering we have discussed. Other experi-
mental situations can of course also be envisaged.
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