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Résumé. 2014 L’existence de phases liquide-cristallines présentant un ordre de dipôles moléculaires
est discutée. Un argument simple, reposant sur un calcul de champ moyen de l’énergie dipôle-
dipôle, est d’abord présenté et permet d’avancer que seule la phase smectique C peut présenter un
tel ordre. La théorie de Landau est ensuite utilisée pour étudier la transition du second ordre d’une

phase smectique A à une phase smectique C. L’ordre moléculaire et sa symétrie en phase C sont alors
déterminés en fonction de la symétrie de la phase A. Une transition du second ordre vers une phase
smectique C ferroélectrique n’est possible que dans le cas d’une phase chirale.

Abstract. 2014 We investigate the question as to whether there can exist some liquid crystal phases
exhibiting dipole ordering. A simple argument based on a mean-field calculation of the dipole-
dipole energy alone is presented first to advance the following hypothesis : only in smectic C phases
can a certain dipole ordering appear. We then apply Landau theory to study the second-order phase
transitions from the A to the C phase. For each symmetry of the A phase we find the allowed mole-
cular orderings and corresponding symmetries in the C phase below Tc. We also find the dipole
orderings allowed in each case considered. We show that a second-order transition to a bulk ferro-
electric smectic C phase is not possible, but it is permitted to a smectic C phase with helicoidal arrange-
ment of the dipoles.
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1. Introduction. - The peculiarity of the liquid
crystal phases is that the molecules have orientational
order [1, 2], instead of positional order as in solids.
In general, the theoretical approach in liquid crystals
is based on microscopic models in which the role of
different interactions like quadrupolar, Van der Waals,
dipolar interaction is considered [3-8].

In the present work, we start from the observation
that most of the molecules composing liquid crystals
have one or more dipolar bonds. In the past, the

(*) Supported in part by the Israel Academy of Science, Grant
No. 090278.

question of dipole ordering in liquid crystals has
been often considered theoretically [4] or experi-
mentally [9, 10], but without giving convincing
evidence for ferroelectricity in the nematic phase.
Recently the interest in this question was renewed
by the first clear-cut evidence of dipole ordering in
liquid crystals [11, 12]. Meyer et al. [11] have shown
what the conditions are for the appearance of ferro-

electricity in a smectic C phase. They also gave an
experimental realization of this phenomenon, having
synthesized appropriate materials with chiral
molecules.

However, the question of dipole ordering in

liquid crystals has not been studied from a general
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point of view, and we try in this paper to give an
answer to the following question : what liquid crystal
phases can exist with ordered dipoles (any kind of
order) ? As we shall see below (section 2), using an
argument based on free-energy stability, we find that
only the smectic C phases can present dipolar order-
ing. The second question of interest is : what are the
transitions to a smectic C phase which are allowed
to be phase transitions of second order ? We deal
with this question in section 3 (transition not involv-
ing dipole ordering) and in section 4 (transition
going with dipole ordering).

2. Electrostatic energy due to the dipole-dipole
interaction. - 2.1 LIQUID AND NEMATIC PHASES. -

Let us consider a liquid crystal molecule possessing
a net dipole moment p in its centre. In general the
angle between p and the long axis of the molecule
will have a certain value fl. We can calculate the
electrostatic energy of the dipoles in various arrange-
ments in the different phases, starting from the expres-
sion of the energy of two dipoles

where rij is the relative position vector of dipoles pi
and pj of molecules i and j. The total energy is a sum
over all pairs i and j. In the normal liquid the molecules
wander randomly and the dipoles point in every
direction. The total energy per molecule

(N is the number of molecules) is obviously zero.
In the normal nematic phase the direction of a dipole
at each instant forms an angle f3 with the nematic
direction (assuming perfect nematic alignment) and
can rotate randomly around this direction; the up
and down directions of the dipoles are also equally
probable. It follows that E is again zero. In a ferro-
electric nematic phase with all the dipoles aligned
in the z direction [14] (this is the case of maximum

polarization), the energy per molecule can be written
as follows (we choose, for the sake of simplicity,
each dipole in the center of the molecule) :

From (1) we can write

where

and V is the volume per molecule in the sample.
The parameters a and b are, respectively, the diameter
and the length of a molecule, which we consider as
a hard cylinder. After performing the integration
on p in (2), the second term in square brackets contri-
butes zero and we find :

The integrand of (6) is positive for any finite z, therefore
E &#x3E; 0 and the ferroelectric state has higher energy
than the disordered state. Since the entropy of the
disordered state is larger than that of the ordered
state, we conclude that the ferroelectric nematic
is unstable at any temperature with respect to the
normal nematic. Our conclusions are not rigorous,
because they are based on a mean field calculation,
where any correlations between the molecules are

neglected. Nevertheless we believe this calculation

gives us the right qualitative picture. The evidence
presented in references [9] and [10] disagrees with
our conclusion. We suggest that a possible explanation
of this disagreement is a long relaxation time from
the polarized state aligned by the external electric
field to the non-polarized nematic state, when the
field is turned off. The existence of a ferroelectric
nematic phase is not at all proved experimentally,
and we feel that there is very little hope of ever finding
one.

2.2 SMECTIC A PHASE. - We assume now a com-

plete order in layers, and we calculate, as above, the
electrostatic energy when all the dipoles are aligned
along the direction perpendicular to the layers [15].
The calculation is repeated in the same way as in the
previous case except that now the energy has two
contributions : Eo, the electrostatic energy of inter-
action between molecules located in the same layer,
and E*, the energy of interaction between molecules
located in different layers :

( S is the total area per molecule in a layer, b is the
distance between two successive layers, and n is the
label number of the layer.) It is easy to see that E*
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is zero, and this means that the dipole-dipole inter-
action between the layers does not contribute to

the energy. This result can also be obtained if we
calculate the field produced by one layer and acting
on a molecule located in another layer. Since all
the dipoles in one layer are parallel and the molecules
are distributed uniformly, a smectic plane is an

infinite dipole layer, outside which the field is zero.

Eo in (7) is equal to np2lSa and is again positive.
The smectic A with disordered dipoles (along the

long molecular axis) is again more stable than the
polarized state. We disagree here with reference [8],
where the authors find ferroelectricity in the smectic A
phase, but we do not have an explanation for this
disagreement.

2. 3 SMECTIC C PHASE. - We now consider parallel
dipoles at an angle a to the normal to the smectic
layers [16]. Choosing the direction of the dipoles
in the yz plane, the components of the dipole p are
(0, p sin a, p cos a), and those of the distance r between
two molecules are (p cos T, p sin T), where p is the
projection of r on the xy plane, and T is the angle
between p and the x axis.
As above, b is the distance between the successive

layers and n is the label number of the layer. The
interaction energy (1) is

The calculation is performed as in the smectic A

phase and we have for the total energy per molecule :

The first integral is the interaction energy between
molecules located in different layers. This energy
is zero and the physical reason is the same as above.
The second integral in (10), using (9), gives :

The electrostatic energy (11) has a minimum for
a = 7r/2, i.e. when the dipoles are parallel to the layer.
From (11) one can see that E becomes negative if
sin2 a &#x3E; 2/3 or a &#x3E; 55.10. It follows from this that
at low enough temperatures a tilted smectic phase
with polarized layers can be more stable than a
tilted smectic phase with complete disorder between
dipoles. The tilt angle a of the dipoles in the more
stable phase must be greater than 55.1°. This order-
ing in polarized layers does not necessarily mean
that the sample is polarized : in fact, since for every

n = 0 the first integral in (10) is zero, we conclude
that the dipole-dipole interaction alone does not

correlate different layers. If other interactions can

align or correlate the polarizations of different

layers, then we obtain the analogue of an improper
ferroelectric in solids.

In nature one observes only C phases in which
the tilt angle of the molecular axis reaches maximum
values of about 45-500 [17]. Therefore, if a = 0

(or fl = 0), one should not obtain a dipole-ordered
phase as described above ; but if B = 0 and freezing
of the molecular rotation occurs, then one is likely
to obtain such dipole-ordered phase [18].

3. Molecular orderings and symmetry changes in
the A-C transition. - The consideration of the pos-
sible types of dipole ordering in liquid crystal phases
naturally involves the consideration of the possible
symmetries of these phases. In particular, the study
of dipole orderings that may arise in second-order
phase transitions from the smectic A to the C phase
necessarily involves the discussion of the molecular
orderings and symmetry changes allowed in such
transitions.

3. 1 CLASSIFICATION OF SMECTICS ACCORDING TO
SYMMETRY. - Let us first enumerate the possible
symmetry groups of the A and C phases, with special
attention to the possibility of dipole orderings compa-
tible with these groups. Since a smectic A phase is

uniaxial, the local symmetry belongs to one of the
continuous groups : Coo, Coov Cooh, Doo and D.h,
in Shonflies notation. The symmetry of the phase
reflects to a certain extent the symmetry of the mole-
cule itself. For example, the groups Doo and Coo do
not contain reflection planes among their symmetry
elements, and consequently the molecules are chiral.
Among the five groups, Coo and Coov are the only
ones that can be ferroelectric, and from what we
saw in the previous section we do not expect to

observe them in nature. There can still be Coo and
C oo v phases °which are not ferroelectric, and we shall
include all the cases in our classification, for the sake
of completeness.
The space groups of the uniaxial smectic A phase

are symmorphic, i.e. they contain the corresponding
point groups (Coo, Coov, C.h, Doo, DooJ as their

subgroups. Therefore, there always exists a point
that belongs to the intersection of all point group
elements (symmetry axes and planes) of the smectic A
phase. For example, any point in a molecular layer
(in the middle of its thickness) or in the middle of the
distance between two adjacent layers, has such

property. In the calculations to follow, we shall put
the origin of our reference frame in such a point and
direct the z-axis along the cylindrical axis of symmetry.
Following de Gennes [2], one can group the smectic C
phases in three classes according to the form of their
biaxial tensor : Cm5 C and CG-
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In the CM phase the tilt angle (the angle between
the long molecular axis and the z-axis perpendicular
to the layer) is zero but the rotation around z is frozen.
The possible groups of local symmetry [19] are C2v,
Cs, C2, C1; they can all be dipole-ordered in the sense
described in the previous section, with the dipoles
in the xy-plane (the layer plane).

In the C phase (non-zero tilt, long molecular axis
in the yz plane) the groups C2h, Cs, C2, C1 of local
symmetry are possible. The first one cannot be dipole-
ordered ; the second can be dipole-ordered with
the dipoles along the molecular axis if there is rotation
or in the yz-plane if there is no rotation ; the third
can be dipole-ordered with the polarization in the
x direction.

In the CG phase one has the local symmetry
group C 1.

3.2 THE RULES OF THE LANDAU THEORY. - The

symmetry changes and molecular orderings occur-

ring in second-order phase transitions must obey
certain restrictions according to the Landau

theory [13]. These restrictions are as follows :

1) Given the space group Go of the higher-sym-
metry phase, the space group G of the lower-sym-
metry phase must be a subgroup of Go.

2) The order parameter field describing the order-
ing in the lower-symmetry phase must transform
under the elements of Go according to a certain

irreducible, or physically irreducible [20], repre-
sentation 3) of the group Go.

3) The symmetric cube [0]’ of D should not

contain the identity representation, i.e. there should
be no cubic invariants (with respect to Go) formed
from the order parameter.

In addition, there is another condition on
which was first proposed in a very restrictive form
by Lifshitz [13, 21], and further reinterpreted and
reformulated in a weaker form by Dzyaloshinskii [22]
and Haas [23]. This condition requires that the repre-
sentation D should correspond to a minimum of a
certain function in k-space, where k is the wave-vector
of the representation. (The meaning of this condition
in the context of this paper will become clear below.)
Another requirement [24] implicitly used in all appli-
cations of the Landau theory to particular phase
transitions, is that the representation D in question
should correspond to a certain physical tensor field. In
other words, the field of the order parameter must be
an irreducible, or physically irreducible part of an
appropriate physical tensor field involved in the

phase transition.
To our knowledge there is no accepted formalism

concerning the space groups and their representations
for the liquid crystal phases. Therefore, if we want
to avoid the task of building such a formalism it
will be enough, for the purposes of the present work,
to carry on our discussion on the basis of the appro-
priate expansion of the free energy and its stability

conditions. This discussion follows the Landau theory
closely and will be based implicitly on the group
theoretical considerations.

3. 3 FREE ENERGY EXPANSION. - Since the question
of molecular orderings and symmetry changes occur-
ring in second-order transitions is of interest in

itself, we will discuss them in the rest of this section,
regardless of any dipole orderings which may occur.
We postpone the discussion of dipole orderings to
the next section.
The proper choice of the tensor field of which

the order parameter is an irreducible part, is deter-
mined by the fact that the basic feature of the smec-
tic A to C or CG phase transition is the appearance
of a tilt formed by the long axis of the molecule
(more precisely by its direction averaged in time)
with respect to the z-axis. The field of interest must
therefore be associated with the field of orientations
of the long molecular axes. Each direction is cha-
racterized by two angles, 0 and T, where 0 is the tilt
angle, and T is the angle between the tilt plane and
the xz-plane. However, the parameters 0, T them-
selves do not possess tensor properties, since they
do not transform linearly under the operations of
the above point groups. One can choose, instead,
the products

of the Cartesian components of the director n [2].
The pair of variables Qxz, Qyz does possess tensor
properties and is in one-to-one correspondence with
the set of all molecular orientations. Instead of

QxZ, Qyz, it is convenient to use the complex variables

We note here that, since the angles 0 under conside-
ration are small (we deal with second-order transi-
tions), Qçz coincides with de Gennes’s order para-
meter [2] 0 e"’. However, for our purposes it is more
convenient to use the order parameter in the tensorial
form (12), (13).
Thus we shall consider the two-component field

where n is the number label of the successive molecular

layers in the z direction. This field is continuous in
the xy plane and discrete in the z-direction. The
field of the order parameter of the smectic A to C
phase transition is a certain irreducible (or physically
irreducible) part of the field (14). Since the quanti-
ties QEz and Qnz, transform under an arbitrary rotation
about the z-axis into e’V" Qnz e-i"’, respectively,
where 03C8 is the angle of rotation, no cubic invariants
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can be. formed from the field (14). It follows that
Landau’s condition 3 is satisfied.

In the spirit of the Landau theory we must consider
the free energy F at a given temperature T as a func-
tional of the field (14) that can be expanded in terms
of Qçz, Qnz. Expanding F to second order in these
variables, we can write (neglecting the constant

zero-order term)

Due to the transformation properties of QEz and
Q"z, expression (15) can be interpreted physically as
a quadrupole-quadrupole interaction : it can include
Van der Waals forces as well [3, 5, 6]. The free energy
must be invariant under the symmetry operations
of the smectic A phase in question. Since this phase,
is homogeneous and isotropic in the xy-plane, and
periodic in the z-direction, we must have

where

Further, since F is real,

To diagonalize the quadratic functional (15), let us

expand the field (14) in Fourier series (this is equivalent
to expanding it in terms of irreducible representations
of the space group of the smectic A phase) :

and a similar expansion for QnZ. Note that, because
of the periodicity, k_, varies only in the interval

[n/b, - c/b]. One can also expand A (p2, n - n’)
according to

From (16) and (17) it follows that

where

and from (18) it follows that a(ko, kZ) is real.
Substituting (19) and (20) into (15) we obtain

where V is the volume of the sample. The coefficients
0 kZ) depend on T as a parameter.

3.4 CLASSIFICATION OF THE SMECTIC A-C TRANSI-
TIONS OF SECOND ORDER. - In the smectic A phase,
i.e. at T &#x3E; Tc, the minimum of F must correspond
to q4z(k) = 0 for all k. Accordingly, for T &#x3E; Tc,
a(ko, kz) &#x3E; 0 for all ko and k,,. A phase transition
to the smectic C phase occurs when the smallest of the
coefficients a(ko, kZ) changes sign [22, 24]. Thus, at
T = T,, the minimum 0 kZ) as a function of kx,
ky, kZ must vanish. The values of kx, ky, kz correspon-
ding to this minimum are determined by the equations

The order parameter field at T slightly less than T,,
is a superposition of the Fourier components corres-
ponding to those values of kx, ky, kZ at which a(ko, kz)
has a minimum (this minimum may in general be
degenerate, i.e. a(k’, 0 kz) may reach its minimum
value at more than one point in k-space). This is the
meaning of the Dzyaloshinskii-Haas condition [22, 23]
mentioned above.

Because of the symmetry, i.e. the dependence of
a on k.,, ky only in the combination (22), the first
two equations in (24) are identically satisfied by

In principle, there may be other solutions, but only
the solution (25) is due to symmetry; a solution
with kx, ky =A 0 would also be unphysical since it
would imply nonuniformity of the smectic layers
along the x and y directions.

If the crystallographic class of the smectic A phase
is Coo or D 00’ the coefficients A (x, y, n ; x’, y’, n’)
in (15) do not possess any symmetry properties in
addition to (16) and (18). Then the coefficients a(k)
in (20) do not possess any symmetry besides (21).
In this case, substituting (25) into the third equation
in (24), one obtains an equation which determines k_,
as a function of T : kz = K(T). The corresponding
order parameter is the two-component vector

and the field of this order parameter is given by

The field (26) describes a helicoidal ordering of the
molecules with a wave-vector k = le. The depen-
dence of K on T cannot be determined from general
considerations within the framework of this theory.
Thus, the smectic C phase arising at a second-order
transition from a smectic A phase belonging to the
crystallographic classes Coo or D00 is helicoidal.
This type of smectic C has already been observed [25].

In the cases where the crystallographic class of
the smectic A phase is Coov, Cooh, or Dooh, the coeffi-
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cients A (p2, n - n’) possess an additional symmetry
property

From (20) it follows that

In view of (28) the third equation in (24) is satisfied
identically by kZ = 0 and kz = n/b [a(k 2, kz_,) may be
regarded as a periodic function of kz with a period
2 n/b and this fact, together with (27), yields the

stationarity of a at k,- = 7T/b].
In the case of kz = 0, the field of the order para-

meter is (taking into account eq. (25))

By an appropriate choice of the direction of the y-axis
in the xy-plane one can make QyZ = 0 and thus obtain
a field

This field is invariant under reflection in the xz-plane
and under rotation about the y-axis. It follows that
if the crystallographic class of the smectic A phase
is Coov, it decreases to the crystallographic class C,,.
If the crystallographic class of the smectic A phase
is C rob, it decreases to C1. This transition can be
observed in materials with molecules which have

only a mirror plane perpendicular to their long axis.
Finally, if the initial crystallographic class is D rob.,
it decreases to C2h. It seems that a good example
of such a second-order transition is given by TBBA.

In the case that the minimum of a(k 2, kz) appears
at kx = ky = 0, kZ = n/b., we obtain, instead of (30) : ;

In this case the transition to the smectic C phase is
accompanied by a doubling of the period in the
z-direction [26] and the z-axis becomes a screw axis of
second order. Further, the field (31) is invariant under
reflection in the plane parallel to the xy-plane and
lying halfway between two adjacent layers, and
under gliding reflection in the yz-plane, i.e. reflection
combined with a translation in the z-direction by a
half of the new period. Obviously, the field (31) also
possesses the point symmetry elements of the field (30).
It follows from here that if the smectic A phase
belongs to the crystallographic class C.,, it decreases
to C2v ; the corresponding space group has a screw
axis and one gliding plane (in a certain sense this

space group is analogous to the crystallographic C22v
group). The local symmetry is C.. If the smectic A

phase belongs to the crystallographic class Cooh, it
decreases to C2h and the corresponding space group

contains a screw axis (this group is analogous to the
crystallographic C’2h group). The local symmetry
becomes C1. Finally, if the smectic A phase belongs
to the crystallographic class D.h, it reduces to D2h ;
the space group of the smectic C phase contains again
a screw axis (z-axis) and a gliding plane (yz-plane).
This space group is analogous to the crystallogra-
phic D2h group. The local symmetry becomes C2h.
The molecular orderings for the cases kz = 0 and
kz = n/b are shown in figure 1.

FIG. 1. - Molecular ordering in the smectic C phase : (a) in the
case of k, = 0 ; (b) in the case of kz = n/b.

Finally, besides minima at kZ = 0 and k., = ± n/b
due to symmetry, the function a(O, kZ) may have
a minimum at some general kz, = K(T). One can
show that two possible types of molecular ordering
may arise in this case in the smectic C phase : one
of them is helicoidal, as discussed before; the other
is sinusoidal, with the tilt being in a single vertical
plane and the tilt angle varying from layer to layer
as sin Knb. The latter type has never been observed
in nature.

4. Dipole ordering. - We suppose now that the
molecules possess a net dipole moment. As a result
the molecular ordering occurring in a smectic A
to smectic C phase transition may be accompanied
by an ordering of the electric dipoles. The question
is what kind of dipole ordering can accompany
each of the second-order phase transitions mentioned
above. Clearly, we need not investigate the transitions
from the crystallographic classes Coo to C1, Coov to
Cs, and Coov to C2v, because the correspond-
ing A phases are implied to be dipole-ordered :
these are not likely to appear in nature, as we saw
in section 2. To describe dipole ordering, let us intro-
duce the field of electric polarization P (x, y, n).
For this field to come into play in the phase transitions
in question, it must be coupled to the field of molecular
orientations (13). The coupling of lowest order is
linear in Q and P. It can be interpreted physically
as a dipole-quadrupole interaction. Because of the
axial symmetry of the smectic A phase, the pola-
rization components that can be coupled to QXZ,
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Qyz linearly in Qxz, Qyz can be only Px and Py. Intro-
ducing the complex components

we can now consider the free energy F as a functional
of the fields and write the second-order term in the

expansion of F in the form

The generalization of Eq. (18) is now

Introducing, by analogy with (19) and (20), the Fourier components pc:(k), pn(k) of Pc: and Pn, respectively, and
the Fourier components aij(k) = aij(ko2, kz) of Aij (i, j = 1, 2), we obtain from (33)

here we have used the obvious relations

In view of (34), the coefficients a;/k§, kZ) obey the
hermiticity relations

Hence the expression (35) can be diagonalized by
an appropriate unitary transformation from the
variables qçz, Pç to the new variables Rç, T4 defined
by

(Xij are the coefficients of the unitary transformation.
After diagonalization, (35) becomes :

The new coefficients, a,(k’, kz) and a 0 2 kz), are

the eigenvalues of the matrices aiJ{kõ, kz) and are
both positive above T,,. The phase transition occurs
when the smaller of the minima of al (k) and a2 (k)
as functions of kx, ky, k,, changes sign from positive
to negative at T = T.. Without loss of generality,
let us assume that the minimum of al is the smaller
of the two. We obtain, analogously to eq. (24),
the equations

Again a solution of the first two equations due to
symmetry is kx = ky = 0. When the crystallographic
class of the smectic A phase is Coo or Doo, Eq. (40)
yield kZ = K(T). Accordingly, the order parameter
is now { Rç(K2), R(K2)}. As for T,(k), it must be
zero in thermodynamic equilibrium, because a2(k)
is positive in the vicinity of Tr (a,  a2)- It follows
from (39) that the smectic A to smectic C transition
in question is accompanied by the appearance of
two coupled helicoidal fields

In a mean field theory, the equilibrium value of R,(Ki)
is proportional to (Tc - T)1/2 and so are the absolute
values of both fields (,41). The angle between the vector

in a given layer and the tilt plane in this layer is
determined by the complex phase of the ratio

It can easily be shown that

Since the denominator on the right-hand side of

(42) is real, the angle in question is determined by
the phase of a21(0, K).

If the crystallographic class of the smectic A phase
is D 00’ then the free energy F must be invariant under
the rotation through n about the x-axis, which trans-
forms P4(x, y, n) into P,(x, - y, - n) and Q4.(x, y, n)
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into - QnZ(x, - y, - n). It follows from this inva-
riance that

whence

Eq. (44), together with (37), means that a21(kõ., kZ)
is purely imaginary, i.e. the phase of a21 (0, K) is

n/2 and this is also the angle between the layer pola-
rization and the tilt plane. In this case then, the
helicoidal smectic C phase has the property that the
polarization of the layer is perpendicular to the tilt

plane of this layer (and the local symmetry is C2).
This seems to be the case for DOBAMBC and related
materials studied by the French groups [11, 12, 27].
Meyer et al. have already presented a simple symmetry
argument to predict the existence of the polarized
layer in a smectic C phase (with non-zero tilt angle).
However, we have shown that, in this case, a second-
order transition is always from the smectic A to a
helicoidal ordering. In particular, we rule out the
possibility of a second-order transition to a uniformly
polarized smectic C (see Table I).

Let us consider the cases where the crystallographic
classes of the smectic A phase are Cooh and Dooh.
They contain inversion, transforming P,(x, y, n) into
- Pç( - x, - y, - n) and Qçz(x, y, n) into

From the invariance of F under this transformation
it follows that

which is the generalization of eq. (27) for this case.
It follows from (45) that

and from this we get

with a similar equation for a2. So the solutions
of (40) due to symmetry are kz = 0, kZ = rc/b. Further,

and

which means that the matrices aij(O, 0) and aij(O, nib)
are diagonal, so that

and similarly for a2-

The order parameter is {qçz(O)., q,z(0) 1 or

depending on which of the coefficients ai(0, 0),
al(O., nz/b) is the smaller one. The polarization
components are decoupled from the order parameter ;
therefore the transition to the smectic C phase is
not accompanied by a polarization effect or by dipole
ordering. This result is evident in the case of the
transitions D ooh --+ C2h, D ooh --&#x3E; D2h, because in both
cases the local symmetry of the smectic C phase
is C2h (see section 3), i.e. nonpolar; however, it is

TABLE I

Summary of the results concerning the symmetry changes and dipole orderings in a smectic A-C phase
transition of second order. The possible transitions are from one of the crystallographic classes in the
leftmost column to one of the classes of the other columns, in the same line (and vice versa).

n.p.m. = non polar molecules
n.d.o. = no dipole ordering (even if the molecules have a net dipole moment)

F = ferroelectric (in the bulk)
AF = antiferroelectric

* 
= P in the xy-plane.
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not obvious in the case of the transitions Cooh --&#x3E; C1,
Cooh &#x3E; C2h, with local symmetry becoming C1.

It may happen that the smaller eigenvalue is

a2(0, 0) or a2(0, n/b) instead of al(o, 0) or al(0, n/b).
Then the order parameter of the phase transition is
{pç(O), Pn(0) 1 or 1 P4(nl/b), P,(nl/b) I, respectively.
In both cases the C phase is of the type CM (without
tilt) and is ferroelectric or antiferroelectric, respec-
tively [2, 4]. In the first case, if the crystallographic
classes in the smectic A phase are Cooh or Dooh, then
in the CM phase they are respectively C. s (reflection
in the xy plane) and C2v- In the second case, the
transition is from Cooh to C2h and from Dooh to D2h,
with doubling of the periodicity along z (the z axis
’becomes a screw axis of second order).

Finally, dipole orderings may accompany transi-
tions to helicoidal or sinusoidal smectic C phases
from smectic A phases belonging to the crystallo-
graphic classes Cooh, Dooh. We shall not discuss
them here.
Within the smectic C phase additional second-

order phase transitions may occur : from point
group C2h to Cs, C2 or C1; from D2h to C2v, C2h
or D2, and from C2v to C2 or CS. The transitions
C2h --&#x3E; CS, C2h --&#x3E; C2, D2h --&#x3E; C2v can be accompanied
by the appearance of bulk ferroelectricity.
To conclude with an example, consider the case

of a polar molecule with the dipole component
along the molecular axis. In the smectic A phase,
the most favourable state is one with the dipoles
of different molecules oriented in opposite directions
at random, as we saw in section 2. The symmetry
groups can be Ch or D.h (with a mirror plane
perpendicular to the oo-fold axis). Therefore the
transition to a bulk ferroelectric can be only a first
order transition.

5. Conclusion. - In the present paper we have
discussed the possible symmetry of the smectic A
and C phases of liquid crystals, and all the possible
symmetry changes allowed at second-order transi-
tions between them in the presence and in the absence
of dipole ordering. We have also given a simple argu-
ment based on free energy considerations to find out
in which phases one can expect dipole ordering of
some sort.

The most interesting results can be summarized
as follows :

From a mean-field calculation of the electrostatic

energy of the molecular dipoles, it follows that one
can expect alignment of the dipoles only in smectic C

phase and not in nematic or smectic A : this alignment
is ferroelectric within the same smectic layer, but
the sample can have bulk polarization only if other
interactions are present.
The five crystallographic classes of the smectic A

phase are discussed separately, by examining in
each case the possible phase transitions of second
order to the different C phases. The discussion is

presented first in terms of molecular ordering regard-
less of dipole ordering, and then considering also
the dipole ordering, on the basis of the Landau theory
of second-order phase transitions. Table I summarizes
the results of this discussion.

In particular :
1) When the A phase belongs to the class Doo,

the C phase is tilted, with the long molecular axis
precessing from layer to layer around the z direction.
Furthermore, each layer is polarized and the pola-
rization precesses also, always being perpendicular
to the tilt plane. As mentioned above, this case of

ordering has been already predicted by Meyer et al.
[11] and observed experimentally [11, 12]. Our con-
clusion is in complete agreement with their results

(second-order transition from the A phase to the C
phase), since the chiral molecules of the ferroelectric
compound DOBAMBC give effectively a smectic A
phase belonging to the class Doo. We show here that
it is the only possible realization of a smectic A-smectic
C second-order transition in which a tilt and a pola-
rization appear together in the layer. A more detailed
theory will be published in a forthcoming paper [28].

2) When the A phase belongs to one of the classes
Cooh or Dooh, the C phase below a second-order
transition cannot be tilted and dipole-ordered at

the same time. We do not rule out the possibility of
a first-order transition leading to such a phase.
The model studied in detail by McMillan [4]

corresponds to the transitions A --&#x3E; C2v(F) --&#x3E; C2(F)
or A --&#x3E; C2b --&#x3E; C2(F), with all the transitions being of
second order. In agreement with our analysis the
molecules of this model are compatible with a smec-
tic A phase belonging to the class D oob.

Note. - After this paper had been submitted, we
learnt about the work of Indenbom et al. [29], who
applied a more formal group-theoretical approach to
determine the possible second-order phase transitions
from the smectic A phase to phases with lower

symmetry. Their results are similar to those we have
obtained; however, in contrast to their paper, we try
to give a more physical picture.
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