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SOUND PROPAGATION IN 03B1 Sn (*)

S. GIULJ and R. M. PICK

Département de Recherches Physiques (**)
Université Pierre-et-Marie-Curie. 75230 Paris Cedex 05, France

(Reçu le 6 juillet 1976, révisé le 8 octobre 1976, accepté le 4 novembre 1976)

Résumé. 2014 La propagation d’ondes sonores dans l’étain 03B1, semiconducteur à gap nul, est étudiée
dans les deux régimes adiabatique et non adiabatique, dans l’approximation de la phase aléatoire.
On montre que la vitesse des ondes est la même dans les deux régimes et que le domaine non adiaba-
tique est caractérisé par une absorption en q 3/2. L’influence des interactions à N électrons sur ces
résultats est ensuite brièvement discutée.

Abstract. 2014 The sound propagation in the gapless semiconductor 03B1 Sn is studied in both adiabatic
and non-adiabatic regimes within the R.P.A. scheme. It is shown that the sound velocity is the same
in both regimes, while the latter is characterized by a q 3/2 sound absorption. The validity of these
results when the many-body interactions are taken into account is briefly discussed.
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1. Introduction. - This paper is devoted to a theo-
retical study of the sound propagation in a second-
type gapless semiconductor [1], namely a Sn. The
problem is of basic interest because this is one of the
few situations where the adiabatic approximation for
the force constants is bound to be invalid. Indeed,
let C:f!(R1 - Rl,, t - t’) be the coupling coefficient
between the displacement at time t, and in the direc-
tion a, of the atom s which is in the cell centered at R1,
and the force exerted at time t’ &#x3E; t, in the direction fl,
on the atom (s’, R1,). Its time Fourier transform

C:!(R1 - Rl,, m) is, in practice, independent of w in
the two following cases [2] :
- Metals : m « wpl, where a)pl is the plasmon

frequency ;
- Insulators : OJ  (Dp where hw, is the energy of

the electronic gap.

None of these conditions are satisfied in infinitely
pure a Sn at 0 K where the valence and the conduction
bands belong to the same irreducible representation
r 8 + at the center of the Brillouin zone; this substance
is the prototype of a gapless semiconductor of the
second type, i.e. one in which the one-electron energy
is quadratic in 11 k around r.
The study of this sound propagation can be perform-

ed following methods first introduced by Keating [3],

(*) Ce travail represente la these de 3e Cycle de S. Giulj soutenue
en 1975 à l’Universit6 P.-et-M.-Curie.

(**) L.A. 71 associe au C.N.R.S.

Pick et al. [2] and Sham [4] who have shown how to
relate the force constant CaBss(q, m) to the irreducible
part of the susceptibility function x(q + G, q + G’,
w) (1).

Such a study was in fact undertaken by Sher-
rington [5] who was able to show that, within the limit
of the random phase approximation (R.P.A.) of the
susceptibility, a sound wave should always propagate
in a Sn. Nevertheless two different regimes exist

for q &#x3E;&#x3E; qc and q « qc where qc ~ 104 cm-1 : for
q &#x3E; qc the adiabatic approximation is valid while it is
not in the latter case. Sherrington then concluded
that there were two different sound velocities for the
two regimes, and the original goal of this study was to
look for the evaluation of the difference between those
two values. It rapidly turned out that a certain number
of points were overlooked in [5] so that a more

complete study had to be undertaken.
In order to make this paper a rather self contained

one, section 2 summarizes the results and methods
of [6] which are necessary for a complete study of the
sound propagation. Section 3 is devoted to the study
of the susceptibility function within the same R.P.A.
framework as used in [5] ; the analytic dependence of
the real and imaginary parts of this quantity, as

functions of II q 11, G and G’ are studied for the three
various cases (G and G’ = 0 ; G or G’ = 0 ; G and
G’ # 0), once w has been set equal to vq (where v,

(’) There and throughout this paper q is a vector of the first
Brillouin zone and G, G’ are vectors of the reciprocal lattice.
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the sound velocity, is kept as a free parameter).
Section 4 analyses the various terms of the dynamical
matrix of the acoustical phonons and concludes that
only the non-electric terms will contribute to it, with
coefficients the hermitian part of which is identical in
both adiabatic and non-adiabatic regimes. Finally in
section 5, the form of the hermitian and non-hermitian
part of the dynamical matrix is discussed. It is shown
that the non-adiabatic regime can only be charac-
terized by a q ! sound absorption. The modifications
due to the non validity of the random-phase approxi-
mation in the non-adiabatic regime are also briefly
discussed and it is suggested that while no changes are
expected from the sound velocity, the expression for
the sound absorption may be invalid.

2. A phonon theory summary. - 2. 1 INTRODUC-
TION. - Let us briefly summarize here the elements

of the phonon theory which are necessary for the rest
of this paper ; we shall use the notations of [6] where
most of the developments can be found and shall
simply quote the microscopic expressions of the force
constants and the technique one must use in the long
wave-length limit in order to study the acoustical
phonons.

2.2 MICROSCOPIC EXPRESSIONS OF THE FORCE CONS-
TANTS. - The microscopic theory of phonons allows
one to express the Fourier transforms of the harmonic
force constants CSaB ss(q, (o) through the irreducible part
of the polarisation function of all the electrons

x(q + G, q + G’, m) and the charge ZS of the nuclei.
For this, it is convenient to consider, for fixed (o

and q, this function as an infinite square matrix,
G and G’ being respectively the row and column and
furthermore, to introduce the following two additional
matrices

The force constants are then expressed as the sum of two terms, the behaviour of which may be different in
the w -&#x3E; 0, q - 0 limit.

The first term (which is always analytic) is

where (q + G)a is the a projection of the unit vector

and Ke is a constant (which value is given in [6]) which ensures the translational invariance of the total energy
of the crystal.

The second term, usually referred to as theyelectrical term is

where

and

In insulators, both Zs (q, (o) and L(q, q, w) have a q dependent limit, and, as we shall see in section 4, similar
problems arise in a Sn.

2.3 THE ELASTIC LIMIT OF THE PHONON DYNAMICAL MATRIX. - In order to discuss the existence of acousti-
cal phonons, it is convenient [6] to write the phonon dynamical matrix in the following form
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where the new determinant has been built by summing some rows and columns of the usual dynamical matrix
of a crystal (M,, is the mass of the atoms, and here runs from 1 to 2 with Mi = M2 = M).

In a crystal where only the non electric term of the force constants exists (metal, as well as diamond, silicon
and germanium) one shows that

The splitting of (2.9) in submatrices respectively proportional to q2, q and unity implies the existence of eigen-
values (o proportional to q, and, more precisely, if co = v 11 q 11, v is the solution of

where the second term of the parenthesis comes from the relaxation of the lattice under an acoustical wave.
I 

In insulators, as well as in semiconductors, the same treatment must be applied to the electric term, and it
generally leads to a more complicated form of (2 .11 ). The situation we shall encounter in a Sn will be different :
an electrical term does exist, and it has a complicated behaviour ; nevertheless, when forming the determi-
nant (2.8) each electrical term will give rise to a contribution of higher order in q than the corresponding non-
electrical term : as a consequence they will be neglected and the sound velocity will be a solution of (2.11).

3. The R.P.A. susceptibility functions. - 3 .1 GENE-
RALITIES. -As we restrict ourselves to the R.P.A.

(see section 5 for a more general discussion) we can
closely follow [5] in the calculation of the susceptibility
function, (a quantity also studied under various limits
in e.g. [8, 9, 10]) and discuss only some special aspects
of this calculation. The method used in this former

paper may be summarized as follows.

First, one writes (o = v 11 q 11 where v must, in

principle, be self consistently determined.
Second, one notices that the R.P.A. susceptibility

function may be split into two parts, one, Xr(q + G,
q + G’, (o) in which the matrix elements entering into
its numerator contains zero (type A) or only one
(type B) wave function connected with the T8 point,
the second, xt(q + G, q + G’, co) in which both waves
functions are connected with the T8 point (matrix
elements of type C). In the q - 0 limit, the analytic
form of xr(q + G, q + G’, OJ) is that of an ordinary
insulator and is given in table I.

TABLE I

This table takes into account the fact that a center
of inversion of the crystal has been taken as the origin
of coordinate in the real space, so that the two follo-

wing relations are satisfied :

with

where v c (resp. v,) labels the two conduction (resp.
valence) bands connected to T 8+’ and v, k &#x3E; is the
electronic wave function associated with the eigen-
value Ev(k), and following [8], those have the expres-
sions :

In this expression, A’(0k, qlk) depends only on the
two angular spherical coordinates of k with respect to
the crystalline axes, 8’(r) being one of the three eigen
values of the T2S- level which gives rise to the T8 level
by the spin orbit splitting. Furthermore, the effective
masses are identical for the two valence (or conduction)
bands.

Let us note that, as the three s"(r) functions trans-
form as xy, yz and zx under the operations of the oh
group, it is convenient to label them respectively with
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the indices z, x and y, or (using the usual elasticity
convention) with 3, 1 and 2. In the rest of this section
we shall use this last convention and use 1  a  3
both as an ordinary index and as one labeling a
specified cartesian coordinate.
The complex behaviour of (3.3), whatever are G

and G’, in the vicinity of w = 0, q = 0 has two diffe-
rent origins.
One is related to the vanishing of its denominator,

and Sherrington showed that, if qc is such that

- for q &#x3E; qc one could write directly w = 0 in the
denominator (adiabatic regime),
- for q  q,, the exact form of the denominator

had to be taken into account (non-adiabatic regime)
and led to different results (as well as to an imaginary
part that we shall compute in order to discuss the
sound attenuation problem),
- for q m qc no predictions can be made, as

X’(q + G, q + G’, to) is no longer analytic in wand q.
The second origin for a complicated behaviour of

X’(q + G, q + G’, w) is related to the non-analytic
form of the Liu and Brust wave functions (eq. (3.4))
and needs some discussion. This will be done in the
next paragraph, while the final results for xt(q + G,
q + G’, w) will be summarized in paragraph 3. 3.

3.2 INFLUENCE OF THE WAVE FUNCTIONS AND RELAT-
ED PROBLEMS. 3.2.1 The wave function /problem. 2013
The role of the numerator (3.4) is best understood
when a change of axes is done so that q is taken as the
new polar axis for the spherical coordinates, k, ek, t/1k
being the new variables. Clearly the denominator
of (3 . 3) does not depend on t/1k’ and its numerator can
be integrated over t/1k.
One then finds (7) that :

where each function N depends on G, G’, Ok and q
where, furthermore, N 1 is equal to zero for G or
G’ = 0 while N2 is equal to zero under the stronger
condition G and G’ = 0.
The form of (3 . 7) is easy to understand.
On the one hand, the wave functions (3.5a) are

mutually orthogonal for all values of k; a matrix
element entering the numerator M is then proportional
to II q II if G or G’ = 0. The zero values of N1 and N2
is simply a reassertion of this remark.
On the other hand, these wave functions depend

only on k (except for a phase factor) and, more pre-
cisely, on products of sin ek and cos Ok ; q/ k + q II
factors appear when one expresses e.g. cos eklq as a
function of cos Ðk, and sin Ðk, and the very existence
of such factors simply reflects the non-analyticity of
the waves functions around the T8 point. Such a
non-analyticity will be carried over by integration as
will be apparent in table II.

3.2.2 The cut-off problem. - The Liu and Brust
wave functions (3. 5) are valid for wave vectors k which
are small with respect to a reciprocal lattice vector i.e.
for 11 k 11 ; kc,~ 106 cm -1, a value much larger than
qc ~ 104 cm-1. kc is thus a natural cut-off for such an
integration and the contribution of the rest of the
bands is a normal one which must be included in

xt(q + G, q + G’, w). In fact, as it should, the actual
value of kc is irrelevant.

Indeed the denominator of (3.3) is proportional
to k2 for large k. As a result the k2 dk integration of
the N3 term is absolutely convergent and it is easily
seen that it converges much below kc.
The N2 term is not absolutely convergent (the

integrand is proportional to dk/k) but this leading term
is cancelled by the integration over Ok (a point which
was overlooked in [5]) and the next term has the same
behaviour as the N3 term. As a consequence, X’(q, q, vq)
and xt(q, q + G, vq) will have the same analytic
behaviour in q.

Finally, the integral over the N 1 term depends on kc,
because the integrand is proportional to dk for large k,
but it is easily seen that the result is identical in both
regimes, and that the lowest order term is q indepen-
dent. As N 1 gives the leading contribution to :

TABLE II
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i(q + G, q + G’, vq), the role of the cut-off is seen to
cancel out when both x’(q + G, q + G’, vq) and
i(q + G, q + G’, vq) are added.

3. 2. 3 The q development problem. - All the results
which will be quoted in the next paragraph correspond
to the leading q term. It turns out that such a term is
the only one which needs to be considered for a sound
velocity problem, because any higher order term would
give a negligible contribution.

3.3 RESULTS AND REMARKS ON xt(q + G, q + G’,
vq). - The actual calculations of xt(q + G, q + G’,
vq) are described in [7], and are summarized in table II.

In this table A, Co and Do are simple smoothly
varying functions of the effective masses mr and m,,
the exact expression of which are given in [7] ;

mp(G) == ma.B(G) =  Ea(r) eiG.r EB(r) &#x3E; (3.8)

where 1  p  6, p being the usual contracted index
used in elasticity theory (e.g. p=5=&#x3E;x= l, B = 2
or ex = 2, B = 1);

Let us finally remark that :.
- as e’(r) is even under the inversion with respect

to the origin in the real space, so is maB(G) under the
same inversion in the reciprocal space, and, further-
more Im (ma.fJ(G)) = 0. As a result, each term of
tables I and II fulfils the relation (3.2a) though,
Xr(q, q + G, vq) and xt(q, q + G, vq) have an opposite
parity with respect to G :
- in both regimes, Xt(q, q + G, vq) has the same q

dependence as Xt(q, q, vq). The underlying reason has
been given in 3.2.2, but this result may be an artefact
of the R.P.A. method in the non-adiabatic regime.

4. The elements of the dynamical matrix. - 4.1

INTRODUCTION. - This fourth part is devoted to the
study of the analytical behaviour of the elements of the
dynamical matrix (2.8). It will be shown here that,
even in the very severe limit of 0 K and no impurity,
the elements of this matrix are practically identical to
those of e.g. silicon. More precisely, its hermitian part
has exactly the same form in both the adiabatic and the
non-adiabatic regimes, this form being identical to
that of the above mentioned typical semiconductor.
The only difference comes from the existence of a
non-hermitian part which exists only in the non-
adiabatic regime and will eventually lead to a sound
absorption.
A brief look at table II shows that such results are

possible only if the sole contribution of the bands in
contact comes from Xt(q + G, q + G’, vq) with G
and G’ = 0. This is indeed the purpose of this section
which will be divided in three paragraphs. Analytical
expressions of the constituants of the dynamical

matrix will be given in the first one. The second one
will analyse the properties of the non-electric part
of (2. 8) : it will be shown that their hermitian part
fulfils the relations (2. 9, 2.10) while the non-hermitian
ones have a similar form but are smaller by a q 2 factor.
Finally, the third paragraph will be devoted to the
same problem for the electric part which will be shown
to be of higher order in q that their non-electric
counterpart, and thus not contributing to (2. 8).

4.2 THE CONSTITUTING ELEMENTS OF THE FORCE
CONSTANTS. - Formulae (2.4, 5, 6, 7) allow us to
express the non-electric and the electric part of the
dynamical force constants in terms of the three

quantities I /L(q, q, vq), S(q + G, q, vq) and

(rS)-1 (q + G, q + G’, vq), each of them being a
function of the electronic susceptibilities. In order to
clarify the foregoing discussion, it is useful to summa-
rize in table III the analytic behaviour of each of these
quantities in both regimes, as it results from tables I
and II and eq. (2.1, 2.2) and (2.7). It reads table III.

All quantities entering this table have been defined
in (3 . 8, 3 .12) and in table I, and furthermore

Let us simply recall that, due to the existence of a
center of inversion in the crystal (see (3. 2))A a(G) is
odd in G, while Da.f1(G), D ’aB(G) and m p(G) are even
in G, and R -1 (G, G’) is even in G, G’ and a real
quantity.
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TABLE III

Analytic behaviour of the functions entering into the force constants in the vicinity of q = 0.

One may also notice that :
- the behaviour of 1 /L(q, q, vq) is in fact governed

by that of xt(q, q, vq) ; this explains why its analytical
form is quite simple ;
- conversely, xr(q + G, q + G’, vq) and xt(q + G,

q + G’, vq) have the same analytical behaviour; the
cumbersome form of (rS)-1 (q + G, q + G’, vq)
comes only from the special form of the second term ;
- finally, the real part of this quantity has the same

expression in both regimes, while its imaginary part
only exists in the non-adiabatic one.

4.3 THE NON-ELECTRIC ELEMENTS OF THE DYNAMI-
CAL MATRIX. - Let us study here the non- electric
contribution to the elements of the dynamical
matrix (2.8). We shall first show that their hermitian
part does fulfil the usual relations (2.9, 2. 10) which
are a pre-requisite for the existence of acoustical
waves. We shall prove afterwards that their non-

hermitian part is such that its ratio to the correspond-
ing hermitian part is always of order q -1. The impor-
tant point which has to be noticed is that the proofs
which will be given only involve symmetry consi-
derations on the one hand, and the translational

properties of the total crystal on the other hand.

4. 3 .1 The hermitian part. - Following (2.4) and
table III, one has

in which the adiabatic approximation has been made,

in accordance with the remarks made in the preceeding
paragraph.

Clearly C1ss,(O) is a real constant, the imaginary
terms giving a zero contribution due to parity consi-
derations.

Let us prove that (2.9) is verified i.e.

In order to do it, we shall momentally admit (see
paragraph 4.4) that the electric term G:t(q) is equal
to zero for q - 0. The translational invariance of the

crystal then implies the usual adiabatic result that the
left hand side of (4. 3) must be zero for q = 0. Further-
more, the inversion symmetry property of the crystal
implies that, in the same limit, the first derivative

of q + G or (rS)-1 (q + G, q + G’) has a parity
opposite to that of the related function : as a conse-
quence,

- the left hand side of (4. 3) is of order q, each non
zero by symmetry term being proportional to q ;
- in fact, this symmetry consideration shows that

the cos (G. RS) sin (G.Rs’) term is the only one which
can contribute.

The summation over s’ then immediately yields

the term of order q giving a zero contribution in the
summation over s’. 

4.3.2 The non-hermitian part. - Table III shows
that, in the non-adiabatic regime, the non-electric
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terms contain a non-hermitian contribution which
comes from a term which is readily seen to be

where T,,, is defined in (3.12) and

fp(0, G) being even in G, one can use the same
reasoning as above to study this non-hermitian part.
It is easily seen that :

- the only contribution to Im C1SS(O) comes from
a sin (G. RS) x sin (G.Rs’) term, the summation over
G and G’ being decoupled (see (2.4) and (4.5)); this
contribution is proportional to q 2 ;
- furthermore, this contribution is odd in Rs. The

lowest order corresponding term in Y CO,(q) is thus
s

proportional to q 3/2, and comes from a cos (G. RS)
sin (G.Rs’) factor ; 
- the latter is still odd in RS- so that the non-her-

mitian part of £ C1Ss,(q) is proportional to q 2/5.
ss’

4. 3. 3 Summary and remarks. - This paragraph
may be summarized by the following table (Table IV).

TABLE IV

Analytic behaviour of the non-electric elements of the acoustical
phonon matrix in the vicinity of q = 0.

These results take into account the fact that a Sn
has an inversion symmetry center, but it does not have
the other symmetry properties of the group Oh. When

those are used, one obtains the same results as in e.g.
Silicon, i.e.

and the same relations for the primed quantity.

4.4 THE ELECTRIC ELEMENTS OF THE DYNAMICAL
MATRIX. - In this last paragraph, we shall very

briefly show that the electric terms of the dynamical
matrix (2.8) never contribute to it because they are of
higher order in q that the non-electric ones.

4.4.1 The hermitian part. - It results from the

preceeding paragraph that the electric term will not
contribute to the dynamical matrix provided that

with m &#x3E; 0, ZBs,(q, vq) being defined by (2.6).
The study of those quantities was partly undertaken

in [5]. We need to repeat it for three specific reasons :
- only (4.8a) was considered in Sherrington’s

paper;
- the aim of that paper was to prove the existence

of sound waves in both regimes. One could then
satisfied oneself with m = 0, which is a weaker
constraint than the one we need here;
- the proof given was only partly correct, and

needs to be re-examined.

Those various points are shortly discussed in the
appendix (and with more details in [7]) where it is
indeed shown that these relations are always verified
with m at least equal to -1 in the non-adiabatic regime,
and to 1 in the adiabatic one.

4.4.2 The non-hermitian part and conclusion. -

The discussion of this part is lengthy but otherwise
straight-forward as it involves only parity conside-
rations. One then finds [7] that the three relations (4. 8)
are satisfied with m &#x3E; t. As, for the non-electric part,
they are satisfied with m = §, the electric term does
not play any role in the sound propagation or absorp-
tion.

5. Summary and discussion. - 5 .1 SUMMARY. - It
was shown in the last section that, in the vicinity of
q = 0, only non-electric terms (i.e. those uniquely
involving electronic susceptibilities of the form



228

x(q + G, q + G’, vq) with both G and G’ different
from zero) play a role in the dynamical matrix of the

acoustical phonons for a second type gapless semi-
conductor. 

Using the notations of table IV, this matrix reads

where the symmetry of those coefficients have been defined in (4.7) and where the non-hermitian terms exist
only in the non-adiabatic regime, while the hermitian ones are identical in both regimes.

The folding of the matrix (5.1) into a 3 x 3 acoustical phonon matrix yields for the lowest order.

an expression in which v2 is no longer self-consistently determined and where

(here, we have used a matrix notation to have a more
compact formula, as well as the form J, J + (or J’, J’+)
to recall that those matrix are not symmetric).

(5.2) clearly shows that the sound velocity in a Sn
has the same behaviour as in the other elements of the
same series, and that the iq -1 term leads to a w /12 line
width (or equivalently to a q 2 attenuation). Further-
more, the analysis of C’ (formula (5.3b)) with the
rules (4.7) shows that there exist three independent
absorption coefficients Cl 1, Cl’2 and C44, only the
latter being coupled to the internal relaxation of the
atoms inside the primitive cell. Within the R.P.A.

method, this attenuation is the only possible signa-
ture of a second type gapless semiconductor.

5.2 DIscussIoN. - The search for such a sound

absorption in a Sn is nevertheless meaningless for two
types of reasons.

Firstly, our results are very sensitive to small
deviations from the ideal case (0 K and absence of
impurities). One easily finds that a temperature of
10-2 K or an impurity concentration of 1012/cm3 is
sufficient to bring the Fermi level above q c 2/2 J.l* and
thus transforming the second type gapless semi-
conductor into a more normal semimetal.

Secondly, the whole discussion has been based on
the R.P.A. expressions of the susceptibility. On the
other hand, Abrikosov [12] has recently shown that
for cv £ 1010 and q  104 cm-1, (which turn out to
be of the same order of magnitude as OJ = vqc and qc),
this method was invalid, at least for the calculation of

He finds that, when the many-body interaction is fully

taken into account, this quantity behaves as R’ 
3 11 1- v ) 1

with v = 1.92 instead of the R.P.A. value of 2. No

results are yet available for the non-diagonal part of
the susceptibility or for the diagonal one for G diffe-
rent from zero. Nevertheless, we believe that Abri-
kosov’s results do not invalidate our conclusions

concerning the single value of the sound velocity.
They were indeed based largely on the fact that

3 1 - I v was positive, on symmetry properties, and
on the analytic behaviour of xt(q + G, q + G’, vq)
for both G and G’ different from zero. The two first

properties are unchanged by the many body inter-
action. Furthermore, correlation effects will affect
the value of xt(q + G, q + G’, co) but such changes
should be identical in both the adiabatic and the non-
adiabatic regimes. Thus, they should not result in a
difference in the sound velocity between them.

Nevertheless, correlations might affect the analytical
behaviour of Xt’(q + G, q + G’, 0). If that were the
case, a new analysis of the sound-velocity problem
would be necessary.

Similar conclusions are reached for the sound

absorption discussed in the non-adiabatic regime.
Abrikosov [13] and Gelmont [14] have indeed very
recently argued that the electronic spectrum itself was
profoundly modified, in the non-adiabatic region,
with respect to the R.P.A. results. This suggests that
the analytic behaviour of the imaginary part will be
different from what we have found, even for xt(q + G,
q + G’, vq), so that the q dependence proposed for
the non-adiabatic regime is unlikely to be correct.

APPENDIX

In this appendix, we shall briefly show that the three
relations (4. 8) are satisfied with m = 2 in the non-
adiabatic regime and m = 1 in the adiabatic one.

Indeed, table III shows that, while Zf(q, vq) is at
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least of zero order in q, 1 /L(q, q, vq) is proportional
to q1/ 2 for q/qc  1 and to q for q/qc &#x3E; 1. (4. 8a) is then
automatically satisfied, and the other two will be also,
provided that

In order to prove (A ,1 ) a combination of parity
arguments with the charge neutrality sum rule (2, 4) is
needed. Indeed, let us split the effective charge
ZsB(q, vq) into

with I - r or t.

Parity considerations are sufficient for showing that ZsB(t)(q) fulfils (A .1). Indeed, the only factor which
enters this coefficient is sin (G.Rs) (see (3.10)) which is odd in Rs. Applications of the same rules as for the
non-electric part are then sufficient to obtain the desired results.

The proof that Z,sB(r)(q) also fulfils (A .1), involves some considerations on the charge neutrality sum rule.
Indeed, it can be inferred from [2] and [11] that the charge neutrality of a crystal in which every energy band is
either completely full or completely empty may be written, within the R.P.A., as

with

where n,(k) is the occupation number of an electronic state with energy Ey(k) and wave function I v, k &#x3E; .
Clearly, when the wave functions v, k &#x3E; and v’, k ) are analytical functions ofk one has

and (A. 6) is thus valid for all the matrix elements of type A (and also of type B as shown in [7]). But CY(G, k, v, v’)
is equal to zero for a matrix element of type C because, due to (3. 5a), such a matrix element involves a sum of
terms of the form ( s’(r) I ry /(r) ) which are equal to zero, s’(r) and Efl(r) having the same parity.
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