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Résumé. 2014 Les produits directs de représentations irréductibles du groupe double de la structure
béta-tungstène sont réduits pour les quatre points de symétrie maximum de la zone de Brillouin.

Abstract. 2014 The direct products of irreducible representations of the double space group of the
beta-wolfram structure are reduced for the four points of highest symmetry of the Brillouin zone.
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1. Introduction. - The binary intermetallic com-
pounds having A3B composition and the fl-wolfram
structure are of great theoretical interest and outstand-
ing practical importance. They include materials with
the highest transition temperatures to the super-
conducting state that have been observed, such as
Nb3Ge, Nb3Sn, Nb3Al, V3Si, V3Ga, etc.
We present the selection rules for the double space

group of the fl-wolfram or A-15 structure.

2. The A-15 structure. - The A-15 or fl-wolfram
structure for the compound formula A3B is shown
on figure 1. The A atom is a transition metal and B is

FIG. 1. - Atoms in the unit cell of the A3B compounds having
the p-wolfram structure. The A-atoms are represented by touching
spheres centered on the faces of the simple cubic unit cell. The
B-atom spheres occupy body-centered cubic positions, and are

not drawn to their full radii.

usually but not always a nontransition metal. The B
atoms occupy the body-centered cubic positions.
The A atoms are situated on the faces of the simple
cube, forming three orthogonal linear chains in the
extended structure [1]. The point-group symmetry
at the B atom site is T h(m3) and at the A atom site
D2h(42m).
The space group of the A-15 structure is 0’ i.e.

Pm3n which is a nonsymmorphic space group with
a simple cubic Bravais lattice. The first Brillouin
zone for the simple cubic Bravais lattice is shown
in figure 2.

FIG. 2. - The first Brillouin zone and the representation domain
indicated by heavy lines for the space group Oh. The basic vectors

of the reciprocal lattice are bi, b2, b3.

It is known that the A-15 structure is liable to

lattice instabilites, defects, etc. and that the effects of
disorder along the chains in the A-15 structure domi-
nate its superconducting properties [2-5]. Matthias,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0197700380105100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0197700380105100


52

Geballe and Compton [6] have tabulated the forty-
odd compounds with this structure. Some of the

interesting electronic properties which these com-

pounds possess, in addition to their high-super-
conducting transition temperature, have been sum-
marized previously by Clogston and Jaccarino [7],
and more recently, by others [8, 9, 10]. The symmetry
properties for the space group Oh have been investi-
gated by Gorzkowski [11, 12] and Mattheiss [13].
The energy bands in the free-electron approximation
for V3X compounds have been calculated by Mattheiss
[8] and the APW-LCAO band model for A-15 com-
pounds has been presented [14]. The results of this
APW-LCAO model was applied to evaluate the

accuracy of the Labbe-Friedel [1] linear-chain and the
Weger-Goldberg [20] coupled-chain band models
for the A-15 compounds.
A simplified theory of symmetry changes in second-

order phase transitions, lattice instabilities, etc. applied
to V3Si was proposed by Birman [15, 16] and discussed
in [17]. Experimental results relating structural insta-
bility and superconductivity have been compiled in
several papers [5, 18, 19]. A more detailed discussion
and extensive references can be found in the recent
review articles on these materials by Weger and
Goldberg [20], Testardi [21, 22], Dew-Hughes [9]
and others [23-27].

3. Selection rules. - Selection rules are useful
in the investigation of the electron band symmetries,
optical transitions, infrared lattice absorption, elec-
tron scattering and tunnelling, neutron scattering,
magnon sidebands, etc. [17]. Analysis of scattering
processes involving photons, phonons or magnons in
crystalline solids generally requires knowledge of
the appropriate selection rules.

Recently much attention has been directed to the
Clebsch-Gordan coefficients of the space group
representations [28-35].

In particular, Birman and coworkers [33-35] have
shown that the elements of the first order, one exci-
tation, scattering tensor are precisely certain Clebsch-
Gordan coefficients or prescribed linear combinations.
The elements of the second-order, two-excitation,
process are a particular sum of products of Clebsch-
Gordan coefficients. The factorization of a matrix
element or a scattering tensor element into a Clebsch-
Gordan coefficient and a reduced matrix element
can provide significant simplifications related to the
symmetry of a problem. For a calculation of the
Clebsch-Gordan coefficients or scattering tensor an
elaboration of the selection rules is a first necessary
step. In fact, a reduction of products of the irreducible
representations of the relevant crystal group gives
the frequency of occurrence of each irreducible

representations in a product and thus a survey of the
matrix elements which vanish by symmetry alone and
of those which remain for which the calculation of the
Clebsch-Gordan coefficients is required.

4. Decomposition formula. - The transition ampli-
tude of an electron from the state 1/1: to the state qi h
due to an interaction described by the operator 0’
is proportional to the integral [36-39]

The integral vanishes unless the representation Dt
is contained in the product D’ x D’. Thus the
selection rules are obtained from decomposition
of the Kronecker product of two irreducible repre-
sentations into irreducible ones. The irreducible

representations are labelled by the wave vectors

k, m, h and indices p, q, r respectively. Cpq, h are

coefficients expressing the frequency of occurrence
of the representation Dh in D k x Dq

For the space group G with the elements I Lx V }
and with the characters f, Xm, t of the irreducible
representations D’, D’, D" respectively, the frequen-
cies of occurrence are given by

Here the vectors k, m, h belong to the suitably chosen
I/ I U part of the Brillouin zone, the so-called repre-
sentation domain 0, containing one arm from each
star. The integer I U I is the order of the single point
group G of the group G. An example of the repre-
sentation domain of the space group Oh is shown
in figure 2 by heavy lines. Eq. (3) can be expressed
in terms of the characters ep of the small represen-
tations dp which induce the representations Dp of
G [37, 38]

Here the sum indexed by a is taken over the relevant
leading wave vector selection rules (LWVSRs), see

Lewis [38], i.e. over the elements determined by the
expansion of the point group G into double cosets
([37], p. 208),

where Gb is the point group of the wave vector group
CP of h and Cyk is the point group of G’‘. The index
#(a) means that P is dependent on a, it is an arbitrary
element of G satisfying
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where = means equality modulo a vector of the

reciprocal lattice of the group G. The symbol £’ 
,

reminds us that, if for given k, m, h and a no element
of G satisfying eq. (5) exists, then we have zero instead
of the sum over S. L. is the point group of

the intersection of the group Gall of the vector ak
and the group Gk of h. The Ts, ia and r, are fixed,
e.g. the simplest ones, fractional translations asso-
ciated with S, a and P, respectively, in the group G.
4/’ and 4/’ are given by the relations of the type

For the small representation dp of the unbarred

primitive translation { E t} we assume the conven-
tion

i.e. we choose the + sign in the exponent on the right-
hand side. I is the unit matrix having the dimension
of the representation d’. In the above considerations G
can be a single or double space group. Correspon-
dingly aii the groups considered are single groups
or double groups, respectively. If G is a double

space group, we use the same symbols for the point
operations of a double group as for corresponding
operations of the single group. For given k, m from the
representation domain 0 all the vectors h for which
the coefficient (4) may be different from zero can be
found as follows [36, 46] : we consider the vectors ki
from the star of k and mj from the star of m. We
construct the vectors ki + mj with one of the vectors ki,
mj fixed and the second varied. In this way, on account
of eq. (5), we obtain representants h, = ki + mj
of the star of the vector h for which the coefficient (4)
may be nonvanishing.

5. The effect of time reversal symmetry on selection
rules. - The existence of time reversal symmetry
requires that the symmetrized or antisymmetrized
Kronecker squares of representations have to be
considered [39]. The symmetrized (antisymmetrized)
Kronecker squares [D2] t of a representation D of an
arbitrary group G with elements g has the characters

where [X]’ and [xj2 are respectively the characters
of the symmetrized and the antisymmetrized Kro-
necker square of D and x is the character of D. The
formula for the coefficient C"(±) expressing how
many times the symmetrized (antisymmetrized) square
[D’]’ of a representation Dp of a single or double
group G with the character , contains a representation
Dr’ of G with the cliaracter Xr’ [37-39] is quoted here

according to the results of Lewis [38], following his
notation on the right-hand side of the equation :

The first term in (7) has been described before

[36, 37]. The sum ¿" is taken over the LWVSRs
«

capable of being expressed in the form ak + Sak - h.
The double prime reminds us that for given k, h, a
the LWVSRs not capable of being expressed in the
form ak + Sak =- h will not contribute to the Cph( ± ).
The element S E Qex is defined by (i) S E Gb and (ii)
ock + Sock = h.
A particularly interesting application of the decom-

position of the direct product of the irreducible

representations into the sum of the irreducible repre-
sentations arises in the construction of the symmetry
adapted electron pair states and cell states in a given
crystal lattice. The cell states have been constructed
in the Wannier representation for the d-electrons in the
beta-wolfram lattice, in the approximation of a

contact interaction and a nearest-neighbour inter-
action [40]. Much remains to be done to derive
further results by this method and the general selection
rules may be of help in this approach.

6. Description of tables. - Table I lists coordinates
of the symmetry points of the representation domain 0
for A-15 structure. Tables II-XI present the decom-
position of the Kronecker products of the irreducible
representations of the space group Oh into irreducible
representations, eq. (2), where k, m run over the four
symmetry points of the Brillouin zone. We present

TABLE I

The symmetry points
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TABLE III

TABLE IV also in tables II, IX, X and XI the decompositions
of the Kronecker squares Dp x Dp of the irreducible
representations of the group into symmetrized and
antisymmetrized squares, [Dp],, [Dp -, respectively.
We do this by writing the decomposition of [D P] 2
in square brackets. To label the irreducible repre-
sentations of the group Oh we use the Miller and
Love [41] labels of the corresponding small repre-
sentations, numbers with the minus sign above

correspond to the odd representations, numbered
with - sign, those with no sign correspond to even
representations, numbered with + sign. Powers

TABLE V

TABLE VI TABLE VII

correspond to the frequency of occurrence ci of the
given irreducible representation. In tables XII and
XIII we summarize in the upper part, the notations
of the single-valued representations and in the lower

part, those of the spinor representations for the

symmetry points r, R, M and X, according to various
authors [47-52]. 

1
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TABLE VIII

TABLE IX

TABLE X

TABLE XI
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TABLE XII

Labels of the irreducible representations for the point r

TABLE XIII

Labels of the irreducible representations for the points R, M and X
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