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Résumé. 2014 Nous présentons ici une généralisation de l’approximation de Boussinesq d’intérêt
dans l’étude thermohydrodynamique d’une couche fluide horizontale chauffée par le bas (problème
de Rayleigh-Bénard) quand la profondeur de la couche est importante. L’analyse dimensionnelle
du problème montre bien sous quelles conditions on ne peut pas négliger, malgré sa petitesse, la
compressibilité isotherme. Nous discutons aussi l’éventuelle importance de la dissipation visqueuse
ou du gradient thermique adiabatique.

Abstract. 2014 We present here a generalization of the Boussinesq approximation of interest in the
thermohydrodynamic study of a horizontal fluid layer heated from below (Rayleigh-Bénard problem)
when the depth of the layer is important. A straightforward dimensional analysis of the problem
shows under which conditions one cannot neglect, however small, the isothermal compressibility.
We discuss also the role played by viscous dissipation and by an adiabatic temperature gradient.
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1. Introduction. - In natural convection viscous

heating may be important if the body force is large
or if the length scale of the problem is large. Such .
might be the case for convection in the earth’s mantle.
On the other hand if compressibility effects are of
importance they are comparable in magnitude to

viscous dissipation effects when Gruneisen’s constant
is of order unity. Since it is only known empirically
that Gruneisen’s constant is of order one for fluids,
the effects of viscous dissipation and compressibility
should be considered together for real substances.

Recently Turcotte et al. [1] have discussed the role
of viscous dissipation in the convective stability of a
horizontal fluid layer heated from below (Rayleigh-
Benard problem). They have shown that both the
influence of an adiabatic temperature gradient and of
viscous dissipation are governed by the same dimen-

sionless parameter Di (to be defined below). They
have considered the case of a quasi-Boussinesq
fluid with vanishing isothermal compressibility, X
(for details concerning the Boussinesq approximation
see [2], [3}, [4] or [5])..

In the present note a dimensional analysis of the kind
developed in [3] (hereafter called I) is given. We
show that the heuristic quasi-Boussinesq approxima-
tion used in [1] is not complete. We critically discuss
the relevance of the contribution of an adiabatic

temperature gradient, the viscous heating effects as
well as the importance of a hydrostatic pressure
contribution. This latter term has been arbitrarily
disregarded in reference [1]. A most general quasi-
Boussinesq description of large cell gap fluid layers
is presented following a scheme developed in a

previous publication of the present authors [3].
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2. Adiabatic temperature gradient and viscous dissi-
pation. - Let us consider a horizontal, single compo-
nent isotropic Newtonian fluid layer of depth L and
infinite horizontal extent. The thermohydrodynamic
evolution equations are

Here (1) a subscript denotes a cartesian component ;
subscript 3 represents the vertical direction, on occa-
sions also called Z. 03B4ij is Kronecker’s delta and summa-
tion convention on repeated indices is used. 1:ij is
the viscous stress tensor

The remaining symbols have their standard meaning
(see however for details [3]). Viscous dissipation is
accounted by the last term in the r.h.s. of eq. (2. 3).

Let us restrict now our consideration to the case
studied by Turcotte et al. [1]. We make the following
assumptions : (i) the volumetric expansion coefficient
a, the thermal conductivity K, the specific heat at
constant pressure cp, the isothermal compressibility x,
and the two viscosity coefficients pi (shear viscosity)
and 92 (bulk viscosity) are kept constant ; (ii) the ’

equation of state is

where (po, To, Po) defines a thermodynamic state.

For later convenience we define

With the above imposed restrictions and definitions
the thermohydrodynamic equations reduce to

(1) Notice that in eq. (2.3) we have used the specific heat at
constant pressure. A better suited description for the dimensional
analysis to be developed below would come with the use of the
specific heat at constant volume. We shall not dwell on this point
here however.

We next proceed to a standard transcription to non-
dimensional fields, along the lines developed in

part I [3]. In fact we shall scale here with the same
units used by Turcotte et al. [1]. Heights are measured
with unit L ; velocity with k/L ; times with L 2/x ;
temperatures with the vertical temperature difference;
viscosities with /11 and pressure with Po vx/L 2. We
have introduced the kinematic viscosity v --_ /111 Po
and the thermal diffusivity coefficient K --_ K/po cp.

These scalings involve the parameters

that together with a, X, g and To form ten independent
quantities. With four basic quantities, application
of Buckingham’s pi-theorem leaves six independent
monomials. We choose the following six pi-nomi-
nals (2) :

The latter parameter Di is the one used by Turcotte
et al. [1] to account for viscous heating effects.

Incorporating the above defined six monomials
and using now dimensionless quantities the differential
system (2. 7) (2.8) and (2.9) reduces to (3)

(2) The four basic quantities are mass, length, time and tempera-
ture. Di measures the extent to which compression work and fric-
tional heating influence the energy balance in the flow. For large
cell gaps 92 and Di are apparently the most important parameters.
A different view is taken here however as we want to consider large
values of A T.

(3) We use 0 = T - To.
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We next expand in terms of the two small parame-
ters 81 and 92- Up to the first non trivial order we
get (4) :

These equations correspond to eq. (10), (11) and (12)

kept here the time-dependent terms. There is however
an important difference between our eq. (2.20) and
Turcotte’s eq. (11) that we next discuss. At the same
time we shall delineate domains of validity of various
quasi-Boussinesq approximations when large cell

gaps are of importance. This is not a simple task and
we propose an approach based on a numerical exam-
ple.
To fix ideas let us consider the following numerical

values, in C.G.S. units {po - 1, ex I"Oto.I 10-’, X - lO-12,
To - 103, g 103 , K- 105, cp-107}. We shall
let AT range between one and 103 degrees, and
L between 1 and 108 cm (in this latter case we have
in mind the mantle convection). The Rayleigh
number will be restricted however to the case of a

slightly convecting layer, i.e. R -103.
Table I gives the values of el and w for various

values of AT. Table II gives 82 and Di corresponding
to values given to the cell gap

TABLE I

Table III provides for each pair { AT, L } (or else
{ 81’ 82 }) the corresponding values of v, for a layer
assumed to be slightly convecting only i.e. R N 103.
Table IV gives the ratio (Dilcp) in terms of values

given to { AT, L } and { gl,’62 } -

TABLE II

TABLE III

TABLE IV
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TABLE V

According to tables IV and V we see that for

L  10 and AT Z 1 (and v % 104) the terms

are negligibly small. Also cp = cv and thus eq. (2.19),
(2.20) and (2.21) are useless. The standard Boussi-
nesq model is a sufficiently good approximation. This
is the case for almost all laboratory-controlled expe-
riments in thin Benard layers.
For values of L &#x3E; 102 table IV shows a zone (to

the right of the dotted lines) where Dilw &#x3E; 81’ 92-
Here the adiabatic temperature gradient term becomes
important, but the viscous heating effects however
can be disregarded. Thus between the dotted lines and
the heavy lines eq. (2.21) is simply

whereas eq. (2.19) and (2.20) should be taken at the

Boussinesq approximation only.
Beyond the heavy line in table IV the ratio

E2/E1 &#x3E; 1. Thus here the term 82 QRz should be rele-
el

vant in eq. (2.20). Table IV also shows that

(DIIT) &#x3E; E1, 92, in that same range. Table V shows

however that (DIIR) Z el 82- In this range of values
the correct quasi-Boussinesq model may be given
by eq. (2.19), (2.20) and (2.21) [or alternatively
(2 . 22)].

In the right upper comer of table V we see that

E2 &#x3E; Di &#x3E; 81. Here the correct quasi-Boussinesq
R 

approximation is given by eq. (2.19), (2.20) and
(2.21).

Tables I and II provide estimates of the smallness
of parameters 81 and 82. We have now introduced
these two parameters as we wanted to discuss in the
most straightforward way the effects of both tempera-
ture and pressure variations. They have a direct
influence upon the buoyancy force. Two other para-
meters like s, and Di may give on occasion a more
suitable choice.
For values L &#x3E; 101 and AT Z 103 the parameters

El and 92 reach order unity and no longer are useful
for our two-parameter perturbative scheme. As we
now want to discuss a quasi-Boussinesq model valid
for large cell gaps (L &#x3E; 108) we turn to a slightly

different choice of parameters. We now consider the
following six monomials : {81’ 82’ r¡ * 82/R8Î, (J, Di
and cp}. We insert then in eq. (2.16), (2.17) and
(2.18) and expand the system of equations in powers
of 81 and r¡. We get

Comparison of eq. (2.23) to (2.25) with the system
(2.19), (2. 20) and (2.21) shows : 

° 

(i) hydrostatic
pressure terms (E2 z) are present in both systems;
(ii) a new term (- 82 Q?L(i3) appears in eq. (2.24);
(iii) viscous dissipation is a second order effect here.
The case L - 108, AT - 103, To - 103 should be

of relevance to mantle convection [6]. With data

provided by McKenzie et al. [6] in C.G.S.
units f ot-3x 10 - 5, v - 2 x 102 ’, K - 10 - 2,
AT - 2 x 103, L - 7 x 107 } we arrive at the follow-
ing estimates

We have Dilw » DIIR and 81 Z ri. Thus in our opi-
nion eq. (2.23), (2.24) and (2.25) contain all rele-
vant quasi-Boussinesq contributions to the thermo-
hydrodynamic problem. The adiabatic gradient term
shows its importance whereas viscous heating appears
negligible. On the other hand eq. (2.24) shows the
relevance of an hydrostatic pressure contribution for
large L. It also clearly appears that the velocity field
cannot be considered solenoidal as already remarked
in reference [6]. Notice that in deriving the system
(2.23) to (2.25) we have considered perturbations
upon a constant density reference hydrostatic field.
A more transparent deduction and improved on

quantitative grounds arises with the use of a reference
adiabatic hydrostatic field. To this task we devote
the next section following ideas already developed
in 1 (see also ref. [7]).
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3. Quasi-Boussinesq approximation for very large
cell gaps. - Peltier [8] has recently given a similar
analysis to the one described below. He uses ideas
earlier advanced by Ostrach [9]. Peltier’s analysis
lacks however the rigor of a two-parameter pertur-
bative scheme as set forth by the present authors ([3, 7],
see also [2] and [10]). The present section is aimed at
assessing in general terms the role of large cell gap
effects in the thermohydrodynamic description of
Newtonian fluid layers.
A critical discussion of Peltier’s approach [8] is

now given. We start writing eq. (2.1) to (2.3) incor-
porating the equation of state (2.5). We get (5) :

According to prescriptions given already in 1

(see also [7] for related details) we consider a reference
a.h.f. (denoted with subscript a)

We now denote with tilde perturbations upon this
a.h.f.

We now introduce the tilded quantities in eq. (3.1)
to (3.3) and assume, as done by Peltier, that cp, a,

x, K and p are held constants. We get

Notice that the density perturbation takes a simple
form. We have

We now proceed to non-dimensionalize the quan-
tities. The only differences here with section 2 above
are the following : (i) 0394Ta and T are scaled with 03B2L ;

(ii) P is scaled with po VK ; (iii) we introduce the newL 2

monomial

where Tmax denotes an upper bound for T ; Q 5 1.

Thus using the monomials defined in the latter part

(5) Eq. (3.6) corresponds with eq. (8) [8] correcting for an unfor-
tunate misprint in the sign of the exponent there.

of section 2 above the new monomials and the
remarks just given above we get up to first order
in el and il,

These eq. (3.15), (3.16) and (3.17) constitute in
our opinion a most general nonlinear quasi-Boussi-
nesq model for a large cell gap (Newtonian fluid)
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layer. These equations correspond in principle to

eq. (12), (13) and (14) of reference [8]. This corres-
pondence in practice is not accurate. This is due to
the fact that Peltier [8] considers infinitesimal pertur-
bations upon the reference a.h.f. Thus the convective

terms like Vj a V. and alike do not appear in [8].Oxj 
Comparison now with the system (2.23), (2.24)

and (2.25) shows that considering perturbations
upon a constant density reference hydrostatic field
indeed gives altogether the qualitative contributions.
The difference is a matter of quantitative evaluation.

’ 

For 82 now need not be small. When 92  1 the expo-
nentials in (3.16) and (3.17) when Taylor expanded
yield back eq. (2.24) and (2.25).

Lastly we remark that holding constant a, x, cp,
K and p as done by Peltier [8] may on occasion repre-
sent too a strong restriction. If one considers all

these quantities as functions of T and P as they should
in general be, a first order Taylor approximation may
or may not be enough. In mantle convection pressure
and/or temperature (viz. height) dependence of some
of the parameters may be of importance. In such
cases the scheme developped in 1 ought to be used.
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