On the (non-linear) foundations of boussinesq approximation applicable to a thin layer of fluid. (II). viscous dissipation and large cell gap effects

M. G. Velarde, R. Perez Cordon

To cite this version:

M. G. Velarde, R. Perez Cordon. On the (non-linear) foundations of boussinesq approximation applicable to a thin layer of fluid. (II). viscous dissipation and large cell gap effects. Journal de Physique, 1976, 37 (3), pp.177-182. <10.1051/jphys:01976003703017700>. <jpa-00208408>

HAL Id: jpa-00208408
https://hal.archives-ouvertes.fr/jpa-00208408
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE (NON-LINEAR) FOUNDATIONS OF BOUSSINESQ APPROXIMATION APPLICABLE TO A THIN LAYER OF FLUID. (II). VISCOUS DISSIPATION AND LARGE CELL GAP EFFECTS

M. G. VELARDE
Departamento de Fisica-C-3, Universidad Autonoma de Madrid, Canto Blanco (Madrid), Spain
and
R. PEREZ CORDON
Departamento de Termologia, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid-3, Spain

(Reçu le 29 septembre 1975, accepté le 28 octobre 1975)

Abstract. — We present here a generalization of the Boussinesq approximation of interest in the thermohydrodynamic study of a horizontal fluid layer heated from below (Rayleigh-Bénard problem) when the depth of the layer is important. A straightforward dimensional analysis of the problem shows under which conditions one cannot neglect, however small, the isothermal compressibility. We discuss also the role played by viscous dissipation and by an adiabatic temperature gradient.

1. Introduction. — In natural convection viscous heating may be important if the body force is large or if the length scale of the problem is large. Such might be the case for convection in the earth’s mantle. On the other hand if compressibility effects are of importance they are comparable in magnitude to viscous dissipation effects when Gruneisen’s constant is of order unity. Since it is only known empirically that Gruneisen’s constant is of order one for fluids, the effects of viscous dissipation and compressibility should be considered together for real substances.

Recently Turcotte et al. [1] have discussed the role of viscous dissipation in the convective instability of a horizontal fluid layer heated from below (Rayleigh-Bénard problem). They have shown that both the influence of an adiabatic temperature gradient and of viscous dissipation are governed by the same dimensionless parameter Di (to be defined below). They have considered the case of a quasi-Boussinesq fluid with vanishing isothermal compressibility, χ (for details concerning the Boussinesq approximation see [2], [3], [4] or [5]).

In the present note a dimensional analysis of the kind developed in [3] (hereafter called I) is given. We show that the heuristic quasi-Boussinesq approximation used in [I] is not complete. We critically discuss the relevance of the contribution of an adiabatic temperature gradient, the viscous heating effects as well as the importance of a hydrostatic pressure contribution. This latter term has been arbitrarily disregarded in reference [I]. A most general quasi-Boussinesq description of large cell gap fluid layers is presented following a scheme developed in a previous publication of the present authors [3].
2. Adiabatic temperature gradient and viscous dissipation. — Let us consider a horizontal, single component isotropic Newtonian fluid layer of depth L and infinite horizontal extent. The thermohydrodynamic evolution equations are

$$\frac{d\rho}{dt} = -\rho \frac{\partial}{\partial x_1} v_i$$ \hspace{1cm} (2.1)

$$\rho \frac{dv_i}{dt} = -\frac{\partial}{\partial x_1} P \delta_{ij} + \rho g \beta_{ij}$$ \hspace{1cm} (2.2)

$$\rho c_v \frac{dT}{dt} = \alpha T \frac{dP}{dt} = \frac{\partial}{\partial x_1} \left(K \frac{\partial}{\partial x_1} T \right) + \tau_{ij} \frac{\partial}{\partial x_j} v_i.$$ \hspace{1cm} (2.3)

Here i a subscript denotes a cartesian component; subscript 3 represents the vertical direction, on occasions also called Z. δ_{ij} is Kronecker’s delta and summation convention on repeated indices is used. τ_{ij} is the viscous stress tensor

$$\tau_{ij} = \frac{\mu_2}{3} \frac{\partial^2}{\partial x_i} \delta_{ij} + \mu_1 \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} \right).$$ \hspace{1cm} (2.4)

The remaining symbols have their standard meaning (see however for details [3]). Viscous dissipation is accounted by the last term in the r.h.s. of eq. (2.3).

Let us restrict now our consideration to the case studied by Turcotte et al. [1]. We make the following assumptions: (i) the volumetric expansion coefficient α, the thermal conductivity K, the specific heat at constant pressure c_v, the isothermal compressibility χ, and the two viscosity coefficients μ_1 (shear viscosity) and μ_2 (bulk viscosity) are kept constant; (ii) the equation of state is

$$\rho = \rho_0 \left[1 - \alpha (T - T_0) + \chi (P - P_0) \right]$$ \hspace{1cm} (2.5)

where (ρ_0, T_0, P_0) defines a thermodynamic state. For later convenience we define

$$\pi = P - P_0 + \rho_0 g z.$$ \hspace{1cm} (2.6)

With the above imposed restrictions and definitions the thermohydrodynamic equations reduce to

$$-\alpha \rho_0 \frac{dT}{dt} + \chi \rho_0 \frac{d\pi}{dt} - \chi g \rho_0 \delta_{ij} v_i \delta_{ij} = -\rho_0 \left[1 - \alpha (T - T_0) + \chi (P - P_0 g z) \right] \frac{\partial}{\partial x_i} v_i$$ \hspace{1cm} (2.7)

The latter parameter Di is the one used by Turcotte et al. [1] to account for viscous heating effects.

Incorporating the above defined six monomials and using now dimensionless quantities the differential system (2.7) (2.8) and (2.9) reduces to (3)

$$\frac{d\theta}{dt} + \frac{\dot{\theta}}{R} = - e_1 \frac{\dot{V}_3}{\dot{\theta}} \hspace{1cm} (2.16)$$

$\theta = T - T_0$.
We next expand in terms of the two small parameters ϵ_1 and ϵ_2. Up to the first non trivial order we get (4):

$$
\left(1 - \epsilon_1 \theta + \frac{\epsilon_1 \epsilon_2}{R} - \epsilon_2 z\right) \frac{dV_i}{dt} = -\sigma \frac{\partial}{\partial x_i} \pi +
+ \sigma \frac{\partial}{\partial x_j} \tau_{ij} + \sigma R \theta \delta_{i3} - \epsilon_2 \sigma \pi \delta_{i3} + \frac{\epsilon_2}{\epsilon_1} \sigma R \frac{\partial}{\partial x_i} z_{i3} \tag{2.17}
$$

These equations correspond to eq. (10), (11) and (12) kept here the time-dependent terms. There is however an important difference between our eq. (2.20) and Turcotte's eq. (11) that we next discuss. At the same time we shall delineate domains of validity of various quasi-Boussinesq approximations when large cell gaps are of importance. This is not a simple task and we propose an approach based on a numerical example.

To fix ideas let us consider the following numerical values, in C.G.S. units $\{\rho_0 \sim 1, \alpha \sim 10^{-4}, \chi \sim 10^{-12}, T_0 \sim 10^3, g \sim 10^3, K \sim 10^5, \epsilon_p \sim 10^7\}$. We shall let ΔT range between one and 10^3 degrees, and L between 1 and 10^8 cm (in this latter case we have in mind the mantle convection). The Rayleigh number will be restricted however to the case of a slightly convecting layer, i.e. $R \sim 10^3$.

Table I gives the values of ϵ_1 and φ for various values of ΔT. Table II gives ϵ_2 and D_i corresponding to values given to the cell gap.

Table III provides for each pair $\{\Delta T, L\}$ (or else $\{\epsilon_1, \epsilon_2\}$) the corresponding values of v, for a layer assumed to be slightly convecting only i.e. $R \sim 10^3$.

Table IV gives the ratio D_i/φ in terms of values given to $\{\Delta T, L\}$ and $\{\epsilon_1, \epsilon_2\}$.

(* Notice that now contrary to Turcotte et al. [1] we retain here $\chi \neq 0.$)
According to tables IV and V we see that for $L \leq 10$ and $\Delta T \geq 1$ (and $v \leq 10^4$) the terms are negligibly small. Also $c_p \approx c_v$ and thus eq. (2.19), (2.20) and (2.21) are useless. The standard Boussinesq model is a sufficiently good approximation. This is the case for almost all laboratory-controlled experiments in thin Bénard layers.

For values of $L \geq 10^2$ table IV shows a zone (to the right of the dotted lines) where $D_i/\rho > e_1, e_2$. Here the adiabatic temperature gradient term becomes important, but the viscous heating effects however can be disregarded. Thus between the dotted lines and the heavy lines eq. (2.21) is simply

$$\frac{d\theta}{dt} + \frac{D_i}{\rho} (1 + \phi \theta) V_3 = \left(\frac{\partial}{\partial x_i} \right)^2 \theta$$

(2.22)

whereas eq. (2.19) and (2.20) should be taken at the Boussinesq approximation only.

Beyond the heavy line in table IV the ratio $e_2/e_1 \geq 1$. Thus the term $\frac{D_i}{R} \sigma R z \delta_{ij}$ is relevant in eq. (2.20). Table V shows that $(Di/\rho) > e_1, e_2$, in that same range. Table V shows however that $(Di/R) \geq e_1 e_2$. In this range of values the correct quasi-Boussinesq model may be given by eq. (2.19), (2.20) and (2.21) [or alternatively (2.22)].

In the right upper corner of table V we see that $e_2 > \frac{D_i}{R} \geq e_1$. Here the correct quasi-Boussinesq approximation is given by eq. (2.19), (2.20) and (2.21).

Tables I and II provide estimates of the smallness of parameters e_1 and e_2. We have now introduced these two parameters as we wanted to discuss in the most straightforward way the effects of both temperature and pressure variations. They have a direct influence upon the buoyancy force. Two other parameters like e_1 and Di may give on occasion a more suitable choice.

For values $L \geq 10^8$ and $\Delta T \geq 10^3$ the parameters e_1 and e_2 reach order unity and no longer are useful for our two-parameter perturbative scheme. As we now want to discuss a quasi-Boussinesq model valid for large cell gaps ($L \geq 10^8$) we turn to a slightly different choice of parameters. We now consider the following six monomials: $\{ e_1, e_2, \eta \equiv \frac{e_2}{Re_1}, \sigma, Di \}$ and ϕ, θ. We insert then in eq. (2.16), (2.17) and (2.18) and expand the system of equations in powers of e_1 and η. We get

$$e_2 V_3 = (1 - e_2 z) \frac{\partial V_i}{\partial x_i}$$

(2.23)

$$\frac{dV_i}{dt} = -\sigma \frac{\partial \theta}{\partial x_i} + \frac{\sigma}{\partial x_j} \tau_{ij} + \sigma R \theta z \delta_{ij} -$$

$$- e_2 \sigma \eta \partial \theta \delta_{ij} + \frac{e_2}{e_1} \sigma R z \delta_{ij}$$

(2.24)

$$\frac{d\theta}{dt} + \frac{D_i}{\rho} (1 + \phi \theta) V_3 = \Delta \theta \right.$$ (2.25)

Comparison of eq. (2.23) to (2.25) with the system (2.19), (2.20) and (2.21) shows:

(i) hydrostatic pressure terms ($e_2 z$) are present in both systems;
(ii) a new term ($- e_2 \sigma \eta \delta_{ij}$) appears in eq. (2.24);
(iii) viscous dissipation is a second order effect here.

The case $L \sim 10^8, \Delta T \sim 10^3, T_0 \sim 10^3$ should be of relevance to mantle convection [6]. With data provided by McKenzie et al. [6] in C.G.S. units $\{ x \sim 3 \times 10^{-5}, v \sim 2 \times 10^{21}, \kappa \sim 10^{-2}, \Delta T \sim 2 \times 10^7, L \sim 7 \times 10^7 \}$ we arrive at the following estimates

$$\{ Di \sim 2 \times 10^{-1}, R \sim 7 \times 10^5, e_2 \sim 5, $$

$$\eta \sim 1, \sigma \sim 10^{23}, e_1 \sim 6 \times 10^{-2}, $$

$$\xi \sim 2 \times 10^{-3} \}.$$

We have $Di/\rho \gg Di/R$ and $e_1 \gg \eta$. Thus in our opinion eq. (2.23), (2.24) and (2.25) contain all relevant quasi-Boussinesq contributions to the thermohydrodynamic problem. The adiabatic gradient term shows its importance whereas viscous heating appears negligible. On the other hand eq. (2.24) shows the relevance of an hydrostatic pressure contribution for large L. It also clearly appears that the velocity field cannot be considered solenoidal as already remarked in reference [6]. Notice that in deriving the system (2.23) to (2.25) we have considered perturbations upon a constant density reference hydrostatic field. A more transparent deduction and improved on quantitative grounds arises with the use of a reference adiabatic hydrostatic field. To this task we devote the next section following ideas already developed in 1 (see also ref. [7]).
3. Quasi-Boussinesq approximation for very large cell gaps. — Peltier [8] has recently given a similar analysis to the one described below. He uses ideas earlier advanced by Ostrach [9]. Peltier's analysis lacks however the rigor of a two-parameter perturbative scheme as set forth by the present authors ([3, 7], see also [2] and [10]). The present section is aimed at assessing in general terms the role of large cell gap effects in the thermohydrodynamic description of Newtonian fluid layers.

A critical discussion of Peltier's approach [8] is now given. We start writing eq. (2.1) to (2.3) incorporating the equation of state (2.5). We get (5) :

\[-\alpha \frac{dT}{dt} + \chi \frac{dP}{dt} = -(1 - \alpha \Delta T + \chi \Delta P) \frac{\partial V_i}{\partial x_j} \]

(3.1)

\[\rho_0(1 - \alpha \Delta T + \chi \Delta P) \frac{dV_i}{dt} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \tau_{ij} - \rho_0 g(1 - \alpha \Delta T + \chi \Delta P) \delta_{ij} \]

(3.2)

\[\rho_0(1 - \alpha \Delta T + \chi \Delta P) c_p \frac{dT}{dt} - T_x \frac{dP}{dt} = \]

\[= \frac{\partial}{\partial x_i} K \frac{\partial}{\partial x_i} T + \tau_{ij} \frac{\partial}{\partial x_j} V_i . \]

(3.3)

According to prescriptions given already in 1 (see also [7] for related details) we consider a reference a.h.f. (denoted with subscript a) $
\]

\[T_a = T_0 - \beta z \]

(3.4)

\[P_a = P_0 + \frac{1}{\chi} \left[(1 - \frac{\alpha \beta}{\chi g \rho_0}) (e^{-\phi \omega x z} - 1) - \alpha \beta z \right] \]

(3.5)

\[\rho_a = \rho_0 \left[(1 - \frac{\alpha \beta}{\chi g \rho_0}) e^{-\phi \omega x z} + \frac{\alpha \beta}{\chi g \rho_0} \right] . \]

(3.6)

We now introduce with tilde perturbations upon this a.h.f.

\[\tilde{\rho} = \rho - \rho_a \]

(3.7)

\[\tilde{T} = T - T_a \]

(3.8)

\[\tilde{P} = P - P_a . \]

(3.9)

We now introduce the tilded quantities in eq. (3.1) to (3.3) and assume, as done by Peltier, that c_p, α, χ, K and μ are held constants. We get

\[(-\rho \rho_0 \chi + \rho_0 \alpha \beta) e^{-\phi \omega x z} V_3 + \frac{d\tilde{P}}{dt} = -\tilde{\rho} \frac{\partial}{\partial x_i} V_i - \rho_0 \left[(1 - \frac{\alpha \beta}{\rho_0 \chi g}) e^{-\phi \omega x z} + \frac{\alpha \beta}{\chi g \rho_0} \right] \frac{\partial}{\partial x_i} V_i \]

(3.10)

\[\left\{ \rho_0 \left[\left(1 - \frac{\alpha \beta}{\chi g \rho_0} \right) e^{-\phi \omega x z} + \frac{\alpha \beta}{\chi g \rho_0} + \tilde{\rho} \right] \frac{dV_i}{dt} = -\frac{\partial}{\partial x_i} \tilde{P} + \frac{\partial}{\partial x_j} \tau_{ij} - g \tilde{\rho} \delta_{ij} \right. \]

(3.11)

\[\left\{ \rho_0 \left[\left(1 - \frac{\alpha \beta}{\chi g \rho_0} \right) e^{-\phi \omega x z} + \frac{\alpha \beta}{\chi g \rho_0} + \tilde{\rho} \right] \frac{dV_i}{dt} - \beta V_3 \right\}
\]

\[\times \left\{ \frac{\partial}{\partial x_i} \tilde{P} - \rho_0 \left[\left(1 - \frac{\alpha \beta}{\chi g \rho_0} \right) e^{-\phi \omega x z} + \frac{\alpha \beta}{\chi g \rho_0} \right] V_3 \right\} = \frac{\partial}{\partial x_i} K \frac{\partial}{\partial x_i} \tilde{T} + \tau_{ij} \frac{\partial}{\partial x_j} V_i . \]

(3.12)

Notice that the density perturbation takes a simple form. We have

\[\tilde{\rho} = \rho_0 (-\alpha \tilde{T} + \chi \tilde{P}) . \]

(3.13)

We now proceed to non-dimensionalize the quantities. The only differences here with section 2 above are the following: (i) ΔT_a and \tilde{T} are scaled with βL; (ii) \tilde{P} is scaled with $\rho_0 \frac{\nu K}{L^2}$; (iii) we introduce the new monomial

\[\Omega = \frac{\tilde{T}_{\text{max}}}{\beta L} \]

(3.14)

where \tilde{T}_{max} denotes an upper bound for $\tilde{T}; \Omega \lesssim 1$. Thus using the monomials defined in the latter part

\[\epsilon V_3 = \frac{\partial}{\partial x_i} V_i \]

(3.15)

\[e^{-\epsilon z} \frac{dV_i}{dt} = -\sigma \frac{\partial}{\partial x_i} \tilde{P} + \sigma \frac{\partial}{\partial x_j} \tau_{ij} + (\sigma R \tilde{T} - \sigma v_2 \tilde{P}) \delta_{ij} \]

(3.16)

\[\Omega \frac{d\tilde{T}}{dt} - V_3 + D_l \left(\frac{1}{\phi} - z + \Omega \tilde{T} \right) V_3 = e^{\epsilon z} \Omega \left(\frac{\partial}{\partial x_i} \right)^2 \tilde{T} . \]

(3.17)

These eq. (3.15), (3.16) and (3.17) constitute in our opinion a most general nonlinear quasi-Boussinesq model for a large cell gap (Newtonian fluid).
layer. These equations correspond \textit{in principle} to eq. (12), (13) and (14) of reference [8]. This correspondence in practice is not accurate. This is due to the fact that Peltier [8] considers infinitesimal perturbations upon the reference a.h.f. Thus the convective terms \(V_j \frac{\partial}{\partial x_j} V_i \) and alike do not appear in [8].

Comparison now with the system (2.23), (2.24) and (2.25) shows that considering perturbations upon a constant density reference hydrostatic field indeed gives altogether the qualitative contributions. The difference is a matter of quantitative evaluation. For \(\varepsilon_2 \) now need not be small. When \(\varepsilon_2 < 1 \) the exponentials in (3.16) and (3.17) when Taylor expanded yield back eq. (2.24) and (2.25).

Lastly we remark that holding constant \(\alpha, \chi, c_p, K \) and \(\mu \) as done by Peltier [8] may on occasion represent too a strong restriction. If one considers all these quantities as functions of \(T \) and \(P \) as they should in general be, a first order Taylor approximation may or may not be enough. In mantle convection pressure and/or temperature (viz. height) dependence of some of the parameters may be of importance. In such cases the scheme developped in 1 ought to be used.

Acknowledgments. — The first-named author gratefully acknowledges the hospitality received from Professor H. Wergeland and his group at the Trondheim Institute for Theoretical Physics where part of this research has been carried out. The visit to N.T.H. (Trondheim) was made possible thanks to the financial support from Norges Almenvitenskapelige Forskningsråd and from G.I.F.T. (Spain). The other author (R. P. C.) wishes to thank Professor J. Aguilar for his constant encouragement.

References