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d ~ d’ CROSSOVER IN THE ANISOTROPIC FREE BOSE GAS

S. BARI0160I0106 and K. UZELAC

Institute of Physics of the University Zagreb, Croatia, Yugoslavia

(Reçu le 23 septembre, révisé le 17 décembre 1974, accepté le 19 décembre 1974)

Résumé. 2014 On étudie le passage de d à d’ dimensions pour un gaz libre anisotrope de Bose. Pour
d’ ~ 2, les résultats obtenus sont en accord avec la solution que donne le groupe de renormalisation.
Ils sont étendus à la région d’  2. Ceci permet de penser que l’exposant critique de crossover et
égal à deux pour d’ = 1, n = 2.

Abstract. 2014 The d ~ d’ crossover in the anisotropic free Bose gas is considered. The results

agree with the renormalization group solution in the range of d’ ~ 2, where this solution exists and
extend its validity to values of d’  2. It is conjectured that for d’ = 1, n = 2 the crossover critical
index equals two.
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1. General. - This paper treats the simple and
exactly soluble model of a phase transition in the
d-dimensional anisotropic Bose gas at a constant

volume. The spectrum of the gas is assumed to be

It was recognized somè’tùne ago [1, 2] that the Bose-
Einstein condensation of the isotropic a = 0 gas

corresponds, by virtue of universality, to the
n = oo vector order parameter phase transition in
a d’-dimensional system with short range forces.

E.g. in both cases the critical index of the suscepti-
bility is

It is then expected that the crossover a --&#x3E; 0 in the

system (1) corresponds to a d -+ d’ crossover of a
n = oo vector model.
The crossover occurs in strongly anisotropic sys-

tems. Above a certain crossover temperature, T*
such a system behaves according to the laws appro-
priate to the lower d’ dimensionality, below the
crossover temperature, it becomes d-dimensional and
eventually undergoes a phase transition at Tc. Both
T* and T, depend on the anisotropy parameter a
in a way specified by the exponents gl and ç respec-
tively. It is generally believed that these two exponents
are equal. However, it should be mentioned that
in this paper we are concemed only with the expo-
nent ç, related to Tc.

The renormalization group approach [3, 4] furnishes
the solution of the crossover problem for an arbitrary n,
provided that the renormalization group converges
in d’ dimensions. It converges above the logarithmic
line in the n, d’ diagram. This line is at d’ = 2 for
n = oo. For n  Go it bends to a lower d’. The
renormalization group result is

where

and

Our first objective is to show that the universality
holds in the case of the anisotropic Bose gas (1).
Thus, we first rederive eq. (3) and (4) for d’ &#x3E; 2.

Furthermore, we extend our crossover calculation
into the region d’  2, where the renormalization
group does not converge, i. e. where eq. (3) and (4)
are not obeyed.
The region below the logarithmic line (i. e. d’  2

for n = oo) is the one in which some exact results
were recently derived [4] for n arbitrary and d’ = 0,1.
Two conjectures were formulated [5] on the basis
of these results. First, it was proposed that some of
the quantities which are singular above the logarithmic
line at finite Tc, remain singular below this line, but
at Tc(d) = 0. In particular, the critical index y
exists. Second, it was proposed that eq. (4) remains
valid in the region below the logarithmic line, with
qJ = y = 1 for d’ = 1.
Our (n = oo) results for d’  2 support both

conjectures : Tc( et) is given by eq. (3) with Tc(d’) = 0,
provided that d &#x3E; 2. The critical index y exists and
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(p = y. However, some care is required in the defini-
tion of y for d’  2 : since Tc (a = 0) = 0, the usual T
factor in the nominator of the correlation function
becomes critical below d’ = 2. This factor cancels
out of the susceptibility. Therefore, y deduced from
the correlation function is smaller by one than that
deduced from the susceptibility. It is this latter y
which has to be set equal to ({J. Thus in the case d’ = 1,
qJ = y = 2.

The problem of the crossover into the region below
the logarithmic line is interesting in many respects.
The above mentioned conjectures [5] were formulated
in connection with the Peierls transition in a 3-d

system of parallel linear d’ = 1 chains. It was argued [5]
that according to whether the deformation wavelength
is commensurate or incommensurate with the inter-
atomic distance, the d = 3 --&#x3E; d = 1 crossover occurs

respectively at n = 1 or n = 2. The first n = 1,
d’ - 1 crossover [6] corresponds to going to the

logarithmic line, i. e.

The same type of result holds here (n = oo) for
d’ = 2. Conceming the n = 2, d’ = 1 crossover,
it is very likely that below the logarithmic line the
relation ç = y, with the properly defined y, is valid,
not only for n = oo, as shown here, but also for
general n. Benefiting then from the fact that y is

independent [4] of n for d’ = 1 and n &#x3E; 1, our results
indicate that in the case n = 2, d’ = 1, ç = y = 2.
The power law is again conjectured, only ç is larger
by one than that proposed previously [5]. Tc starts
from zero with an infinite slope, when the interchain
coupling increases progressively from zero.

Let us finally mention that the crossover in the
anisotropic Bose gas was already considered [7]
in connection with the superconducting (n = 2)
fluctuations in the A-15 systems. The authors of
this work considered only the d = 3 --. d = 1 cross-

over, but with a more complicated spectrum than
eq. (1). This spectrum was believed to be more appro-
priate to the A-15 systems. In carrying out such
analogies, one must be aware of the fact that besides
the difference in the value of n between the Bose

(n = oo) and the superconductivity (n = 2) problem,
a more complicated Bose spectrum may correspond
to a change in the range of effective forces in the
superconductivity problem.

2. Calculations. - The critical temperature Tc(a.)
of the d-dimensional anisotropic Bose gas is the

highest temperature for which the chemical potential
in the expression for the number of particles is equal
to zero, i. e.

Here, N is the total number of bosons in the volume vd.
The energy Ea is given by eq. (1.1).
One has to be careful with the limits of integration

in eq. (2.1). For the isotropic Bose gas one can integrate
over the momentum up to infinity, the smooth cut-off
being assured by the exponential decrease of the
Bose function. However, when a tends to zero in
eq. (1.1) the smooth cut-off of the corresponding
momentum components tend to be infinite. Therefore,
it has to be replaced by the a-independent Brillouin-
zone cut-off. Obviously, only such a Bose gas is

analogous to the Wilson n = oo anisotropic vector
model [8]. In view of what is said here, we have to
solve the equation

where L1 = d - d’.
The cut-off is conveniently determined by the

requirement Tc (a = 0) = Tc(d’) as

where Sa = 2 nLJ/2 / r(A /2), while Vd is kept constant
in the process of changing a.

Performing the integrations in eq. (2.2) we get

where we have introduced the abbreviations

and y i , Ta, is the usual incomplete gamma func-
tion [9].

Eq. (2.4) is a closed equation for ’ta as a function
of a for arbitrary a  1. Here, we shall investigate
this equation only for small oc. In doing that, we
shall distinguish several régimes, according to the
values of d and d’.

In order to obtain the form (1.3) we examine the
relation
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In eq. (2. 8) we put a/ i« = x and use the series

expansion

Limiting our consideration to the case of a -. 0,
we solve the double infinite sum in eq. (2.9) replacing
the sum over n by an integral over nx = t. This

procedure is justified since x -&#x3E; 0 when ce - 0 for
dimensions d’ &#x3E; 2, where ’to =1 0. Thus we have for
small x

The sum over k is uniformely convergent and integrat-
ing term by term we get

where 

Within our limitation of (a ---&#x3E; 0) we take only the
term of the lowest order in the second sum of eq. (2 .11 ).
Then we obtain :
. d’ &#x3E; 4

Taking again only the lowest order terms in a we get

d’
(1) The prime over Y means that the term k = d - 1 for even

k 2

d’ &#x3E; 4 has the form const. ln x. For d’ = 4 this term gives the
leading contribution.

and from definition (1 . 3)

e 2  d’ - 4.
In this case, eq. (2 .11 ) becomes ,

which leads to

and gives :

One can see that, as expected, the critical exponent
depends only on d’ i. e. on the lower dimension.

Eq. (2.18) and (2.15) agree with the result obtained
within the framework of renormalization group
where one has for n = oo,

and relation (1.4) is valid.
2. 2 0  d’  2, (d &#x3E; 2). - As already mentioned,

this case is of special interest since the renormaliza-
tion group solution is not available.
We proceed in a way analogous to the one used

above. Since, in the present case io = 0, we do not
subtract 1/,ro as in eq. (2.8), but consider directly
the form (2.4). Replacing the sum by an integral,
as we did in eq. (2.10), we have to make an aditional
assumption that x = rx/1:a -&#x3E; 0 when rx -&#x3E; 0. This

assumption is verified a posteriori by the solution.
By a completely analogous method to that described
above we obtain the following results :
d’ = 2

. 0  d’  2

where

2. 3 d’ = 0, (d &#x3E; 2). - This case is to be treated
separately, since according to eq. (2.23) x = rxfrrx
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does not tend to zero when oc -&#x3E; 0. Thus we have to
solve

Obviously, the solution of this equation is i - oc,
i. e. ç = 1. Therefore, although for d’ = 0 x is
finite for a -&#x3E; 0, the limiting value of eq. (2.23)
for d’ --&#x3E; 0 agrees with the value which follows from

eq. (2.24) for d’ = 0. Unlike eq. (2.23) in this latter
equation the assumption x ---&#x3E; 0 is not introduced.
One can easily verify that the coefficient y for the

Bose system takes the same values as (p even for
d’  2, so the equality (1.4) remains valid at d’  2.

Finally, let us mention that nowhere in the above
derivation was it required that d and d’ are integers.
Therefore, all the results are valid for the general d
and d’.

3. Conclusion. - We have considered the crossover
d --&#x3E; d’ for the anisotropic Bose gas, with an arbi-
trary d and d’.

In the limit of oc -. 0 it was found that the exponent
is given by :

where qJ = 00 for d’ = 2 corresponds to the loga-
rithmic dependence Tc(a) ’" (ln a)-1.

This result agrees for d’ &#x3E; 2 whith the renormaliza-
tion group result (p = y, and extends its validity
into the regime of d’  2.
The results which concern, more specifically, the

anisotropic Bose gas are :
(i) The closed expression for Tc as a function of a

for arbitrary a.
(ü) The coefficient which premultiplies the a’/.p

dependence. This coefficient depends on both d
and d’.
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