
HAL Id: jpa-00208216
https://hal.science/jpa-00208216

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

I. Parity violation induced by weak neutral currents in
atomic physics

M. A. Bouchiat, C. Bouchiat

To cite this version:
M. A. Bouchiat, C. Bouchiat. I. Parity violation induced by weak neutral currents in atomic physics.
Journal de Physique, 1974, 35 (12), pp.899-927. �10.1051/jphys:019740035012089900�. �jpa-00208216�

https://hal.science/jpa-00208216
https://hal.archives-ouvertes.fr


899

I. PARITY VIOLATION INDUCED BY WEAK NEUTRAL CURRENTS
IN ATOMIC PHYSICS

M. A. BOUCHIAT

Laboratoire de Spectroscopie Hertzienne (*)

and

C. BOUCHIAT

Laboratoire de Physique Théorique (**),
Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

(Reçu le 13 juin 1974)

Résumé. 2014 Nous présentons dans ce papier (le premier d’une série), une analyse générale des
phénomènes de violation de la parité, induits par les courants neutres, en physique atomique. Nous
donnons tout d’abord l’expression des potentiels électron-noyau et électron-électron à courte

portée, violant la parité, prédits par les théories des interactions faibles contenant des courants
neutres. Nous passons ensuite au calcul détaillé de l’élément de matrice du potentiel électron-noyau
violant la parité entre des états s et p à une particule. Nous présentons une extension élaborée de
la méthode utilisée par Foldy pour donner une base plus rigoureuse à la formule de Fermi-Segré
donnant la valeur de la fonction d’onde d’un électron de valence dans un état s au niveau du noyau,
et nous arrivons à une expression extrêmement simple, en fonction des énergies de liaison, avec
une petite correction s’exprimant à l’aide du défaut quantique interpolé et du potentiel des électrons
à l’origine. Nous indiquons les arguments qui nous permettent de penser que la précision de notre
formule est comparable à celle de Fermi-Segré, c’est-a-dire quelques pour cents pour Z ~ 1. Un
caractère remarquable de ce résultat, outre sa simplicité, est sa variation en Z3 qui favorise de manière
évidente les atomes lourds. Nous décrivons rapidement comment se manifeste le mélange de parité
dans les transitions atomiques radiatives, en insistant particulièrement sur les conséquences de
l’invariance par rapport au renversement du sens du temps qui est préservée par les interactions
discutées dans ce papier. Pour améliorer les limites existantes, nous suggérons de chercher les effets
de violation de la parité dans les transitions dipolaires magnétiques deux fois interdites, induites
dans des atomes lourds par le faisceau d’un laser accordable. Dans un cas typique, tel que celui
de la transition 6 S1/2 ~ 7 S1/2 de la vapeur atomique de Césium, nous pouvons prédire un dichroisme
circulaire de l’ordre de 10-4. Nous terminons par une discussion sur les possibilités offertes, appa-
remment à plus long terme, par les atomes muoniques.

Abstract. 2014 In this paper (the first of a series), we present a general analysis of the parity violating
phenomena induced by neutral currents in Atomic Physics. We first give expressions for the short
range parity violating electron-nucleus and electron-electron potentials predicted by the theoretical
schemes of weak interactions featuring neutral currents. We turn next to a detailed computation of
the matrix element, between one-particle s and p states, of the electron-nucleus parity violating poten-
tial. Using a non-trivial extension of a method used by Foldy to put on a more rigorous basis a
formula of Fermi and Segre giving the wave function of an s valence electron at the nucleus, we
arrive at a remarkably simple expression, in terms of the binding energies, with a small correcting
term involving the interpolated quantum defect and the potential of the electronic cloud at the
origin. Arguments are given which lead us to believe that the accuracy of our formula is comparable
to that of the Fermi-Segre formula, i. e. a few per cent when Z ~ 1. Besides its simplicity, a remar-
kable feature of our result is a Z3 dependence, which obviously favours heavy atoms. We give a
brief analysis of the manifestation of parity mixing in atomic radiative transitions, with a particular
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emphasis on the implications of time reversal invariance, which is preserved by the interactions
discussed in this paper. In order to improve the existing limits, we suggest looking for parity violating
effects in twice forbidden magnetic dipole transitions induced by a tunable laser beam in heavy
atoms. In a typical case, like the 6 S1/2 ~ 7 S1/2 transition in atomic Cesium, a circular dichroism
of the order of 10-4 is predicted. Finally we discuss the apparently more remote possibilities offered
by the muonic atoms.

Introduction. - Recent developments in the field

theory of weak interactions [1] ] have given a new
dimension to the problem of the existence of weak
neutral currents, i. e. of weak processes induced by
the exchange of a weak neutral heavy boson. Until
very recently all the known weak processes were

adequately accounted for by a current-current lagran-
gian density of the type

where J,(x) is a charged current, in the sense that it
can be used as the source of a charged vector boson W ±.
In fact CW(x) can be considered as a description of
the exchange of a vector boson in the limit where
its mass becomes infinite. Although there is not

yet any experimental evidence for the existence of
these heavy vector bosons (the present experimental
limit on the mass of W± is at least five nucleon masses),
all the fashionable models of weak interactions
assume the existence of vector bosons of finite mass
as mediators of weak interactions. There are two
reasons for this hypothesis : i) the current-current

model leads to unphysical predictions in the limit
of very high energy; ii) nobody knows how to

compute higher order effects in a sensible way
with a current-current lagrangian. The break-through
which has occurred in the last few years consists in
the fact that it is now possible to construct renor-
malizable field theory models, involving charged
massive vector bosons. For the first time, it appears
possible to build renormalizable field theory models
unifying weak and electromagnetic interactions. Such
a programme can be achieved only at the price of intro-
ducing new physical objects into the theory : neutral
weak currents associated with the exchange of a
neutral heavy vector boson Zo, and/or new leptons,
which, because of their assumed large masses, may
hâve escaped observation.
The most popular model featuring neutral currents,

the so-called Weinberg model [2], is a kind of a
minimal model, in the sense that one avoids the
introduction of new particles (at least in the lepton
sector), and that it contains only one free angular
parameter Ow.

Processes induced by neutral weak currents in

high energy neutrino-interactions have been under
vigorous investigation during the last two years.
In the heavy liquid bubble chamber Gargamelle
exposed to the C.E.R.N. neutrino beam, a certain
number of events have been found which have been

interpreted as muonless neutrino-induced inelastic
interactions in nuclei [3]. The most natural expla-
nation of these events would be provided by the
existence of a weak neutral current containing a
neutrino and a hadronic component. Similar events
have also been reported in an experiment performed
at N.A.L. at much higher energies, where the back-
ground problems look very different [4]. Both results
seem compatible with the existence of the neutral
currents predicted by the Weinberg model, but
other explanations involving some new feature of
weak interactions (heavy leptons, etc...) cannot be
absolutely excluded. We should also mention that
the Gargamelle group has found three events which
can be considered as possible candidates for elastic
scattering of 7, on atomic electrons [5], a process
which can be (unambiguously) attributed to the
existence of neutral currents. If the statistics can
be improved significantly, we shall be provided with
clear evidence for weak neutral currents.

In this paper we shall present a detailed account
of a theoretical investigation of those atomic physics
effects associated with the existence of the electronic
and hadronic components of the proposed weak
neutral current. A brief account of this work has
been given in a recent letter [6]. In the models of
weak interactions discussed recently the coupling
of the neutral heavy boson Zo to the electron and
nucleons is parity violating, inducing a very short
range parity violating interaction between the electron
and the nucleus (a similar interaction between elec-
trons is also present but, because of Coulomb effects,
it will appear to be much harder to detect). The
idea of looking for parity violating effects in atomic
physics, as a way of investigating the possible exis-
tence of neutral weak currents is not a new one,
but unfortunately up to now the theoretical inves-
tigations have been limited to the hydrogen atom
where the effects expected are discouragingly small [7].
Stimulated both by the recent developments in
weak interaction theory, and by the tunable laser
revolution in experimental atomic physics, we have
decided to take a fresh look at this problem. A little
to our surprise, we have found that there is a reasonable
hope of detecting the parity violating effects induced
by weak neutral currents by exciting with a tunable
laser beam twice forbidden magnetic dipole transi-
tions nS1/2 -&#x3E; (n + 1) S1/2 in heavy atoms. Among
other things, the feasibility of such an experiment is
linked to the availability of a dye laser, tunable at
the right frequency.



901

The paper is divided into seven sections, followed
by three appendices where we have gathered most
of the technical details. We begin by a presentation
of the parity violating electron-nucleon and electron-
electron potentials, the latter playing a negligible
role in the effect considered here (Section 1). We
tum next to a computation of the matrix element
of the parity violating potential between s and p
states. This is performed using an extension of the
Fermi-Segre formula. By means of a simple example,
we show that the accuracy of the formula is not

necessarily limited by the validity of a refined form
of the J.W.K.B. approximation. We also give an
expression for the rather large relativistic correction
to be applied for Z &#x3E; 10. The detailed mathematical

justification of the formulae presented in this second
section is given in Appendices 1 and II. Next, we
give a short review of parity mixing effects in radiative
transitions, with an emphasis on the consequences
of time reversal invariance (Section 3). In section 4,
we make use of the results obtained previously to
derive a simple formula which allows a quick order
of magnitude estimate of parity violating effects in
atoms. A review of the existing experimental results
clearly indicates the need for more precise investiga-
tions (Section 5). In order to improve the situation,
we propose studying twice forbidden magnetic dipole
transitions, such as the S-S transitions in alkali atoms.
The case of Cesium appears quite promising (parity
effects of the order of 10-’). A complete analysis of
the theoretical problems raised by the Cesium expe-
riment will be given in a forthcoming publication.
Some other experiments, involving Thallium and

Lead, which could provide us with complementary
information are also briefly discussed (Section 6).
In the last section we explore the possibilities offered
by the muonic atoms in the search for neutral weak
currents. The situation appears much less favourable
than one would have expected on the basis of a
naive size effect argument, but will be improved by
the gain in muon intensity to be expected with the
arrival of the new generation of meson factories.
Appendix III is devoted to a discussion of the elec-
tron-electron weak potential, which is shown to

play a negligible role in the physical processes
discussed in this paper.

1. The parity violating potential. - The parity vio-
lating electron-nucleus potential Vp’-’- is associated
with the exchange of a heavy neutral vector boson Zo
between the electron and the nucleus, as illustrated
in the diagram of figure 1.

We shall work in the limit of infinite boson mass and
the momentum of the nucleus will be neglected.
In the non-relativistic limit P.V. can be split into
two parts, one independent of the nuclear spin, the
other involving the nuclear spin. The ratio of the
matrix elements of these two potentials is propor-

FIG. 1.

tional to a quantity having the following form :

where a, fi, a, b are numbers of the order of unity,
depending on the particular model of weak inter-
actions, and 6p, an are the spin operators of protons
and neutrons. The numerator has a structure similar
to the spin part of the nuclear magnetic moment
which, because of the shell structure of the nuclei,
does not increase with Z, but fluctuates between
values associated with single particle states.

It is then clear that for the large values of Z, Z &#x3E; 50,
which will concem us, the spin dependent part can
be neglected in comparison with the spin independent
part, except in special cases discussed briefly in the
last section of this paper, where the effect to be
observed is due entirely to the spin dependent part.
Ignoring the nuclear spin effect, the parity violating
potential reads :

where me, a, p, r are respectively the mass, spin,
momentum and position of the electron, c is the

velocity of light and GF is the Fermi constant, which
has the dimensions of an energy multiplied by a
volume, and is conveniently given by :

The dimensionless charge Qw(Z, N) is model depen-
dent. In fact, the above expression for Vp’-’- is the
most general form of a zero-range parity violating
potential, with nuclear momentum and nuclear spin
neglected, which is invariant under time reflexion.
The expression for the effective charge Qw(Z, N)

associated with the Weinberg model is derived in

Appendix III, and found to be :
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If the muonless neutrino inelastic réactions observed
at C.E.R.N. [3] and N.A.L. [4] are analyzed in the
framework of this model, one finds, using reasonable
dynamical assumptions (1), that sin’ 0w lies probably
in the range 0.3 to 0.4.
Even if the present evidence for a weak neutral

current involving the neutrino is not confirmed,
this would not necessarily imply that a neutral current
involving the electron is not present. In fact, B. W. Lee,
J. Prentki, and B. Zumino [8] have constructed a
model of weak interactions where the neutral vector
boson Zo is coupled only to charged leptons e-, y-.
The quantity Qw(Z, N) is readily obtained and
found to be :

where 0w is a parameter similar to that occurring in
the Weinberg model, but on which we do not have
any information.
One may also consider a situation where neutral

weak currents are totally absent, but where their

presence, with a considerably reduced strength, can
be simulated by higher order effects. The quantity
Qw(Z, N) can be computed in renormalizable models
without neutral currents [9]. The result depends
strongly on the details of the models : masses of
heavy leptons, etc... The only thing one can say is
that Qw(Z, N) is at least reduced by a factor of the
order of a = 1/137 with respect to the values given
by the previous models.
We would like now to say some words about the

electron-electron short range parity violating poten-
tial. In reference [7] it is argued that because of the
Coulomb repulsion, the two electrons are not affected
by a zero-range potential. This argument is valid

only if the two electrons have a small relative velocity,
as can be seen most easily by looking at the absolute
square of the ratio tf coul(O)/tf plane(O), where tf couI(r)
is the Coulomb wave function of a system of the
two electrons corresponding to the same relative

velocity as the plane wave tf plane(r) appearing in the
denominator. Using a known expression for the
Coulomb wave functions near the origin, one finds :

where v/c is the relative velocity of the electrons.
For light atoms v/c is of the order of a, and this ratio
is of the order of a few per cent ; in heavy atoms
however, the Thomas-Fermi model tells us that v/c
is of the order of OEZ 2/3. If one takes, for instance,
Z = 55, the above ratio is found to be of the order

(1) The estimation given in the text is based on the parton model,
which leads to a fair description of the high energy neutrino inelastic
reactions induced by the charged currents.

of unity, so that the Coulomb repulsion is no longer
effective. In Appendix III, we have looked more
carefully into this problem and have compared for
heavy atoms the matrix elements of Vp’-’- and Ve.e.p.v..
For an atom with one valence electron, we have
derived, in the framework of the Weinberg model,
an effective one particle potential involving the
electron density of the ion core ne(x) :

In the case of Cesium (Z = 55, N = 78), we have
found that the absolute value of the matrix element
of the short range parity violating e-e potential is

less than 2 % of the corresponding quantity involving
the electron-nucleus parity violating potential. This
result can still be understood as a Coulomb effect,
but this time it has to be attributed to an enhancement

produced by the strong Coulomb attraction of the
nucleus, of the electron wave function amplitude
near the origin. In conclusion, we shall ignore in
the rest of this paper the effect of the parity violating
electron-electron interaction but, since it carries

complementary information conceming the weak
interaction models, we shall retum to it in a future
publication.

2. Parity mixing in single particle wave functions. -
Under the influence of the parity violating potential
parity mixing will occur between atomic wave func-
tions. In the independent particle model of the atom,
the electron-nucleus parity violating potential will

mix, because of its zero-range nature, only s and p
states.

We write the wave functions of nS1/2 and n’ Pl/2
as foliows :

where X. is the ordinary Pauli spinor and Q lm the
spherical spinor :

The matrix element of Vp.,. is given by :

where
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Note that this matrix element is purely imaginary ;
as we shall see later this fact is connected with the
time reversal invariance properties of V,e-N.
We shall now assume that PnSl/2(r) and Pn’Pl/2(r)

are solutions of the Schrôdinger equation with a
central potential V(r), satisfying the following pro-
perties :

a) when r --&#x3E; 0, rV(r) e’ Z where eZ is the
electric charge on the atomic nucleus ;

In an alkali atom, zo = 1 and rc is interpreted as
the radius of the ion core (the assumption of a sharp
boundary to the electronic density of the core is
convenient but by no means essential). Within these
hypotheses a formula is available in the literature

giving Rno in terms of the interpolated quantum
defects [10]. The derivation given by Fermi and
Segré has been improved by Foldy [11] and, more
recently, by Frôman and Frôman [12]. When used
to compute hyperfine separations of atoms or ions
with one s electron, the formula appears to be remar-
kably accurate, provided relativistic corrections are
included properly. As an illustration we give a table
obtained from results quoted in the book of
H. G. Kuhn [10] :

Recent measurements performed on several alkali
excited states [13] also confirm the validity of the
Fermi-Segré formula.
We have carried through an extension of the

method of Foldy in order to get the starting coefficient
R

of the radial wave function lim R., Although the
r-o r 

1

final result remains rather simple, the derivation is

fairly involved, and the details will be given in Appen-
dix I. Here we shall only indicate the main points and
illustrate them for a simple case.
For a potential satisfying conditions a) and b)

and with some other minor technical assumptions,
Ham [14] has shown that the solution of the Schrô-
dinger équation, regular for r = 0 and suitably
normalized, U,e(r), is an entire analytic function of
the energy 8 (e is the energy in atomic units). When 8
is not too far from zero, U,e(r) is a slowly varying
function of e, so that a Taylor expansion around
8 = 0 can be limited to the first two terms, to a

reasonable approximation. When r &#x3E; rc, the quantum
defect theory allows us to write Ule(r) as a well-defined
combination of regular and irregular Coulomb wave
functions. In the particular case 1 = 8 = 0, Ule(r)
takes a rather simple form in terms of Bessel func-
tions :

where p = rlao is the radial coordinate in atomic
units, and 1À(e) is the quantum defect, which, for
e = - 1/v2 corresponding to a bound-state of energy
En, is given by

Seaton [15] has shown that the radial wave func-
tion Rnl(r) is given in terms of Ule(p) by :

where dnl is a non-analytic function of e, given in
terms of the quantum defect and its derivative,
which, in the 1 = 0 case and the limit of large vn,
takes the simple form :

Summarizing the above considerations, we may
say that, within the hypotheses a) and b), a knowledge
of the interpolated quantum defect ,u(E) provides us
with an exact expression for the radial wave function
for r &#x3E; rc.

In the Foldy method, one starts with a represen-
tation of the wave function which is very accurate
near the origin, but is normalized in an arbitrary
way. The proper normalization is obtained by making
the connection, for r &#x3E; rc, with the known exact
wave function given by the quantum defect. We
shall sketch the method for the particular case 1 = 0,
s=0. The general case is treated in Appendix I.

The function U(p) = Uoo(p) is the regular solution
of the simple differential equation

where is such that pv(p) --&#x3E; 2 Z

when p -&#x3E; 0 and pv(p) --&#x3E; 2 when p -&#x3E; oo.
The basic idea of the method is to consider a

representation of U(p) of the following form :

where the function lfJ obeys the non-linear diffe-
rential equation :

with

and C is a constant to be determined.
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The choice of the above representation is motivated
by the fact that, in the case v(p) = 2 Z/p, the regular
solution is obtained by taking ç = Zp, which implies
’DqJ = 0. One expects, then, that the use of the appro-
ximate solution (13) obtained by ignoring in (14) the
term Dç, is justified near the origin. For large values
of p the approximation 2 qJ,2/qJ ~ v(p) coincides with
the ordinary J. W. K. B. result, as can be easily verified
if one uses the asymptotic form of the Bessel functions
for large argument. Since the J. W. K. B. approxima-
tion is known to give correct results for Coulomb
functions when the two conditions p &#x3E; 1 and p « 1 /E
are satisfied simultaneously, the approximation ’DqJ ~ 0
will also be valid. In fact one can verify, using the
asymptotic form of the Bessel functions, that the

expression (8) can be cast in the form (13), for large
values of p, if one takes :

The ratio Dç/v(p) is then found to be :

The approximation ’J)cp ~ 0 appears as a refined
J. W. K. B. approximation, having the great advantage
of being valid near the potential pole at the origin.
Moreover, in the case 1 &#x3E; 0, the usual difficulty near
the classical turning point is completely avoided.

In the intermediate region p ~ 1, the approxima-
tion 0(p z 0 is probably no longer very accurate
but in fact it is not needed in order to obtain the
Fermi-Segré fromula. What is needed is a weaker

assumption :
The wave function U(p) can be represented by the

expression (13) involving a function cp which remains
regular when p - 1 and which admits an asymptotic
expansion which coincides with the formal series

constructed through an iterative procedure starting
with Dç = 0. We give below the first two terms of
the iteration :

In order to perform the connection between the
two forms, (8) and (13), of the wave function, let us
look again in the region p &#x3E; Pc, with p » 1. By
integrating the two sides of equation (14), one obtains :

The behaviour of ’J)qJ for large values of p, exhibited
in eq. (17), implies the convergence of the integral

It is then possible to rewrite (19) as :

Remembering that for p &#x3E; pc, v(p) = 2/p, we obtain,
after some simple manipulation, the following expres-
sion for ç, valid when p &#x3E; p. :

with the following values for the constants A and bA :

When p » 1, the correcting term,

goes to zero like 1 /p, so we have for large values of p :

Again in the limit of large p, the two expressions (8)
and (13) for the function U(p) can be written in a
similar form, if one makes use of the asymptotic
formulae for the Bessel functions :
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where we have introduced the variable z = J8P.
The above expressions coincide provided one makes
the identification :

where k is an arbitrary integer. If one takes the

limiting case of atomic hydrogen, which means that

V(P) , 1 uniformly in p, the constants A and bA
2/P 
go to zero. But, by definition, y = 0 for atomic

hydrogen. The choice k = 0 appears then the only
possible one. Thus we have finally :

Remembering that ç(p)/Zp - 1 when p ---&#x3E; 0, one
obtains immediately, using (10), (11), (13) and (23),
the radial s wave function at the origin :

In order to arrive at this formula, it is not at all neces-
sary to assume that Dç is small in the intermediate
region p N 1. The corrections arising from the finite
value of Dç appear only in the quantity bA and will
be automatically included in the Fermi-Segré formula
provided one uses the empirical quantum defect.
With similar assumptions, the method sketched out

above has been extended in two ways : first, it can be
properly generalized to values 1 &#x3E; 0 in order to give
the derivative of the p wave radial function at the

origin; secondly, the first order correction in the
reduced energy a can be included in the results,
but in order to do this in a consistent way, it appears
necessary to take explicitly into account the first
order correction in ’J)p in the region of large p.
Although the basic ideas remain the same as in the
simple case treated above, the algebra is mûch more
involved. All the details can be ’found in Appendix I,
and only the final result will be quoted here :

The quantities bo(en) and b1 (en), which are smaller
than unity when s « 1 and Z » 1, are given by :

where p(s) is the interpolated quantum defect. The
quantity Ç, which appears only for p waves, involves
the potential of the electronic cloud at the nucleus,
ve(0) ’

For heavy atoms an approximate expression for
can be obtained with the help of the Thomas-Fermi
model :

, so that expansion in terms of Ç is certainly adequate
when Z » 1.

We would like to emphasize once more that the
accuracy of the above formulae is not limited by the
fact that we have used our modified J. W. K. B. appro-
ximation in a region where its validity is rather
uncertain. The essential point in the derivation is
that the function cp(p) can be continued from the
region p x5 0 to the region p &#x3E; Pc’ The main role of
the modified J. W. K. B. approximation is to provide
us with an argument for the possibility of such a
continuation.

In order to test the accuracy of our formula, we
have compared the results obtained by using it with
the atomic p-wave functions obtained from Hartree-
Fock calculations [16] [17]. Our formula for p-wave
functions is supposed to work only for valence

p-electrons in atoms of high Z, when the binding
energy 8n, in atomic units, is « 1. We have made the

comparison in the cases of Gallium, Indium and
Thallium. In the application of the formula one
should use the calculated binding energies rather
than the experimental ones. The main source of

uncertainty is the factor involving the derivative of
the quantum defect. We have found that our formula
works with an accuracy of the order of 10 %. In
conclusion, we expect that, within the framework of
the independent particle description of the atoms
(which is certainly a fairly good approximation for
alkali atoms), our formulae are correct to within
10 % when applied to states of the valence electron.
We are now in a position to write down the matrix

element of the parity violating potential :

where en = - 1/vn and en, = - 1/vn, are the binding
energies in Rydberg units..
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The formula (29) still cannot be used in this form,
since it does not contain any relativistic corrections.
These corrections are expected to be quite substantial
for atoms of large Z, especially if we remember that
Dirac wave functions are infinite at the origin for
s 1/2 and pi/2 electrons moving in the Coulomb

potential of a point charge. In Appendix II, we give a
derivation of the relativistic correction factor Kr by
which we should multiply the formula (29). We
follow a prescription which has been quite successful
in p-decay calculations and which consists in using
Dirac wave functions for a point like nucleus, but
evaluated at the nuclear radius.
The correction factor K, is given as a function of

the nuclear radius R :

R can be evaluated from the following empirical
formula (18), valid for Z &#x3E; 40 :

To illustrate the importance of Kr, we quote the
values of K, for Cesîum133 and Lead’o" :

To conclude this section, we would like to empha-
size a feature of our results which is of great practical
importance, namely the fact that the matrix element
of the parity violating potential increases roughly
like Z3, which obviously favours heavy atoms in the
search for parity violating effects.

3. Effects on radiative transitions of parity mixing
in atomic wave functions. - The mixing of wave
functions of different parity will manifest itself by
typical parity violating effects in physical processes
involving absorption and emission of radiation by
atoms.

Similar effects have been studied extensively in
nuclear physics and recently unambiguous proof of
the existence of a parity violating component in
nuclear forces has been found [19]. Although the
basic formula given below is in the literature, we
have, for the sake of completeness, included a simpli-
fied derivation of it, with emphasis on the conse-
quences of the time invariant properties of the parity
violating potential discussed in this paper.
The interaction of an atom with the radiation field

is given in the dipole approximation by :

In this expression, the quantities :

are, respectively, the electric dipole and magnetic
dipole operators associated with the atomic current
operator jJl = (p, j). E and B are the induction electric
field and magnetic field given (in the Coulomb gauge)
in terms of the Heisenberg vector potential field

operator A(r, t) by :

The expansion of the vector potential in terms of
creation and annihilation operators reads :

where the operators aÂk and alk respectively annihilate
and create photons of impulsion hk and transverse
polarization states EÂ (À = 1, 2) localized within a
volume L 3. In Him, E and B are taken at t = 0 and
evaluated at the centre of mass of the atom (r = 0).
In terms of aAk and al, Hi m takes the simple form :

Let us look at the photons emitted along the z direc-
tion with a circular polarization j = + 1 described
by the complex polarization vector

where x and y are unit vectors along the x-and y-axes.
The emission probability p(ç) is proportional to

the quantity :

where 1 i &#x3E; and 1 f&#x3E; are, respectively, the initial and
final atomic states involved in the transition. Intro-

ducing now the spherical components dq and J1q of
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the operators d and it :

we can write :

Using the Wigner-Eckart theorem, we define the
reduced El and Ml amplitudes as :

The circular polarization emitted by atoms initially
unpolarized is given by :

Making use of the identity :

we obtain the final expression :

The product El Mt is non zero if and only f the atomic
states 1 i &#x3E; and 1 f &#x3E; are mixtures of states having
different parity. The fact that one observes circularly
polarized photons, although the initial conditions
are symmetrical, indicates clearly that all orientations
of space are not equivalent.
We would like to show now that, if the atomic

Hamiltonian, while violating parity, is invariant
under time reflexion, the product El Mi is purely
imaginary. Let T be the antiunitary transformation
associated with time reflexion. The transformation

properties ofd and can be read off from formulae (32),
knowing those of the electric four-current :

Or, in terms of the spherical components (36) :

Let now 1 rxJM &#x3E; be a stationary atomic state (a stands
for a set of quantum numbers invariant under T)
having no other degeneracies than that connected
with space rotation invariance. If T commutes with

the atomic Hamiltonian, we have :

where n,,,j is a phase-factor.
We have now all we need to derive the conse-

quences of T invariance for the phase of the pro-
duct El Ml .

Using the antiunitary properties of T and eq. (39)
and (40), we can write :

or, in terms of the reduced amplitude El :

A similar relation is readily obtained for Ml :

It follows immediately that :

We can conclude that, if T invariance holds :

The above derivation, slightly adapted, can be
used to obtain the well known result that a stationary
state has an electric dipole moment if, and only if,
the invariances under time and space reflexion are
simultaneously violated. It is then clear that the parity
violating potential we are considering here will not
induce any linear Stark effect, which is known to be
absent in heavy atoms to excellent precision [20].

In practice, parity mixing can always occur, to a
small degree, because of the presence of static electric
fields. The amplitude of the parity mixing given by
formula (10) will correspond, for the case of Cesium,
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to a static electric field of the order 10-4 volt/cm !
Fortunately, we can show that this parity mixing
will not give rise to any circular polarization. Let
us call Eo the static electric field and neglect its varia-
tion over distances of the order of the atomic radius,
so that the perturbation associated with Eo is just
- Eo . d, where Eo can be considered as a constant
field. Let us assume now that we look for circularly
polarized photons ç:t emitted along an arbitrary
direction specified by the unit vector n. Let us now
consider the operator a, defined as reflexion with
respect to the plane containing the origin and parallel
to the two vectors Eo and n. R changes right circular
polarization into left (and vice versa). The pertur-
bation - Eo . d is clearly invariant under a, while
the potential given in eq. (1) is not. If, under initial
symmetric conditions, the photon is emitted along n
with a non zero circular polarization, the symmetry
under q is violated. It follows then that the parity
mixing produced by static electric fields does not
induce any circular polarization.
With a similar argument, one can show that a

static magnetic field, although it does not mix states
of different parity, can give rise to a circular pola-
rization. In the case of the 62S1/2-72S1/2 transition
of Cesium, which will be discussed below, through
a mixing between different hyperfine levels, a field
of 0.1 G can produce a difference, between absorp-
tion cross-sections for left and right photons, of
the order of 10-4. However, the circular polarization
associated with true parity violation will not be affected
by a reversal of the direction of propagation of the
light with respect to the magnetic field, while the
circular polarization induced by the magnetic field
will change its sign.

4. Order of magnitude estimate of parity violation
effects in atomic transitions. - As an introduction to
the more experimental considerations to be given in
the following sections, we shall give here an order of
magnitude estimate of parity violating effects. Let
us write the reduced magnetic dipole matrix element
Ml as :

.ÂL1 being a dimensionless number, which will be
of the order of unity for the normal magnetic dipole
transitions, such as those occurring between the
lower states of the Pb atom, for .example

For reasons which will become obvious in a moment,
we shall also be concerned with twice forbidden

magnetic dipole transitions similar to the 3S1 --&#x3E; iso
transition in Helium which has been observed recen-

tly [21]. In such cases M1 is of the order of 10-5
to 10-4. To give an estimate of El, we shall make
the simplifying assumption that there is only one
mixed state of opposite parity (in the more precise
discussion given below for the particular case of

Cesium, we have in fact considered mixing with an
infinite number of states, including the continuum).
We write El as given by first order perturbation

theory :

where Ei = eao El is the reduced electric dipole
matrix element associated with the allowed transition
between the state 1 n’ Pl/2 &#x3E; and a state 1 n" S1/2 &#x3E;
of opposite parity. 91 is a dimensionless number of
the order of unity. Using eq. (29) and neglecting
factors close to unity, we can write, after some alge-
bric manipulation : 

as :

All the factors appearing in this formula are dimen-
sionless. Inserting the numerical values

one obtains the final expression, useful for obtaining
rapid estimates of 1 Pc 1 :

For instance, if one takes :

one finds :

For light atoms (Z  10, Kr ~ 1), the expected
effects seem discouragingly small. For heavy atoms,
with Z &#x3E; 50, the factor Z3 Kr gives an enhancement
of the order of 106 or greater. If one takes for instance
the case of Lead, where Z3 Kr ~ 5 x 106, the above
simple estimate (formula 45) gives 1 Pc 1 ~ 0.5 X 10-7.
Such an effect will still be very hard to detect, but
the situation can be seen as becoming comparable
to that of nuclear physics if one remembers that the
efficiency of circular y-ray analysers does not exceed
a few percent and that a polarization of 5 x 10- 6
has been detected in Ta 181 [19]. Possible ways of

improving thé situation will be discussed in sec-

tion 6.

5. Review of previous attempts to detect parity
mixing in atomic states. - In recent years, experi-
ments have been performed in order to put an upper
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limit on the parity mixing amplitude in atomic
states. We would like to confront the results of
these experiments with the theoretical considerations
developed in the preceding section. Since we are
concemed here with an interaction which violates

parity but preserves time reflexion invariances, we
shall not discuss the very beautiful experiment of
Sandars and co-workers [20] which was designed to
detect an electric dipole moment on the electron.
The effects associated with a non-zero electric dipole
moment are characteristic of an interaction which
violates both space and time reflexion invariances.

5. 1 CIRCULAR DICHROISM IN MOLECULAR OXYGEN

(016)2 [22]. - The spectral line (7 600 Á) investigated
is associated with the transition from the ground
state 3 Eg to the excited state 1 Lg+. The analysis
of the symmetry properties of the two states shows
that the transition is of the magnetic dipole type.
The experiment goes in two steps. Step one : a mea-
surement of the absorption coefficient, yielding a
value for the magnetic dipole matrix element. Step
two : a measurement of the circular polarization Pctr of
the transmitted light. One expects P,,,’ to be the pola-
rization associated with the dipole transition Pc
multiplied by the absorption coefficient, 4 x 10-2,
with, as a consequence, an important loss of sensi-
tivity. From the value of the absorption coefficient
one can deduce an order of magnitude for the ratio
1 gl/,,Kl 1, where 61 and Xl are in units eao and

YBIC, respectively :

In table I, we have compared the upper limit obtained
by the authors for the value of Pc with the order of
magnitude of the effect predicted from formula (44),
taking the above value of 1 E1/M1 1 and the factor
(Bn Bn,)3/4/1 Bn - Bn’ 1 - 1. For a precise estimate, a
detailed knowledge of the wave function of the
molecular states involved would be necessary. The

upper limit of Pc quoted by the authors seems to us
quite optimistic when one looks at the published
data. The value quoted in parenthesis would seem
to us more realistic.

5.2 CIRCULAR POLARIZATION OF THE PHOTONS

, EMITTED IN THE MAGNETIC DIPOLE TRANSITION

1S0--&#x3E; 3P 1 (Â = 4 618 A) IN Pb [23]. - In this expe-
riment, one looks at the circular polarization of

photons emitted spontaneously at a wavelength of
4 618 A from a lead vapour lamp. These photons
are associated with the magnetic dipole transition
(6p)2 1So --&#x3E; (6p)2 3P1. The magnetic dipole transi- 

.

tion matrix element has been estimated by Gars-
tang [24]. It leads to a rate of 78 s-1, which is to be
compared with the lifetime of 5.75 x 10-’ s of the
odd parity level (6p 7s) 3P1 [25]. The corresponding
ratio 81/M1 ) 1 ils quoted in table I. It differs conside-

rably from the value quoted, without explanation, by
the author who suggests a much more suppressed
dipole transition (by a factor 102). The circular

polarization detected in the forbidden 4 618 Á line
is comparable to that observed in other lines asso-
ciated with allowed electric dipole transitions. Conse-
quently it cannot be associated with a genuine parity
violating effect but leads only to an upper limit for
such an effect.

TABLE 1

(The theoretical numbers are only order of magnitude estimates).

A look at table 1 shows that the existing limits are
rather poor and that effects larger at least by a factor
5 x 103 than those considered in this paper could
have escaped observation. The need for more sensitive
experiments is evident.

6. A new proposal : induced twice forbidden magnetic
transitions (S-S transitions in alkali atoms, etc...). -
Let us look at the different ways of increasing Pc as
given by formula (44). One possibility would be to
find a situation where s and p levels are very close to
each other. For practical reasons, the 2S1/2 _2p1/2
system of atomic hydrogen seems excluded, at least
with the present techniques. One might also consider
an nS 1/2-nP 1/2 in alkali atoms for n very large;
however the ratio

appearing in (44) does not increase with n ; in fact it
goes to a finite limit when n - oo. In more physical
terms, what is gained with a small energy denominator
is lost through the decrease of the matrix element of
Vpy arising from the spreading in space of the atomic
wave functions when n - oo.
Another possibility is to try to increase the factor

! S1/M1 by working with highly forbidden transitions.
The appearance of dye lasers with tunable fre-

quency has opened a new area in atomic spectroscopy
and one can contemplate the possibility of exciting
twice forbidden magnetic transitions like

in alkali atoms.

6. 1 THE MAGNETIC DIPOLE AMPLITUDE IN

(11 - 1) S1/2 ---&#x3E; nS1/2 TRANSITIONS IN ALKALI ATOMS. -
We would like to give here a brief discussion of the
mechanisms which can give rise to a non-vanishing
transition amplitude between the S states of alkali
atoms.

6.1.1 « Retardation » effect. - This is associated
with the phase difference between the waves emitted
at different points of the atomic volume and can be
described by the following effective magnetic dipole
operator Preto acting on the wave function of the
valence s electron :
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where r is the radial coordinate of the valence electron
and k the photon wave number. The matrix element
of r2 can be estimated by a method used by Bates
and Damgaard [26] for the computation of electric
dipole amplitudes. For the 6S-7S transition, one

finds :

6.1. 2 Hyperfine mixing. - The hyperfine interac-
tion between the electron spin and the nuclear spin
can mix S states of different radial quantum numbers
and give rise to a non-vanishing magnetic dipole
amplitude. This effect can be readily estimated by
using first order perturbation theory and the Fermi-
Segré formula to compute the matrix element of the
hyperfine interaction :

where F = I ± 2 and F’ = I ± 2 stand for the total
angular momentum of the atom and I for the nuclear
spin. LB Wn - 1 is the hyperfine splitting in the (n - 1) S
state and En, En-1 the two unperturbed atomic

energies. For the 6S 1/2-7S 1/2 transition of Cesium,
one finds :

Note the important fact that the magnetic dipole
amplitude is proportional to the difference F - F’.
The effects 6.1.1 and 6 .1. 2 have been computed
with the same phase convention, namely that of

Appendix 1.

6.1.3 Relativistic effects. - The mechanisms we
have just described do not affect the diagonal part of
the magnetic dipole operator. The gyromagnetic
ratios of alkali ground states exhibit deviations from
those of a free electron. For instance, in the case of
Cesium [27] :

These deviations are usually explained by invoking
relativistic corrections. For instance, in the case of
Hydrogen-like atoms, these effects can be described
by the effective magnetic dipole operator which has
to be used with non-relativistic wave functions :

The diagonal and non diagonal matrix elements of
p,,,. are of the same order of magnitude :

Similar expressions describing relativistic corrections
to the magnetic dipole operator can be found in the
literature [28], [29], [30]. For atomic S states, they
can be cast in the following simple form :

In the case of 3S1 --&#x3E; ’So transitions in a helium-like
two-electron systems the two-particle part does not
contribute, as has been noted by several authors [28].
If one ignores exchange contributions between the
valence s electron and the closed-shell electrons, the
above expression can be transformed into a one-
particle operator which can be used in alkali S states :

where V is the electrostatic potential acting on the
valence electron. If this formula is used to estimate
the Ag of Cesium, one finds results which tend to be
too small and to have the wrong sign (the opposite
conclusion reached by Perl [30] is based on approxi-
mations which seem to us hard to justify). This result
is perhaps not too surprising if one remembers that
we have used an expression which contains only the
lowest order correction in (Za)2 and that (Za)2 N 0.16
for Cesium.

Among the possible higher order effects, which
are negligible for light atoms but may become impor-
tant for Cesium, we would like to mention the mixing
induced by the combined effects of electrostatic inter-
action between the electrons and the spin-orbit
coupling, of the Cesium nS state to states of angular
momentum L = 1 belonging to configurations of the
type (5p)-16s n’ p. (Mixing with L = 0 states does
not affect the gyromagnetic ratio and does not induce
any magnetic dipole transition amplitude between
different S states). We write symbolically the perturbed
S states as : 
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the real coefficients a, b, c, a’, b’, c’ satisfying the
relations :

One finds, using the known values of the Landé
coefficients Ag :

For a given configuration, if one neglects diffe-
rences in the energy denominator, the g-shift and the
magnetic dipole amplitude take the simple forms :

In the above expressions, ( is the spin-orbit para-
meter of the 5p hole ; AE z AE’ are the core excita-
tion energies for 6S and 7S, respectively. Fo, G1 and

Ci are the Slater direct and exchange radial

integrals with arguments (6s 5p ; 6s n’ p) and (7s 5p ;
6s n’ p), respectively. A semi-quantitative analysis due
to Philipps [31] indicates that the shift chang has pro-
bably the correct sign and the right order of magni-
tude (at least for Cesium). Computations with hydro-
genic wave functions give the ratio hift as between

2. The 5p state being tightly bound, the exchange
integrals G1 and G’ receive contributions mainly
from the intemal part of 6s and 7s wave functions.
The function Rns(r)/Rns(o) is an analytic entire function
of the energy En and is slowly varying when r is such
that the potential energy is large compared to En. We
expect then the ratio Rns(0) is to satisfy the approximate
equality :

The transition amplitude  7S 1 Jlz I 6S ), in units
of ,uB, given by (48) is probably of the same order of
magnitude as on am but reduced by a factor of the
order 
To summarize the above discussion, we would like

to stress several points. i) The hyperfine mixing effect
provides us with a lower limit of the order of 10- 5 for
the reduced magnetic dipole transition amplitude 
since an exact accidental cancellation with the contri-
bution from relativistic corrections, cannot occur

simultaneously in the F = 1 - t -&#x3E; F’ = 1 + t and
F = I + F’ = I - -1 transitions. ii) Because of
the change of sign of the hyperfine mixing contribu-

tion, a precise measurement of the ratio of the inten-
sities of these two transitions will offer the possibility
of an experimental determination of the relative sign
of hyperfine and relativistic contributions. iii) 10-4
appears as a reasonable upper limit for the reduced

dipole transition amplitude M1.

6 . 2 EXCITATION OF THE 6S1/2 --&#x3E; 7S1/2 TRANSITION
IN CESIUM. - The twice forbidden magnetic dipole
transition in Cesium :

appears for various reasons, to be a good place to
look for the effects discussed in this paper. Its principal
advantage is the availability of tunable lasers at the
right frequency. The experiment will be carried out
in two stages ; first one determines the 1 M, 1 ampli-
tude by looking at the intensity If of fluorescence light
corresponding to the 7S 1/2 --&#x3E; 7P1/2 transition ; second-
ly one searches for a dependence of the 6S1,2 -&#x3E; 7S1/2
transition probability upon the state of circular

polarization of the incident photons, through a diffe-
rence between the associated fluorescence yields Iright
and Ileft- The asymmetry

is clearly equal to the quantity Pc discussed in the
previous section. An order of magnitude estimate of
Pc can be made using (44). The analysis performed
just above indicates that 1 1 - 104 and taking

one finds :

A detailed computation of the electric dipole
amplitude E1z defined as the matrix element of dz,
has been performed, taking into account the mixing
with all possible states (including the continuum)
and using the theoretical machinery developed in the
previous sections. The Weinberg model with
sin2 0w = 0.35, leads to the result :

with

one recovers the value obtained by the rough estimate
based on (44) : 1 Pc 1 ~ 10-4.
The above result implies that the imaginary part of

the mixing amplitude of the 6S state with the diffe-
rent P states, produced by the parity violating time
reflexion invariant electron-nucleus interaction consi-
dered here, is of the order of 10 -11. It is instructive

(2) The present result is slightly different from the one quoted
in ref. [6] because we have now included a correction of the
order of Z-2/3 which was neglected to first approximation in the
evaluation of Rnl(0) (see Appendix I, Section 2).
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to compare this figure with the upper limit of
1.4 x l O-12 quoted by Sandars et al. for the real

part of the mixing amplitude of the same state,
which has to be associated with a simultaneous
violation of space and time reflexion invariances [20].
One may also consider transitions to higher nS states,

with n &#x3E; 7. However besides the fact that Pc shows
a tendancy to decrease with n, the polarisability of a
level grows at least like (vn)4 and the S states with
n &#x3E; 7 are more affected by external perturbations
(static electric field, collisions, etc...) [32].
The results of an analysis of the more (and less)

obvious problems one will have to face in order to
complete such an experiment with the required preci-
sion (counting rates, effects of residual electric and

magnetic fields, multiphoton processes, collision
induced transitions, etc...) have been given by the
authors in a previous publication [6]. The conclusion
was that, unless some serious difficulty has been
overlookéd, there is a reasonable hope of observing
the parity violating effects induced by neutral currents.
The details of this analysis together with the compu-
tation of the electric dipole amplitudes induced by
the parity violating electron-nucleus potential, will be
given in a forthcoming publication of the authors [32].

6 . 3 SOME OTHER SUGGESTIONS. - We would like
to discuss briefly other possible experiments. They
are of considerable theoretical interest, but, with the
present techniques, they appear more difficult than
the Cesium one, since they require tunable lasers in
the near ultra-violet region.

6.3.1 Excitation of the transition 6P 1/2 - 7P1/2
(Ào = 2 927 Á) in Thallium. - Even in the presence
of the spin-orbit potential, the radial wave functions
for nP 1/2 states remain orthogonal for different n, so
that the matrix element of the non-relativistic dipole
moment between such states is still zero. An analysis
similar to that performed in Cs would lead to a value
of Miz in the range 10-4 to 10-5 ,uB. The electric dipôle
amplitude induced by the parity violating potential,
E1z, is expected to be 10 times larger than in the Cesium
case, because of the factor Z 2 QW(Z, N) Kr. The
theoretical interest of the Thallium experiment lies in
the fact that, through comparison with the Cesium
one, it would give information on the isospin structure
of the weak charge Qw.

6.3.2 Excitation of the (6p2) 3P0 ---&#x3E; (6p2) IS0 tran-
sition in odd neutron lead isotopes (Ào = 3 394 A). -
In the absence of nuclear spin, the transition 3Po -&#x3E; 1S0
is strictly forbidden by conservation of angular
momentum, but in Lead isotopes with an odd number
of neutrons, the hyperfine interaction will mix the
two levels (6p2) 3p0 and (6p2) ’ So with the level (6p2)
3p l’ By this mechanism, the magnetic dipole matrix
operator acquires a non-vanishing matrix element
-between the perturbed 1 ’P, &#x3E; and 3So &#x3E; states.

The analysis of Margerie [33] concerning the gyro-
magnetic ratios of these two levels can be readily

adapted in order to give a value for the magnetic dipole
transition amplitude :

The parity violating potential involving the nuclear
spin, which leads to negligible effects in the previous
experiments, plays here the dominant role. Through a
mixing of the (6p) 3So state with the odd parity state
(6p 7s) 3p l’ it will give rise to a finite electric dipole
amplitude : E1z =  3po Although an
accurate determination of  for a given parity
violating potential would require a precise knowledge
of Lead atomic wave functions, an order of magnitude
estimate can be obtained from (44) by dropping the
factor Qw and taking 1 E1/.Ât1 1 f"ttoI 106. By doing so,
one finds :

We are perfectly aware that the observation of such
a highly forbidden transition is a very difficult enter-
prise, but we believe it is worth consideration for the
following two reasons : a) it will give information on
the axial hadronic current which contributes only to
the nuclear spin dependent part of the weak electron-
nucleus potential. fl) in some renormalizable models
of weak interactions [34], the weak charge Qw appear-
ing in (1) is identically zero and parity violation arises
only through the spin dependent weak potential. In
such models, parity violation effects in Cesium will
be reduced by a factor 10 - 2 and the kind of experi-
ments discussed here would remain the only hope of
detecting appreciable effects. A more detailed ana-

lysis will be given in a forthcoming publication.

7. Neutral currents in muonic atoms. - In this

section, we would like to apply our general analysis
to the case of muonic atoms. Because of the size

effect, one expects naively that the parity violating
effects induced by neutral currents should be larger
than in ordinary atoms, and consequently much easier
to detect. A more careful analysis shows that this is a
highly optimistic view. The main difficulty is a prac-
tical one : because of the muon instability, it is not

possible to build a target of y-atoms. Only spontaneous
radiative transitions are then accessible to experiment.
In order to enhance the parity violating effect, one
would like to work with forbidden transitions, but
the problem of having an acceptable branching ratio
arises immediately. The y-atoms can be considered
to an excellent approximation as hydrogenic atoms,
but the nuclear finite size gives rise to substantial

energy shifts.
The only possible place to look for parity violating

effects appears to be the spontaneous 2S1/2 --&#x3E; 1S1/2
magnetic dipole transition. A simple estimate of the
circular polarization Pc, valid for Z - 20, can be
obtained from formulae (7), (46) and (47), if one uses
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hydrogenic wave functions (with no nuclear size

correction) :

In this formula, mu is the muon mass and AE the
energy difference between the 2S1/2 and 2P 1/2 states
which, for Z &#x3E; 6, is due almost entirely to the nuclear
size effect. If the radius of the 2s Bohr orbit is large
compared to the nuclear radius, i. e. if Z 5 20, a fair
estimate of AE can be obtained from the simple
formula :

where a,, = h lm, ac is the first Bohr orbit radius for
the muonic atom and R the nuclear radius, given
approximately by :

A close inspection of the above formulae shows
that P, goes roughly like

It is then clear that the largest values of Pc (of the
order of 10 %) are reached for low values of Z. Unfor-
tunately, because of the presence of many competing
decay processes, the effects one could hope to observe
in practice are much smaller. Let us first give the
value of the Ml decay rate calculated with no nuclear
size correction [35] :

a) The most obvious competing process is the
two El-photon 2S --&#x3E; 1S transition. Its rate has
been computed by many authors. We quote the
latest result, which includes relativistic corrections,
but no nuclear size effects [35] :

b) Another radiative process, which is important
only for Z  10, has been considered by Ruder-
man [36]. For such light nuclei, the energy separation
between the 1 2S &#x3E; and 1 2P &#x3E; states is smaller than,
or comparable to, the average energy of the atomic
electrons surrounding the muon. The muon-electron
state 1 2S &#x3E; © 1 .pei&#x3E; is mixed by the Coulomb
muon-electron interaction with states 1 2P &#x3E; (8) 1 .p:l &#x3E;,
where the electronic states l.p el &#x3E; and 1 .p:l &#x3E; have
opposite parity. Allowed El transition to states

! IS &#x3E; 0 ! 1 .p:l &#x3E; is then possible. With the help of
a sum rule, Ruderman has found a compact formula

for the rate, summed upon all the electronic final
states. In a Hartree approximation for 1 t/Jel&#x3E;’ it
reduces to :

where ri is the distance of the ith electron of the cloud
from the nucleus. A rough estimate of the atomic
matrix element gives values varying from 10’ s -1
to 108 s-1 for 2  Z  6. The photons associated
with this transition have an energy slightly lower
than those coming through the direct Ml transition,
but in view of the energy resolution usually reached
in muonic X-ray spectroscopy, a separation of the
two kinds of photons would seem very difficult to
achieve. Leading to différent final atomic states, the
two processes do not interfere. If the separation is
not possible, any parity violating effects occurring
in the forbidden Ml transition (photon polariza-
tion, etc...) will be effectively reduced by a factor
104-106 since an Ei allowed transition is practically
unaffected by the parity mixing considered here.
For increasing Z (Z &#x3E; 10), the finite nuclear size
effects make the energy difference E2S-E2P become
larger than the electronic energy. The mixing mecha-
nism is then much less efficient and, for Z &#x3E; 20,
it becomes smaller than the Ml one-photon decay
rate.

c) The 2P level being less affected than the 2S

by the finite size of the nucleus, the 2S lies above
the 2P for Z &#x3E; 6, and the radiative El transition,
25 - 2P + photon, becomes energetically possible.
An order of magnitude estimate can be obtained using
the approximate expression for AE given by (50) :

d) Non-radiative decays of the Auger type are
very important for Z  20. There is first the 2S --&#x3E; 1 S

Auger transition, where a longitudinal Eo photon
is exchanged between the muon and an electron.
This rate computed by Ruderman [36] has a very
slow variation with Z :

When the 2S becomes higher than the 2P level,
the Auger 2S -&#x3E; 2P transitions become a very efficient
desexcitation mechanism and dominate the 2S -&#x3E; 2P

radiative transition for Z 5 20. The rate, which can
be estimated using the internal conversion coefficient
of nuclear spectroscopy [37], again varies slowly
with Z :
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What conclusions can one draw from the above

analysis ? First, the region with Z 5 10 is excluded
because of the importance of the radiative 2S --&#x3E; 1 S

decay induced by the 2P - 2S mixing (produced by
interaction of the muon with the electronic cloud).
Secondly, the very low branching ratio (10-6-10- 5),
due to the importance of non radiative decay pro-
cesses, is an obstacle which is almost impossible to
overcome for 10  Z  20.
The situation looks better for 20  Z  40. As

an illustration, let us consider the results concerning
Ti22, where the observation of weak nP --&#x3E; 2S tran-
sitions has allowed a determination of the 2S-2P

splitting : AE = (11 + 1) keV [38]. Inserting this
value in formula (49), one obtains, in the frame-
work of the Weinberg model with sin’ Ow = 0.35 :

Pc ~ 0.5 x 10-3.

This number will be reduced by about ten per cent
because of the finite nuclear size effects not included
in (49).
The non radiative 2S -&#x3E; 1 S Auger transition will

still dominate, leading to a branching ratio for the
Mi mode of the order of 0.5 x 10-3. By going to
slightly higher values of Z, one improves the branching
ratio but at the price of losing on the value of Pc.
For high values of Z (Z &#x3E; 40), both the circular

polarization Pc and the branching ratio are reduced.
In the cascade process, following the capture of

a muon by an atom, the probability of passing through
the 2S state can be shown theoretically to be only
of the order of a few per cent. This fact has been
verified experimentally on Ti22, where the lines
nP -&#x3E; 2S are much less intense than the lines n’ S -&#x3E; 2P
and n" D -&#x3E; 2P. Thus, if N is the number of muons’
stopped per second in Ti, the number of observed

2S M1 1 S + y should be only of the order of 10 - 5 N.
Instead of trying to measure Pc directly, it is

better to use the fact that, for spin zero nuclei, the
muon keeps an appreciable fraction of its initial

polarization (about 15 %) in the cascade process.
The angular distribution of photons should exhibit
a forward-backward asymmetry, with respect to

the muon polarization Pu, given by :

(k is the momentum of the photons). Conservation
of angular momentum along k implies a = Pc.
To have a chance of seeing an asymmetry of the

order of - 10-4, one has to detect something like
10" Ml decays, corresponding to 1015 stopped
muons. In order to keep the measuring time 1015 N-1
within reasonable bounds, experiments will have to
wait the intense muon beams which will become
available with the new generation of meson factories.

Since completing the work presented on muonic
atoms, we have received a reprint of Chen and Fein-
berg [39] dealing with the subject of this last section.
Their analysis, which covers a broad range of values
of Z, makes use of numerical relativistic muonic
wave functions and leads to conclusions similar
to ours.

Conclusion. - The short range parity violating
electron-nucleus potential associated with the neutral
currents produces parity mixing between atomic
wave functions. The mixing amplitude in one-valence-
electron atoms can be computed reliably by a remar-
kably simple formula involving only a knowledge
of the energy spectrum. A very striking aspect of
the result is a rapid variation with atomic number

. (faster than Z3) of the mixing amplitude. Recent
progress in laser technology (tunable lasers) offers
the possibility of exciting twice forbidden magnetic
dipole transitions in heavy atoms, where parity
violating effects of the order of 10-4 are expected.
An experimental investigation on Cesium is pre-

sently under way at the E.N.S. Laboratory in Paris.

APPENDIX 1

We would like to give here a derivation of the
formula giving the starting coefficient of the nor-
malized radial wave function of a valence electron
at the nucleus. Instead of using the radial wave
function Rnl, it is more convenient to use the function
Unl(r) = rRnj(r). We shall work in the so-called
atomic units system and write the binding energy
EnI of the valence electron as :

where vn is the effective radial quantum number.
The quantum defect Jl(Bn) is defined as usual as

vn = n - M(En)- In terms of the reduced variable

p = rla, (ao is the Bohr radius) the differential

equation obeyed by unz(p) reads :

v(p) is the effective potential acting on the valence
electron, with the properties :

In practice, the latter condition will be satisfied

only approximately. pc can be interpreted as the
ion core radius.
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We shall first use quantum defect theory [14]
[15], to give an expression for unj(p) valid for p &#x3E; Pc
and involving only the quantum defect y(e) and its
derivative with respect to the energy. Then we shall
develop a generalized J.W.K.B. approximation, which
will give us an almost exact wave function near the
origin. In the next step, we shall show that it is possible
to choose the normalization of this approximate
wave function in such a way that it coincides with
the wave function given by the quantum defect

theory fro p &#x3E; Pc. Proving this identification, which
turns out to be quite an arduous task, will be done
for the region p » 1, assuming 1 en 1 « 1. It will
lead to a value of the wave function near the origin
in which terms of the order of 6’ n and Bn/Z2
are neglected. We shall also consider the effect of
the electrostatic potential of the electrons near the
origin.

1. The radial wave function in the external region
p &#x3E; Pc and the quantum defect theory. - We shall
first give a short review of the quantum defect theory
developed by Ham [14] and Seaton [15]. One intro-
duces a function Ulr.(p) which is defined for an arbi-
trary value of the reduced energy s and which behaves
at the origin like p’ + 1. Ham has proved that, provided
certain regularity conditions on v(p) are satisfied,
and with a proper normalization, the function U’r.(p)
is an entire analytic function of e. When p &#x3E; Pc,

Ul£(p) is a well-defined combination of independent
solutions of the Schrôdinger equation for a pure
Coulomb field, and can be written as follows :

where y 1I(e, p) and y 41(e, p) are, in the notation of

Seaton, the two Coulomb wave functions which
are analytic entire functions of e. From the Ham

theorem, it follows that the coefficient fl(s) is also
an entire function of e. There exists another form of

U1e(p) which, in some cases, is more convenient :

where Y31(B, p) is no longer an analytic entire function
of e, but admits a very simple asymptotic expansion
in a power series of e. G(s, 1) is a well-defined function
of a and 1 given in reference [15]. When B is equal to
a particular eigenvalue s,,, the condition U,r,(p) --&#x3E; 0,
when p --. oo, implies the eigenvalue condition :

with

In the argument of the cotangent, one can replace
- vn by the quantum defect ,un. The entire function

fl(s) is given by the above expression for the infinite

sequence e, ... En and, under some well-defined condi-
tions, P(e) is then determined by the knowledge of the
spectrum. One can thus define an interpolated
quantum defect p(s) by the relation :

In practice, when one wants to construct the func-
tion I1(B) from the spectrum, the interpolation can
be performed more reliably using the so-called

« il » defect of Ham, defined as :

Note that for 1 = 0, p(e) = f1(e).
When e = en’ the function U,e(p) is not normalized

to unity. Seaton has shown that the function Unl(P),

where is given in terms of V’En (p),

It is also of some interest to write Unl(P) in terms
of the Whittaker function WVn;l+ 1/2(2 plv.) :

This form has been used by Bates and Damgaard [26]
to compute electric dipole matrix elements, assuming
that they are dominated by the external part of the
wave function (p &#x3E; pc).

Using (A I . 5), (A 1. 6) and (A I . 8), one can write
Un(P) as :

Introducing y3 = A -1(v, l)y3, and using the rela-
tion (A I .8), we obtain an alternative form for

Ule(P) : &#x3E;

For later purposes, we shall need the series expan-
sion, in powers of the energy, of U’e(P). A convergent
series expansion of y 1,(8, 1) has been derived by
Kuhn. It involves Bessel functions Jn(z), where the
argument z is given in terms of p by : z = B/8 p.
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The formula quoted by Seaton [15] gives :

It will appear convenient to express YlB) in terms of
J21+1(Z) and its derivative J]i + i (z). Using well-known
recurrence relations between Bessel functions, an

alternative expression for Yl1,) can be derived :

An asymptotic power expansion in e for Y31(P, s) is
obtained by the following simple rule : replace in ’ 

(A I.12) and (A I.13) the Bessel function Jn(z) by
the Bessel function of the second kind Yn(z).

In the identification process, we shall need expres-
sions for y(i),(p) and 7(’),(p), when p » 1. We shall use
the well-known expansion of the Bessel functions for
large values of the argument :

where Pn(1/z), Qn(1/z), Rn(1/z), Sn(1/z) are asymptotic
series in 1/z, which can be found in any text-book
on special functions. The asymptotic expansions for
the Bessel functions of the second kind are readily
obtained from the above formula by adding - n/2
to the argument of the sine and cosine appearing in
the formula. From this, it follows immediately that
asymptotic expansions of the linear combinations

(cos 7riÀ) yli(p) - (sin Tell) j7(’,)(p) can be obtained from
the simple rule : perform in the asymptotic formulae
of the Bessel functions appearing in (A I .12) or

(A 1. 1) the following replacements :

the arguments of the functions Pn, Qn, Rn, Sn remaining
unchanged.

Introducing now the function V’t:(p) defined in
terms of Ule(p) by :

the first two terms of a development of Vle as a power
series in e can be written as asymptotic series in 1 /z :

where aI is given by :

Although these expressions look rather involved, the
rules for obtaining them are rather simple. An impor-
tant point to note is that Vl(1)(z)/VlO)(z) goes like z3
when 1 /z - 0, if one remembers that

and

2. A représentation of the wave function in the

internal région (p  pj. - We would like to study
the function UlE( p) for p  Pc’ For small values of p,
the potential v(p) is dominated by the electron-
nucleon potential v(p) ~ 2 Z/p; furthermore, the

binding energy e can be neglected with respect to
the potential energy. The wave function should not
then be very différent from the wave function of a
one-electron atom with a nuclear charge Z and zero
binding energy, which is given, in terms of the Bessel
function of argument fi z = V’8 pZ, by :
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Extending a method originally used by Foldy [11],
one is tempted to try for U’t;(p) a representation of
the following form :

The function 9(p) obeys the differential equation

For small values of p, the quantity

involving higher derivatives, is small, since, as we

have seen, (p(p) ~ Zp. When the argument of the
Bessel function is large enough, one can replace the
Bessel function by the first term of its asymptotic
expansion, this approximation scheme then reducing
to the ordinary J. W. K. B. approximation. In the
case of a Coulomb potential, this approximation is

known to be valid when the two following conditions
can be simultaneously fulfilled : ps « 1, p » 1,
which is the case provided e is sufficiently small. If
we are not interested in an evaluation of the quantum
defect /4 the fact that ’J)qJ may not be small in an
intermediate region p = 1, will not cause us any
trouble.

Let us first consider the region 0  p  p;, where
p; is the internal classical turning point. In contrast
to the case of the ordinary J. W. K. B. approximation,
one can define a zero order approximation qJo(p),
the solution of :

which is regular for p = p;, by imposing the condition
(fJO(Pi) = 1(l + 1)/2. One can then easily verify that,
if Q(p) is indefinitely differentiable for p = pi (po(pi)
with dQ/dp (p = p;) = 0, (po(p) is also indefinitely dif-
ferentiable for p = p;. We shall assume that, for

p  pi, Q(p) can be approximated by the following
expression :

where Ç is given by :

Ve being the electrostatic potential of the core elec-
trons. To estimate (, we can use the Thomas-Fermi
model [40] valid for large values of Z, which gives
( = 1.80 Z-2/3 (i. e. 0.12 for Cs). For the case of Cs,
we also possess numerical values of the potential,
chosen so that the binding energies of the lowest
40 levels agree well with experiment [41]. We find that

The variation is also small ( = 0.10).

It follows that ( can be treated as a constant which is
small compared to unity. If one takes Ç = 0, one
obviously gets (fJo = Zp. For Cesium, a first order

expansion in ( is adequate when p gg pi. We shall
write (fJo(p) as :

To first order in Ç, we have for x’(p) the following
equation :

We require that x’(p) should be finite for

implying that

which is equivalent to the condition

to first order in Ç. The regular solution is a first order
polynomial :

We thus obtain, for p  pi, and to first order in Ç :

If we now compute the correction term DPo we
find that 1)9,lv is of the order of (2. Hence, to first
order in Ç, we have, for 0  p  pi :
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This result can be applied to the hydrogen atom. In
that case, 2 CZ’ = - E, Z = 1 and to first order in e,
we have :

Placing this expression in equation (A I .19), one
can obtain a first order expansion in B of the function
yll(e, p), which coincides with the result quoted in
(A 1. 12).

3. The matching of the internal and external wave
functions. - We now turn our attention to the region
pi  p  pe, where pe is the external tuming point.
(See Fig. 2.)

1 

FIG. 2.

For a sufficiently small reduced energy e, the externat
tuming point is in the Coulomb region, where

v(p) ~ 2/p.

When p &#x3E; p;, the variation with p of the electro-
static potential of the core electrons will become
more important and the simplified form (A I .27) is
no longer valid, since the corrective term 0(p may
become important. We shall derive an asymptotic
series for cp(p) from an iterative solution of the

integral equation obtained by integrating both sides
of (A I.20) :

For p = pi, we have ç = 1(l + 1)/2. We shall also
assume that D(pi) = 0, since for p  pi this condition
is practically verified. In the vicinity of p = p;, the
zero-order approximation is certainly very accurate.
When p &#x3E; p;, one should keep higher order terms in
the iterative procedure. We shall assume that the
variations of v(p) are sufficiently smooth that, although
D(p) may be significantly different from zero for

pi  p  pe, it does not produce any new zero of

Such zeros are known to appear in the ordinary
J. W. K. B. iterative expansion, but thev are connected
with the fact that the phase function is singular near
p = p;, while here (p(p) is regular for p = p;.

Let us now take p such that p &#x3E; Pc, where Pc is
the core radius, and where the energy G is assumed
to be sufficiently small that we can choose pc such
that :

The conditions 1 « p « p,,(e) are those required
for the validity of the J. W. K. B. approximation for
atomic hydrogen, so that we expect an iterative

procedure starting with 0(p = 0 to be again quite
accurate. Using (A I . 29), we have :

where qJe = qJ(Pc).
We write qJ = qJo + qJI with

and : 

Next, we shall have to identify the first order

expansion in B for p &#x3E; Pc, computed with :

with that derived from the quantum defect theory
given in (A I .18). This identification will be performed
in the region of large p only, through expansions in
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1 /z. We shall push the computation up to the order

which is strictly necessary to get Cl 1£=0 and

We shall write qJ(p, B) as :

It will also be convenient to work with the function

ç(z = vf8P, e) :

We shall first give the expression for

computed with (A I. 32), i. e. using the zero order
approximation (D = 0). The results will be presented
as an expansion in 1 /z, keeping only the terms which
will be needed later :

In this expression A (0) and A (1) are numerical cons-
tants which can be expressed as integrals involving
the ionic potential v(p) in the core region. We have,
now, to look for corrections arising from the first
itération. Let 1!s first compute the quantity D(p, G)
using the above expression. for ç(p, E) :

(Note that if one takes A(O) = 0, one finds the expres-
sion (A I.28) for (p(p) for the case of atomic hydro-
gen). One obtains :

The next step is the evaluation of the integral

where ô«» and ô(’) are constants depending on our
particular choice of Pc. Note that in the integrand
of AG, the terms in E/p cancel ëach other. The correc-
tion to ç(p, e) can now be readily obtained and can
be performed on (A I. 37) by the replacement
2 l(l + 1) -+ 2/(/ + 1) + 8 in the term proportional
to z(z A(O) + A’) and by a redefinition of the constantsz(z + A )
A(0) and A(1). This rule remains valid when higher
order contributions are considered, up to terms of
the order of 1/z4 and e/z, so that the final corrected
expression reads :

As we shall see, this expression is accurate enough
to allow a determination of cl(0) and OC’OB(O).
To perform the final step of the identification of

the two forms of the solution, it is convenient to
rewrite (A 1. 34) in a slightly different way, by intro-
ducing ç ’(z, B) = oç/oz :

Defining now the coefficient Dl(e) as :

we obtain the following expression for the function
Vle( p), given in terms of UZt, by (A 1. 1) :

(One can use this expression as a starting point for
a generalized J.W.K.B. expansion. All the results

given in this Appendix have also been obtained in
this manner.)

Let us consider first the zero order approximation
in e, keeping the dominant term in z. From (A 1. 1),
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one obtains :

and from (A 1.43) together with (A 1.41) :

Vl(0) = DI(O) cos z + A (0) - (2 1 + 1t n]Vl(0) = Dl(0) cos - 
+ A (0) - (2l + 1) 2" - i- 

x

x (1 (Z»
= DI(o) cos z + (2 l + n n xv(0)1 = Dio&#x3E; cos [z + A°&#x3E; - 2 1 + n n]V1(0) = Dl(0) cos[z + 

A (0) - (2l + 2 4 x

x 1 +p 1 . 1

By identification, one finds :

where m is an integer. If one looks at the definition of
A (0), one finds that it is zero when Z = 1, Pc = 0
(i. e. for atomic Hydrogen). Since y is zero in such
a case, one must take m = 0. We thus conclude that

DI(O) = 1 , A (0) = np(0) . (A 1. 44)

Let us now try to identify the two expressions for
Vl(1)(p). By stopping the asymptotic series at the

appropriate order, the expression (A I.18) for Vl(1)(p)
can be cast in the following form :

where a, b, c, a’, b’, c’ are constant coefficients which
can be readily obtained from the known expressions

for the series P21+1 (1/z )... We shall put the expression
of Vl(1)(z) obtained from (A I.43) into a similar form
and identify the coefficients a, b, c, a’, b’, c’. The

interesting quantity will appear only in the

coefficient c. The identification of the five other
coefficients will give a good test of the consistency
of our procedure. From (A I . 43), one has imme-

1 diately Vl(1)(p) :

The explicit calculation of Vl(1)(p) is straight-
forward, but one must be careful not to miss terms
of the required order. Instead of writing the result
exactly in the form (A 1.45), we shall use an equiva-
lent form more appropriate for the comparison with
the result of the quantum defect theory :

The coefficients a, b, c, a’, b’, c’ can be obtained

readily from the above expression. (Note that in

(A I.18), the term proportional to ajl/aB, being of
high order in 1/z, does not contribute to a, b, c,

a’, b’, c’.) By comparing with the expression (A I.18),
one sees immediately that the two sets of coefficients

coincide, provided we choose as follows :
o

Remembering that can be

written as a polynomial in

we can write D,(e) and ci(s) as follows :
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4. Starting coefficient of the radial wave function at
the origin. Results. - We are now in position to

write the normalized wave function unl(r) :

Using the expression of qJ(p) near the origin given
in (A I . 27), we obtain our final result :

We are, in fact, only interested in the cases 1 = 0
and 1 = 1 :

APPENDIX II

In this section, we shall give a relativistic treatment
of the parity mixing amplitude in a single particle
wave function. The relativistic corrections are expec-
ted to be quite large, due to the fact that the Dirac
wave functions of an electron moving in the Coulomb
field of a point like nucleus are infinite at the origin.
This kind of difficulty occurs in the theory of fil-decay
and K capture, and is solved by taking into account
the finite size of the nucleus. In f3-decay calculations,
instead of solving the Dirac equation in the Coulomb
field of a finite size nucleus, and averaging the function
obtained in this way over the nuclear volume, it
has been shown that almost the same results can be
obtained by using wave functions relative to a point
like nucleus, but evaluated at the surface of the

nucleus, i. e. for r = R, where R is the nuclear radius.
We shall adhere in our treatment to this simple
prescription.
The matrix element of the parity violating inter-

action, which, in the non-relativistic limit, reduces
to the potential given in formula (1), is given by :

where the radial wave functions fxn and gxn are

defined in terms of the four component Dirac wave
function in a central field by :

with

and

The radial wave functions fx and gx obey the system
of linear differential equations :

In this Appendix, it is convenient to use the unit

system h = c = 1. W is the total energy of the

electron :

Let Gx = rgx and Fx = rfx and eliminate Gx in
order to get a second order differential equation for
Fa

where we have defined :

The prime denotes a derivative with respect to r.

In order to get a differential equation looking like
a one-dimensional Schrôdinger equation, we perform
yet another transformation :

The differential equation for Hx reads as follows :

We shall now apply to this Schrôdinger-like equa-
tion the method of Appendix I.
The non-relativistic approximation is obtained by

making the identifications :

The formula (A II.1) reduces to formula (7) pro-
vided terms of order ZRlao - 10-’ are neglected.
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Let us introduce the quantity :

The relativistic corrections are important in the

region where

For valence electrons, the major part of the wave
function lies in the region V(r)/me  a. In particular,
in the region r &#x3E; rc, a non-relativistic approximation
is certainly adequate, and since the normalization of
the wave function, through the quantum defect

method, uses only this domain, the outer part of the
wave function is not affected by the relativistic cor-
rection. The function K(r, En, En, Z) will differ signifi-
cantly from unity only for values of r around Za2 ao.
For such values of r, the energy of the valence electron
is completely negligible with respect to the potential
energy, V(r), so that the function K(r, En, En,, Z)
should have a very weak dependence on e. It is then

legitimate to make the approximation :

Let us first write down a simplified form for the
differential equation (A II.6), valid in the region
0  r £ 1/me aZ. The potential V(r) can be approxi-
mated by V(r) ~ - Za/r + Ve, where Ve is the

potential of the core electrons at the origin, already
introduced in Appendix I, and which can be treated
as a perturbation with respect to the nuclear potential
Za/r when r £ 1/me aZ. We can use the following
approximations :

In the region 0  r  1/ Zme a the differential

equation for Hx corresponding to e = 0 takes the

following simplified form :

Returning now to atomic units by setting

we get the equation :

where Â, Z, Ç are given by :

The differential equation looks like a Schrôdinger
equation for a Coulomb field, but with a non-integral
angular momentum. If one eliminates Fx instead
of Gx, it is not possible to arrive at such a simple
form in the same range of values of p. In the outer

region p &#x3E; Pc, where relativistic effects are unimpor-
tant, the differential equation for Hx reads :

It is clear now that we can follow the method

developed in Appendix I, with the simplifying feature
that we can work in the limit of zero energy. We
write Hx(p) as :

where the function t(p) is given, in the region

and in the region p » 1, p &#x3E; Pc’ by :

w

where A’ is a constant defined in terms of integrals
involving the effective potential appearing in the

Schrôdinger-like equation (A II .6).
We shall fix the constant N by requiring that for

p &#x3E; 1, Fx fits the non-relativistic expression computed
from the wave function derived in Appendix 1 :

where

and Ui is the non-relativistic function given in (A 1.34),
taken in the limit e = 0. In the limit of large values
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of p, one finds the following expression for Fx :

with z = /8p -
This expression has to be compared with the one

obtained from (A II.12) in the limit of large values
of p :

Remembering that

we can rewrite Fx as :

The two expressions coincide if one makes the
identification :

If one considers the special case of atomic hydrogen
(A (0) = 0, Z = 1), the first equation is satisfied to

order a2 only if k = 0. We have finally :

We are now in a position to compute Gx and F,,
for p = R/a0 « 1 /Z. The function Fx is simply given
by Fx = b1/2 Hx. When p, = R/a0 « 1/Z, it is legiti-
mate to use for b the simplified form :

One obtains the following expression :

where

The radial wave function Gx = rgx associated with
the large component is readily obtained from eq.
(A II. 3) : 

with the approximated form of b z Zoclr and the

relation . one obtains :

Making use of a well-known identity involving the
derivative of a Bessel function, one arrives finally at
the following expression for Gx(R) :

Let us now evaluate the quantity G_ 1 F1 - G1 F-1,
keeping only the lowest order term in ZR/ao. One
finds :

with y 1 = 1 - (Za)2.
This expression is to be compared with the non-

relativistic result obtained from (A II. 15) :

The two expressions coincide if (ZrJ..) 2 can be

neglected compared to unity. We are now in a position
to compute the correcting function :

The second term in brackets corresponds to a

small negative correction 0. 11 Ç = 0.01 for Cs, and
0. 18 Ç = 0.017 for Pb. We have therefore omitted it
in the formula reported in the text.
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APPENDIX III

In this Appendix, we would like to derive the non-
relativistic form of the parity violating electron-
nucleus and electron-electron potentials starting from
a relativistic current-current interaction. We shall
also give an estimate of the matrix element of the
electron-electron potential for valence électrons and
show that it is smaller than the electron-nucleus

potential by a factor Z for large values of Z (Z &#x3E; 50).
As a model for neutral currents, we shall use the

simplest version of the SU2 0 U1 gauge model,
unifying weak and electromagnetic interactions. In
the limit where the mass of the intermediate neutral
vector boson is infinite, one uses an effective current-
current Hamiltonian density H(x) given by :

The current 3,(x) is split into a leptonic part J1(x)
and an hadronic part 3’(x) :

The symbols e(x), ve(x), etc... stand for the Dirac
fields associated with the electron, neutrino, etc... ;

Jûm(x) is the electric current density for the hadrons,
Ju,3(x) is the usual hadronic isospin current norma-

lized in such a way that J0,3(x) d3x is the isospin
operator 13 ; J;,3(X) is the axial isospin current with
the usual current algebra normalization. The current
J’u(x) containing two terms associated with the
conservation of charm and strangeness quantum
numbers plays no role in the processes considered in
this paper.
The electron-nucleus parity violating interaction

with no dependence on nuclear spin is described by
the following effective Hamiltonian :

To obtain this expression, we have made a monopole
approximation, since the wavelength associated with
the momentum transfer to the nucleus is much

larger than the size of the nucleus. In practice, one
should take into account the finite size of the nucleus,
since the Dirac Coulomb wave functions for a point-
like charge diverge at the origin. This problem is
discussed in detail in Appendix II.

The matrix element of the leptonic axial current
component ( a [ et (x) ys e(x) b ) Ix=o, can be written
in terms of the Dirac wave functions t/la(x) and 4fb(X)
as : 

In the non-relativistic limit, t/!a,b reduces to :

where (pa,b(r) are two-component Pauli-Schrôdinger

wave functions. Remembering that

one finds immediately : 

The effective Hamiltonian (A III. 3) can then be
replaced by the non-relativistic potential :

with

Our main concem here is the parity violating
electron-electron interaction. In the language of
second quantization, the parity violating Hamil-
tonian reads :

Making a non-relativistic approximation, it is

easy to derive a non-relativistic electron-electron

potential ve.e. :

Since we are mainly interested in atoms with one
valence electron, we have to construct an effective
one-particle potential describing the parity violating
interaction between the valence electron and the
electrons of the closed-shells. It is essential to take
into account the exchange contribution between
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the valence electron and the core electrons. In parti-
cular, the following identity involving the spin
exchange operator P. :

is useful.

Calling ne(r) the density of the closed shell electrons,
the one-particle potential takes the simple form :

Since we are interested in heavy atoms (Z » 1),
we shall use the electronic density given by the Thomas-
Fermi model. We shall also take the distribution

corresponding to the neutral atom instead of the
once-ionized atom, introducing a relative error of
the order of 1 /Z. Expressed in atomic units, the

density ne(p) reads :

where b is a pure number given by :

The function x(x) is tabulated in Landau and
Lifshitz [40]. Let us quote some simple properties
of X(x) :

We shall use the electronic density given by the
Thomas-Fermi model even for small values of p
(i. e. p 1/Z), where it is larger than the actual

density. In this way, we shall certainly overestimate
the effect of the electron-electron parity violating
potential.
We shall take as approximate wave functions those

obtained in Appendix 1 :

with

For values of p 5 1 IZ, where the screening of the
nuclear charge is of the order of 10 %, the function ç
is given by the same approximate expression for s

and p waves :

When p is of the order of Z - 1/3, this approximate
form is no longer adequate since the screening of
the nuclear charge is important. However, for such
values of p, the centrifugal energy 2/p2 is already
smaller than the potential energy by a factor of the
order of 2 x Z -2/3, which is  0.2 when Z &#x3E; 50.
Thus the functions (p for s and p waves should stay
close to each other, even in this region. Furthermore,
since most of the electrons of the ion core are at a

distance  Z -1/3, where v(p) » e, we shall take
the zero-energy limit in ç.

Finally, we shall use the lowest order term of
our generalized J.W.K.B. approximation. To summa-
rize, the s and p wave functions are those of (A III. 6)
with the same function (p(r) for s and p, given by the
approximate expression :

In terms of the radial wave function Rnl(P), the
matrix element of the electron-electron parity vio-
lating potential reads :

with

Since this matrix element will appear to be smaller

by a factor of the order of Z than the matrix element
of the electron-nucleus parity violating potential,
only a crude estimate of I is needed. In order to do
this, we shall split the integral I into two parts :

where 03BB is a positive number of the order of unity.
ôRn0

For small values of p, the term aRn° R,,, 1 can beap
neglected. An overestimate of Il is obtained by
replacing the Bessel functions by the first terms of
their series expansions for small arguments and by
taking cp = Zp. In this approximation, one has :

One obtains immediately the following estimate :
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Using the inequality :

one arrives at the result :

Let us now tum our attention to I2. We write the
explicit form of the integrand using (A III,. 6) and
(A III. 7). After some manipulation, one obtains :

(here ç’ stands for oç/op).
We further transform the above expression using

the following identity involving derivatives of Bessel
functions : -

This gives :

Using an integration by parts, and the fact that
pv(p) is a monotonically decreasing function of p,
one derives the inequality :

Remembering that the modulus of Bessel functions
have the following upper bound :

one finally obtains an inequality involving 12 :

We have finally :

We are now in a position to estimate the ratio r
of the matrix elements of electron-electron and
electron-nucleus potentials :

Taking sin’ 0w = 0.35, Z = 55, N = 78, we find :
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