
HAL Id: jpa-00208194
https://hal.science/jpa-00208194

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The phase comparison method application to the
complex magnetic structure of REMn2O5 (RE = Rare

Earth)
E.F. Bertaut

To cite this version:
E.F. Bertaut. The phase comparison method application to the complex magnetic struc-
ture of REMn2O5 (RE = Rare Earth). Journal de Physique, 1974, 35 (9), pp.659-677.
�10.1051/jphys:01974003509065900�. �jpa-00208194�

https://hal.science/jpa-00208194
https://hal.archives-ouvertes.fr


659

THE PHASE COMPARISON METHOD

APPLICATION TO THE COMPLEX MAGNETIC STRUCTURE OF

REMn2O5 (RE = Rare Earth)
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38042 Grenoble Cedex, France

and
Laboratoire de Diffraction Neutronique, DRF, CENG, BP 85, Centre de Tri

38041 Grenoble Cedex, France

(Reçu le 18 mars 1974)

Résumé. 2014 On construit d’abord une matrice d’interaction ~(q) à partir d’un hamiltonien de
spins classiques. La méthode de comparaison de phases est une simple méthode d’identification,
obtenant d’abord les vecteurs propres de ~(q) qui sont directement liés à la structure magnétique.
Dans un deuxième temps on trouve les racines, reliées à l’énergie magnétique et les conditions de
stabilité. L’application de la méthode aux composés REMn3+Mn4+O5 (RE = terre rare) aboutit
à un modèle dans lequel des chaines linéaires de spins hélicoïdaux de Mn4+ sont couplées au moyen
de paires de spins de Mn3+. Le système hélimagnétique de Mn induit aux basses températures un
ordre des spins RE qui est hélicoïdal pour une faible et sinusoidal pour une forte anisotropie du
site. Des corrélations de spins orthogonaux, rencontrées dans le présent traitement matriciel sont
prouvées être compatibles avec la théorie des groupes.

Abstract. 2014 One first derives from a classical spin hamiltonian an interaction matrix ~(q). The
phase comparison method is a simple identification procedure obtaining at once the eigenvectors of
~(q) which are directly related to the magnetic structure. In a second step one finds the roots, related
to the magnetic energy and the stability conditions. The application of this method to the com-
pounds REMn3+Mn4+O5 (RE = rare earth) results in a model where Mn4+-chains of helical spins
are coupled together by pairs of Mn3+-spins, the system of helical Mn-spins inducing at low tempe-
ratures a spin ordering of RE, helical for negligible and sinusoidal for high one ion anisotropy.
Orthogonal spin correlations occurring in the present matrix approach are shown to be compatible
with group theory.
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1. Introduction. - The microscopic or Fourier-

method, developed by the author for the search of
magnetic structures is a matrix method [1] which
reduces to an eigenvalue problem in the case of

equivalent atoms. When there are coupled systems
of non equivalent magnetic atoms, the method is
more difficult to handle and consists essentially in
the search of a convenient combination of magnetic
modes of the isolated (uncoupled) systems.
We present here a simple method called phase

comparison method which does not need an explicit
knowledge of eigenvectors or eigenvalues and only
uses the fact that the linear equations under consi-
deration and belonging to a same eigenvalue can be
made either identical or conjugate.
We outline first the matrix method as far as needed

here. We show further that eigenvalues and eigen-
vectors do not depend on atomic positions (part 1).

We check then the phase comparison method on simple
examples of equivalent atoms (part 2) and finally
apply it to coupled systems (part 3).

Recently, a neutron diffraction study has been under-
taken on the compounds RE2O3 . Mn2O3 . 2 Mno2
or REMn2o5 where RE is Nd, Er, Ho, Tb or Y.
The results [2, 10] are in essential agreement with
the predictions of the theory presented here on coupled
helical Mn-spins and helical or sinusoïdal RE-spins.
We study the stability conditions, first neglecting

super-superexchange (part 4) and secondly taking
it into account in order to explain Buisson’s present
data [2] (part 5). The coupling of the RE-to the
Mn-spin system is considered in the approximation
of isotropic exchange for negligible anisotropy (part 6)
and for very high one ion anisotropy (part 7). In
the discussion one relates the spin structure to the
relevant exchange interactions.
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Finally we connect the microscopic matrix method [1] ]
to the macroscopic method of group theory (repre-
sentation analysis) and show the perfect compatibility
of these methods (part 8).

1.1 THE MATRIX METHOD. - We use a Heisenberg
hamiltonian (1.1) where Jij is the usual exchange
integral and Si the spin at point ri. The minimisation
of the hamiltonian (1.1) under the constraint

Si2 = constant as well as the fact that dSi/dt = 0
in a static spin configuration are conducive to a sys-
tem of linear eq. (1.2) with (positive) Lagrange
parameters Âi

After a Fourier transformation (1.2) can be written
as a matrix equation

Here T(q) is a column vector having components
Tj(q) which are the Fourier transforms of the Sj = S(rj)

The summation in (1 1 4a) is over all points ri
belonging to the same Bravais lattice j. The interaction
matrix Ç(qj is hermitian and has elements

Here the indices i and j denote Bravais lattices i and j.
rio is a reference point on the Bravais lattice i. The
summation is first over all those points tj of the Bravais
lattice j, belonging to the same exchange integral Jij
and secondly over several exchange integrals if needed.
The dimension of the matrix (q), of the diagonal
matrix (Â) and of the column vector T(q) is equal to
the total number of Bravais lattices under conside-
ration. The construction of matrix elements (ij(q)
is illustrated by the tables 1 and II.
As an example consider two systems 1 and II, each

one containing four equivalent Bravais lattices. The
matrices Ç(qj and (A) will have the structure

Here Çi(qj and ’n(q) are the interaction matrices of
the separated systems 1 and II respectively, ’I-n( q) is

TABLE 1

The contribution to 171/q) is obtained by suppressing the factor exp iq. 

TABLE II

f(q1, q2) = (1 + exp - iql) (1 + exp iq2) ; 6+ is the point 1/2, 0, 1 - z.
The contribution to n5j(q) is obtained by suppressing the factor exp iq. (r5 - rj) in (Sj(q).
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the matrix describing the interaction between the

systems 1 and II. (ÀJ and (Â,,) are diagonal matrices
of the form

where 1 is a diagonal matrix of dimension four ;
À1 and Àn are scalars.
The matrix Ç(qj still depends on atomic coordinates.

It is however easy to see that one can write

where 1Jij only depends on Bravais lattice translations
and no longer on atomic coordinates. It is advanta-
geous to replace the Tj(q) (1.4) by new vectors Qj(q)
defined by

so that the matrix eq. (1.3) is replaced by

Here 1J(q) and consequently (À) and Q will no longer
depend on atomic coordinates. In the case of only
one propagation vector q, reference spins are simply
given by

with

We shall consider solutions of the form

u and v are orthonormal unit vectors and Qj is a

phase factor of the form

Thus the spin S(rjo) (1.12) becomes

and the angle between spins in rio and rio becomes

1.1.1 Remark 1. - A sinusoidal spin can be

expressed by (1.16) with v = 0.
1.1. 2 Remark 2. - It is often convenient to intro-

duce unitary spins crj defined by (1.17) and to incor-
porate the spin values in new exchange constants
defined by (1.18)

When this is done, the components of the column
vector Q in (1.11) are directly proportional to the
phase factors Qj (1.15), the constant factor being
1/2(u + iv). From now on we shall use the convention
of unitary spins for the manganese systems in

REMn2O5. This is equivalent to replace Sj by 1

in (1.14). 
’

2. Equivalent atoms (the Mn-system). - 2.1 1 PRE-

LIMINARIES. - Figure 1 shows the projection of the
structure along c.
The compounds crystallize in the space group

Pbam. The atomic positions will be numbered as
follows :

There are four kinds of oxygenes 0, in 8i, On in
4g ; OIII in 4h ; OIV in 4e. Their parameters are found
in [3]. We only repeat those of the cations, as found
from a refinement of HoMn20, [3] : for Mn3+
x = 0.088, y = - .150; for Mn4+ z = .242; for
Ho x = .140, y = .171, a = 7,33 A; b = 8.49 À;
. 
= 5.68 Á.
(Cf. also lattice parameters of isomorphous sub-

stances [4] and a structure refinement of DyMn2O5 [5].)
For the sake of brevity, we note Mn3+ = Mn, and

Mn4+ = MnII. We consider first the order of the

manganese moments alone. The exchange integrals
are of several types, JI between moments of Mn,,
Vu between moments Mun and JI,II between moments
Mn, and MnII. Tables 1 and II show respectively the
environments of the atoms MnI(1) in x, y, 0 and of
Mnn(5) in 2, 0, z and illustrate the construction of
the matrix elements (jj(q) and l1ij(q). The 1J(q) matrix
has the following form, analogous to (1.6)

FIG. l. - Projection of the crystal structure of REMn205 along c.
White circles for 0 in z = 0 and z = 2 ; circles + for 0 in z = ± 1/4 ;
black circles for RE in z = 1/2 ; circles hatched horizontally for
MnI + in z = 0 and obliquely for Mn Î+ in z ~ ± 0.24. The envi-
ronments are prismatic for RE, a (nearly) square pyramid for Mni

and an octahedron for Mnn.
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Here nI and fin are the 4 x 4 matrices of the sublat-
tices Mn, and Mnn alone. fll,n is the interaction matrix
between the sublattices Mni and Mnn. fln,1 is the

conjugate transpose of fll,u.
The wave vector q has been found to be [2] [i Or]

or explicitely

Here a* and c* are the reciprocal vectors of a and c
respectively. All matrix elements are real except for
nII.
One has

In the foregoing equations we have used the follow-
ing abbreviations (cf. tables 1 and II)

The (À) matrix has the structure (1.7) (1.8) where
Â, and Àn are the roots for the Mn, and Mnii moments,
determined by the phase comparison method.

2.2 SYSTEM Mn,. - Consider the Mn, system alone
which should obey the matrix equation

Multiply the four eq. (2.5) by Q 1-1, Q2 1, Q3 1
and Q4-1 respectively and rewrite the equations,
labeled (1’) to (4’), so that terms with the same coeffi-
cients can be readily compared. For instance the

eq. (1’) and (4’) are respectively

Since the equations must be either identical or

conjugate, inspection shows that one has symbolically

From the comparison of eq. (1’) and (4’), we get

It can be checked that there are no other relations.
The corresponding angular relations are

so that t/J 4 and t/J 3 can be expressed in terms of t/J 1
and t/J4 respectively as follows (m, n integer)

According to the parities of m and n, there will be
two types of solutions, say a) and b).

2. 2.1 Solution a). - m and n are of the same
parity.

In this case

This means geometrically that the spins S2 and 83
must be orthogonal and the same holds for spins Si
and S4.

Substituting the results (2 .11 ) in the eq. (1’) and
(2’) defined above, we have

Define a phase ç by

We get from (2.12)

so that finally a simple (1) solution is

2. 2. 2 Solution b). - m and n have different parities.
One finds the relations (2.16) and (2.17) analogous

to (2.11) and (2.15)

(1) The most general solution is

with a arbitrary.
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Finally the eigenvector matrix (Q ) of the uncoupled
Mn, system becomes

Here columns 1 and 2 belong to solution a),
columns 3 and 4 to solution b).

2.2.3 Roots. - From (2.12) we can evaluate

directly the roots

Columns 1 and 3 of (Q ) (2.18) are conjugate and
belong to one root Â+, columns 2 and 4 belong to
the other root.
One may equivalently write a parametric represen-

tation of the roots, splitting (2.12) into a real and an
imaginary part. Thus

with

so that

2.3 SYSTEM MnII. - The same procedure as above,
applied to the matrix qu gives rise to the phase
relations

No phase relation is found between Q5 and Q7
because there is no matrix element connecting them.
This inherent degeneracy will be lifted in the coupled
system.

It is instructive to consider a root Àuo in the para-
metrized and the non parametrized form. With the
abbreviations (cf. (2.4))

the root parametrized in t/J II is

with the conditions

The form non parametrized in t/1n is

The discussion shows that if Je = 0, there is no

helical solution, i. e. sin q = 0. Thus even in the

asymmetric chain (J * J’) the second neighbour
interaction is needed for a helical arrangement. In
this event one finds :

which reduces to the classical result

i. e. for the case of the symmetrical chain.
For completeness we also give the value of cos 2 y§ii

and Àuo for the asymmetric chain

The positivity of Â,I. implies the negativity of the
product JJ’ Jc.

3. Coupled systems. - We could have started from
the beginning with comparing the phases of the

coupled systems. It is however obvious that the phase
relations between the Qj of the coupled systems must
functionally still satisfy those of the uncoupled sys-
tems although the values of the individual phases
will change in the coupling. Thus the symbolic rela-
tions (2.7) must still be valid and all previous phase
relations can be used. More precisely, we conserve
the phase vector of the first column of (2.18) with

or equivalently

In the first four equations of the matrix il (2. 1),
Q5 and Q6 on one hand, Q7 and Q8 on the other hand
always occur with the same coefficients so that we
put
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We examplify the procedure by writing explicitely
the first two equations of the coupled system :

Multiplying them by Q 1- 1 and Q2 1 respectively
and taking into account the conjugate character of
the equations thus obtained (cf. (2.7)) one has from
the comparison of the coefficients of a and b and
from (3.1)

Thus F must be real and G imaginary

whence

From the comparison of the first and fourth equa-
tion of our matrix equation we deduce the condition

Finally comparing the coefficients of a and b in
the fifth and seventh equation formed width 1 (2. 1)
one gets

These relations satisfy the condition (3.8) and
mean that S7 and S8 are respectively orthogonal to
S5 and S6. The orthogonality relations (2.11) and
(3.9) have provided the key for the solution of the
magnetic structures studied by Buisson [2].
The eigenvector of the Mnn system can be expressed

in terms of QS alone

or equivalently

The phase relations (3.1) and (3. 10) with

define the following system of reference spins (3.12)
where we take u along the x-axis and v along the
y-axis :

This information combined with the assumption
of mainly negative interactions between spins of

Mn, and Mun gives already a fair picture of allowed
structures, taking y§i and !/n in the vicinity of 0°
and 180° respectively.
At this point we emphasize once more that our

eigenvectors (3.1) and (3.10) or equivalently our
structure model (3.12) have been obtained by the
phase comparison method without solving for the
values of ÀI and Àn. The present example also shows
that orthogonal spin situations (cf. the couples of
spins (1 ; 4), (2 ; 3), (5 ; 7), (6 ; 8)) can arise in the
presence of only isotropic interactions without the
need of anisotropic exchange. We return to our

system of eight eq. (1.11) which is now reduced to
only two complex equations, say the first and the
fifth for instance

Multiply the first and second equation of (3.13)
by QÎ and Q18J respectively and split into real and
imaginary parts. One gets the four eq. (3.14a, b, c, d)
where we have used the notations (2.4) and (2.23)

It is easily checked that for a and b tending to
zero, Â, and Àu tend to the roots ÀIo (2.20a) and
Àuo (2.24) of the uncoupled systems. At the same
time conditions (3.14c) and (3.14d) tend to the
conditions (2.20b) and (2.25a) of the uncoupled
systems, as it should be.
The magnetic energy of the couple of ions

Mni + Mnu is given by
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It is seen that (3.14c) and (3.14d) express the
conditions of an extremum of WM with respect to
the variates ysi and t/Ju respectively. With the abbre-
viations

where T, is the average exchange integral of Mn,
and Mnu with their neighbours at the distance c,
one finds a further equilibrium condition (3.14e)
by equating to zero the derivative of WM with respect
to the wave vector component q = 2 nT (cf. (2. 25b)) :

3.1 REMARK. - In the foregoing lines the phase
relations (3.10) were derived with the help of the
four first equations of the matrix system (1.11)
belonging to Âl. If we had taken the second set of

equations belonging to Àn, multiplied by Q f to Qg and
labeled (5’) to (8’) respectively, we would have got
the same result.
The reader may check the symbolic relations,

completing (2. 7)

4. Negligible super-superexchange. - For a first
orientation we neglect super-superexchange at the
distance c ~ 5.7 A (jc ~ 0). Thus from (3. 14e)

From (3.14d) we derive two solutions, a solution
sin II = 0, implying also sin q = 0, which case

will be studied at the end of this chapter, and the
solution

which substituted into (3. 14c) determines ysi by

cos t/ln can now be expressed as follows

where

Thus the angles t/lI and t/1n are expressible in terms
of the exchange integrals alone.
With the help of these relations, it is also possible

to indicate explicite expressions for the eigenvalues ÀI
and Àn (3.14ab). We find after some tedious but

straightforward algebra (neglecting AI and An)

where the last equation is justified in (4. 9).

4. 1 LOCAL STABILITY CONDITIONS. - The quadra-
tic form constructed on the second derivatives of

WM with respect to the variates j, II and q3 should
be definite positive, or expressed otherwise, the
determinant A (4.8) and all its principal minors
should be positive for a minimum of WM :

We discuss here the most significant ones in the

approximation of negligible super-superexchange
(je = 0). From

we deduce the condition

Thus there are two choices from (4.1), either

ôr

From

one derives the conditions

and

The last relation (4.11) compared to (4. 9) implies
the important result

Thus (4.9) and (4.12) tend to make Àn positive.
We may conjecture that BI, a and b are negative so

that J  0 also increases ÀI (4.6). We may also

conjecture that with the shortest distances are asso-
ciated the most negative exchange integrals with

1 b 1  1 a 1 BI or J so that  ab 1 would be small
with respect to BI J 1 and from (4.3) the angles
would be small too (CI is probably negligible).

Table III summarizes the result of the discussion
of relations (4. 1) and (4.9a, b) and contains the
values of cos ¡fin and sin ¡fin, the signs of the exchange
integrals J’ (between MnII - moments at z and



666

TABLE III

1 - z) and a (between MnI(1) and Mnn(5)) and the
values of cos 95 and sin 05, defined below (4.13).
4.2 COMPARISON WITH EXPERIMENT. - Actually

the phases accessible to the observation by neutron
diffraction are not the phases t/1 j, but phases qJ j defined
by (4.13) and related to t/1j by (4.14)

Choosing for the cosine and sine functions of

(4.13) the complex representation, the magnetic
structure factor (4.15) splits into two parts, corres-
ponding to satellite reflections at h+ = H + r and

with

Here H is a vector (HKL) of the reciprocal lattice
in a unit cell doubled along a. H is always odd. £
is the magnetic form factor. From (4.14) one has

It is then an easy matter to calculate the structure
factors which are explicitly (with x’ = x/2 - 0.044 ;

Although most of the satellites are obscured by
nuclear reflections, the intensity of { 300 } ± is defi-

nitely much higher than that of { 100 } ± . The compa-
rison of their intensities I(h) evaluated according to

already shows qualitatively that cos (p.5 must be

negative. Table III shows that only two solutions
are possible, corresponding to (4.9a) and (4.9b)
respectively, say

and

Experimentally cos (q - 2ysii) is positive for
RE = Tb, Ho, Er and negative for RE = Nd. Thus
for RE = Tb, Ho, Er the solution (4.19a) corres-
ponding to J’ &#x3E; 0 and a  0 is favoured. It is repre-
sented in the figure 2. The solution (4.19b) would
correspond to the same figure, interchanging moments
5 with 6, and also 7 with 8.
Thus J  0 would be associated with the smaller

distance Mnll-Mnll (2.75 À) and the smaller angle
MnII-0-MnII (95°) and J’ &#x3E; 0 with the larger distance
(2.93 À) and the larger angle (98°).

It is believed that negative direct exchange here
competes with positive superexchange and that the

h

FIG. 2. - Magnetic order of the Mn-atoms. Note the orthogonality
of Mn,-spins 1 and 4, 2 and 3 and of Mnn-spins 5 and 7, 6 and 8.
A translation a changes the sign of spins, a translation c rotates

every spin by q3 indicated by the dashed arrow at spin 1.
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absolute value of direct exchange decreases more
rapidly with distance than super-exchange [6, 7, 8],
as observed in the right angle exchange Cr3 +-X-Cr3 +
(X = 0, S, Se, Te). Note that Cr3 + is isoelectronic
with Mn4+ . Thus  J’   J .

Table IV shows the values of q3 = 2 nr, i, t/lIB
and IIB according to Buisson’s powder datae [2],
and of t/lu cal calculated according to (4.9a) with
n = 1, neglecting jc. In all cases j is small ; t/lUB
is in acceptable agreement with II cal only for RE = Tb,
Ho, Er and is systematically smaller than t/lUcal.
Actually the tum angle between spin 5 at height z
and spin 6 at height z is 2 t/lu ; the turn angle between
spin 5 and spin 6+ at height 1 - z is q - 2 rII. Thus
the neglect of super-superexchange lc is equivalent
to saying that the moments of 5 and 6+ are parallel.
In fact the tabulation of q - 2 //IIB shows that they
are not !

TABLE IV

i is the propagation vector along Oz, expressed in fractions of

the reciprocal length c* = - ; qO is the turn angle after a transla-
c

tion c. t/JIB and IIB are the angles of the reference spins 1 and 5
with Ox according to Buisson. ( is the ratio (4.20) jc/J’.

It is seen that (4.9a) implies sin 2 t/Jn &#x3E; 0 and
cos 2 t/Jn  0 while (4.9b) implies sin 2 t/Jn  0 and
cos 2 t/Jn &#x3E; 0. None of these solutions is compatible
with Buisson’s datae [2] for which simultaneously
sin 2 t/Ju &#x3E; 0 and cos 21//II &#x3E; 0 hold. The last line
of table IV shows the ratio, calculated from (3.14e)

which is not negligible. Thus we have to reexamine
the stability conditions for non negligible super-
superexchange jc. Geometrically there is only one
magnetic path corresponding to J’ against four

magnetic paths for jc. As already stated, the exchange
between two Mn4+-cations turns from negative at
small distances (J) to positive at large distances.
Thus near to the crossover the ratio ( (4-20) may
become significant. Of course these are only plausi-
bility arguments.
On the other hand the neutron diffraction powder

data are not precise enough to make definite state-
ments. Only a structure refinement of the Mn4+-posi-
tions at low temperatures and magnetic measurements

combined with neutron data on single crystals could
shed more light on these questions.

4. 3 REMARK ON THE RANGE OF q3. - We finally
study the equilibrium solution sin ¡f¡n = 0 implying
sin q3 = 0 with II = rc ; q3 = n, i. e. for a propaga-
tion vector k = [i 0 -1 in the case of negligible super-
exchange. The condition

shows that here

It is also seen that the condition

favours the equilibrium condition and the positivity
of II which becomes (neglecting b)

The results is at first sight surprising because the
signs of J and J’ are just opposite to those of the
non commensurate case discussed above. In fact,
one has precisely k = [2 0 1/2] in BiMn2O5 [9] where
the structure refinement has shown that the z-para-
meter ofMnn is z = 0.27 (while in REMn2O5 z  0.25).
Consequently again the larger distance (3.10 Â)
is associated with a positive exchange (here J) and
the smaller one (2.65 Á) with negative exchange
(here J’) as it should be.

5. Non negligible super-superexchange. -

5.1 STABILITY CONDITIONS. - The condition

b 2 W/bq2 &#x3E; 0 leads to

(by eliminating jc). q being contained in the first

Brillouin zone, sin q is supposed positive so that

we have the important condition (5.2) which also
holds for the isolated system

Thus

or

Buisson’s data [2] for II favour the conditions (5. 3a).
The equilibrium conditions (4.10) read now

and

In both relations the coefficient of J’ is positive
(sin § and sin (q- y5) are negative everywhere ; cotg y5,
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sin 2 and sin (q - 2 ) are positive everywhere [2])
so that there is always compatibility with J’ &#x3E; 0
and J  0. One also checks that for vanishing le
(i. e. sin (q3 - 2 t/Ju) - 0) the relation (5.5) is condu-
cive to J  0.

Another way of checking the plausibility of the
signs we have assigned to the various exchange
integrals is : to write down the linear relations (3 .14a,
b, c, d, e) with the observed angles ysi, t/Jn and wave
vector component q3, to eliminate a, b and le and
to compute Â, + Àu which must be positive.

In the case of Nd we get successively from Buisson’s
data [2]

In the case of Tb

It is seen that the coefficient of strong négative
exchange integrals is negative (BI and J), the coeffi-
cient of positive exchange J’ is positive. CI is probably
negligible with respect to BI. If BI (= JI (1.2)) is of
the same order of magnitude as J, it is also seen that
a is more negative than b. If J’ was negative for Nd,
J’ should be very small compared to  J .

5.2 RELATIONS BETWEEN TURN ANGLES AND

EXCHANGE. - Figure 3 shows the relation between
the angle t/I = t/lu and the wave vector component q3
for various values of ( (4.20) taken from the rela-
tion (3.14e) which can be written

FIG. 3. - Relation between the propagation vector q and the angle
II for various values of the super-superexchange parameter .

or after inversion

with

The last equation is double-valued with e = + 1

for Tb, Ho, Er, Y and e = - 1 for Nd. ( = 0 corres-
ponds to y5 = 1/2 qz + n; ,= - 1 corresponds to

t/1 = qz + n/2 (but also to t/1 = 0 and q3 arbitrary).
By appropriate eliminations between the rela-

tions (3.14c, d, e) one obtains relations in only one
variate y5 (5. 0), q3 (5.11), cos ( - q3) (5.12) versus
the ratios of exchange integrals " r and p. They are
given here for completeness

Here we have introduced the following abbreviations

5.3 DiscussioN. - The ratio of exchange inte-
grals 11 is small ; p is near to unity and positive. For
negligible superexchange (Ç and 11 negligible) we find
the result

which is approximately satisfied for the Er-compound
with p ~ 0.7.

For important super-superexchange with Ç in the
vicinity of - 1, y5 is in the vicinity of n. Setting

where K is a small positive quantity, one finds from
(3. .14d, e)

In the cases of Nd and Y, x is a small positive angle
(7.90 and 13.80). Thus one may conclude that here
p=a’/J&#x3E; 1 for n &#x3E; 0 and p  1 for n  0. This
is also evident from the eq. (3.14d) which may be
written
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With the observed values of y5 and q, one has the
following relations

5.4 NUMERICAL EXAMPLE. - In arbitrary units we
have put J=BI=a= - 1, J’ = 1/2 and jc = - 1/4
(neglecting b and CI), say p = + 1 ; n = 1/4 and
2 We obtains = 0 ; y§11 = 217° and q3 = 103°.
These values have been used for drawing the schematic
magnetic structure of figure 2.
To summarize, there is negative exchange between

the manganese atoms Mini(1) and MnI(2) (BI), bet-
ween MnII(5) in -1, 0, z and MnII(6) in -1, 0, z(J) and
between Mni(1) and Mnu(5) (a), B,, J and a being of
comparable strength. There is a positive interaction
J’ between Mnii(5) and MnII(6+) in -1, o,1-z (z ~ 0.24).
A non negligible super-superexchange in the Mnn
chains along c must be assumed to explain Buisson’s [2]
powder data.

The physical interpretation of the orthogonality
relations (Si.Sj = Si Si cos Oij with 0j = + n/2 ; cf.

(2.11) and (3.9)) is the absence of any coupling, the
corresponding matrix elements nij being zero.

5.5 REMARK. - One may question if other weak
interactions are not more effective than the super-
superexchange jc through a distance of N 5.7 À. We
have indeed investigated the interaction via the magne-
tic path Mn,(l)-OH-Mnn(6+) (or also MnI(I)-OnIII-
O,,-Mnll(6’» where the point 6+ is in -1, 0, 1 - z.

Here the distances Mni(1)-Oii and OII-MnII(6+) are
3.53 Á and 1.95 Á respectively in NdMn205 ; these
three atoms are aligned with a Muj-Mun distance of
5.48 Á, smaller than c. The effect is the addition to
ÀI + Àn of a term of the form p cos (q - ysii) . Neglect-
ing jc, (3.14e) would be replaced by

The local stability condition (eliminating p) is seen
to be

With Buisson’s datae [2] sin t/ln and sin (q - t/ln)
are both negative so that the condition J’ &#x3E; 0 is
not modified.
We have also investigated the magnetic path

MnI(1)-O-MnII(8+) where point 8+ is in 0, - 1/2, 1 - z.
This interaction gives rise to a term of the same form
as above.

6. Negligible anisotropy in the rare earth system. -
PHASE RELATIONS. - We consider the rare earth sys-
tem as being weakly coupled to the Mn-system and
completely neglect RE-RE interactions. The form

of the interaction matrix is now, the lower index III

referring to the RE system

Taking only intp account RE-Mn interactions at
distances smaller than 3.4 Á, the interaction matrices
’lIII-I and qlll-1, are as follows for the propagation
vector [2 0 r] :

Here we have used the abbreviations

The distances are

The matrices 111-111 and 1111-111 are the conjugate
transposes of 11111-1 and 11111-11 respectively. In (6.3)
the roman subscripts refer to the systems and the
numbers in the parenthesis to the pairs of reference
atoms.

We shall be concerned here with two extreme
cases :

a) The one ion anisotropy of the rare earth is

negligible.
b) The one ion anisotropy of the rare earth is very

high (part 7).
Isotropic case. - In the isotropic case nIII-III would

have a form analogous to 111-1 (2. 3) ; for the time being
we shall neglect nIII-III.
The last four equations of the matrix system (1.11),

belonging to the root Â,11, when brought to a form
analogous to (2.6), will obey the symbolic rela-
tion (6.4) [completing (2.7) and (3.17)] :
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The phase relations are found to be

or explicitely

One recognizes the orthogonality relations

analogous to the relations (2 .11 ) of the Mn,-system.
Thus in the isotropic case the eq. (3.12) are to be

completed by

Remark. - The reader may check that for the

points 10- at xY1/2 and 11- at 2 - x, 1/2 + y, l

and

The points 10- and 11- are at the distance - c
from the corresponding reference points 10 and 11.
For the spins at points 9,10-,11-,12 one has exactly
the same expressions as for those in points 1, 2, 3, 4
with t/lIII replacing (cf. (3.12)).
The phases gj (j = 9, 10, 1 l, 12) used in the struc-

ture factor calculations and related to the j by
(4. 14) with zj = 2, can be expressed in terms of (Piii

Thus the contributions of RE and of Mn, to the
structure factor will have the same form (cf. (3.1b),
and (4.17)).
The eq. (9’) of the matrix-system will split into a

real part giving îll, (6 .11 ) and an imaginary part
which represents the equilibrium condition of the
magnetic energy for rIII (6.13) :

with

Of course the values of Â, (3.14a) and An (3.14b)
as well as the equilibrium conditions (3.14c, d, e)
will be modified too. One obtains with obvious

notations

with

and, for short,

as the reader may check with the help of (6.12) and
the eq. (1’) and (5’) of the matrix-system.
At first sight it seems to be a formidable task to

estimate nine exchange integrals (neglecting CI), say
BI, J, J’, jc, a and b for the Mn system and a, fi, y
for the Mn-RE interactions. Actually we have avai-
lable three equilibrium conditions (3 .14c, d, e) corres-
ponding to the experimental datae of t/lI’ t/lu and q3
of the Mn-system before RE orders, plus four equili-
brium conditions ((6.13) and (6.16a, b, c)) corres-
ponding to the variates !FI, ’Pn, III and q3 once the
RE ordering has set in. Thus seven exchange integrals
can be expressed as linear functions of the two ones
left over. Furthermore the positivity of Âl, À,H, Àiii will
restrict the parameter space. We postpone the discus-
sion after having dealt with the anisotropic case.

7. High one ion anisotropy in the rare earth system.
- Here we shall be concerned with the extreme case
of RE-moments still coupled to the Mn-system by
isotropic forces, but constrained to fixed directions
by high anisotropy forces.
When one ion and exchange anisotropy are present

the hamiltonian (1.1) and the relation (1.2) are to be
replaced by 
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and

-+

where 3ij is a dyadic. In the present case where only
isotropic exchange and one ion anisotropy for RE
will be considered, we put

~  ~

Here 1 is the dyadic identity and jjj represents the
one ion anisotropy tensor which is traceless
~

(Jjj scalar = 0) and symmetric in the x, y plane.
One shows easily (see appendix A) that

with

Here Pj is the easy direction defined by the unit
vector ni

For the anisotropy energy Wan(Si) of the spin Si
one gets the classical result

In the case of a very high anisotropy on the site j,
the spin Si of phase ipi in the direction ni will be
defined by

Here nj, ni is a unilinear dyadic formed with ni (7. 6).
Absorbing again the (maximum) spin length Sjo in

the exchange constants we define

with

Note that a (7.9) is no longer a unit vector, but its
length depends on a phase. For instance

Note also that Qj 2 is phase independent, as well
in the helical as in the oscillating case.

In the present case flIII-III is the diagonal matrix

~

formed with the jjj (7. 3). Explicitely the ninth equa-
tion of the matrix system (1.11) will be

Projecting this equation on ng one finds

In other words, factorizing a common factor

n9 . (x + iy) one finds the same phàse factors Qj and
phase relations as in the isotropic case. Thus ÀIu will
still be given by (6.12), but augmented by K and the
condition (6.13) on t/lIII will be the same. In the same
way the fifth equation of the matrix system will be
(cf. (3.13))

The multiplication by Q5* will give rise to

The phase relations are still seen to be conserved.
The oscillating spin system will be given by

The oscillating spin order is obtained by projecting
the helical spin order onto the anisotropy directions.
The only new feature which comes in is the occur-

rence of the factor! before the summation on the
Mn-RE interactions in (7.15). The consequence is
that in the anisotropic case one shall have

Also the equilibrium conditions will hold with the
only différence that in (6.16) /Lm is to be replaced by
-’ III· This also holds for the RE-contribution to the
magnetic energy. One has to recall indeed that the
spins aj (RE) (see (7.9)) are not unitary and that

From
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one has for the magnetic exchange energy between
Mn and RE

Thus the magnetic energy in the anisotropic case is

In the isotropic case one has

Î.1 REMARK ON INTENSITIES. - The magnetic
structure factor may be brought to the following
form in the sinusoidal case

with

Here n is the unit vector (7.6) with fij = B9 and
n’ with Pj = - B9. The expression above transforms
to the helical case (compare with (4.17)) when replac-
ing n, n and n’, n’ by the identity operator.

7.2 DiscussioN. - Buisson [10] finds a better

intensity agreement with a helical than with a sinu-
soidal RE-ordering for NdMn20l. Using his datae
reproduced in tables IV and V, we shall neglect in a
first approximation the small parameters a, fl, y of
the Nd-Mn coupling and solve the four eq. (3.14c, d)
and (6.16a, b) for the exchange parameters J, J’,
a and b in terms of BI = JI (1.2). The solution (neglect-
ing CI) is

Note that these equations do not depend on super-
superexchange. This approach to the problem gives
at least a feeling for the magnitude of the exchange
integrals which follows here the sequence

with  J’ 1 about ten times smaller than  J . When
the values above are inserted into eq. (4.3) one
finds tg 2 ysi = 0.4 which corresponds to ysi = 10.9°

and provides a check for the internal consistency
of the procedure.
We have also set up the system of seven eq. ((3 .14c,

d, e), (6.13) and (6.16a, b, c)) in order to express the

TABLE V

seven exchange parameters BI, J, J’, jc, a, B, y as

linear functions of a and b with the result

Note that here again J’ is small with respect to J
and negative. We find numerically .

and may conjecture from the strength of the coeffi-
cients that the coupling with the MnI-system (y)
is much weaker than with the Mn,,-system. Writing
y = 0, one finds a = 0, a/b = 2.19 and the following
set

Thus the Mnjj-Nd interaction is about 2 % of the
strongest Mnn-Mnn interaction J, but amounts to
about 20 % of the weak Mnn-Mnn interaction J’.
The sequence is  J &#x3E; , BI  &#x3E;  a &#x3E;  b &#x3E; J’ .
The same procedure applied to the sinusoidal

ordering of Tb and Er, using the datae of Tables IV
and V shows again that J’ is small and negative.
Thus in the results obtained so far, there is at least
qualitatively a common feature, the smallness of
J’ when compared to J. 1 J’ 1  J is of course
expected from our qualitative discussion of competing
exchange interactions versus distance. Actually a

non zero J’ is needed to propagate the three dimen-
sional order. The smallness of J’ may explain the
very low ordering temperature of DyMn2o5 [17]
(TN = 8 K).

Other qualitative statements are that the RE-Mn
coupling parameter fl is found to be positive for Nd
and negative for Tb and Er (a is positive for Tb and
Er).
One must remind however that in powder dia-

grams many satellites cannot be resolved and/or
are obscured by nuclear peaks. Buisson’s data [2, 10]
are not precise enough for making quantitative
statements. In fact the negativity of J’ is not compa-
tible with J’ sin 2 ysjj &#x3E; 0 and sin 2 ysjj &#x3E; 0 ; also
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ô2 Wjbt/J¥ &#x3E; 0 is not obeyed for RE = Nd, Er ;
ô2 Wlôql &#x3E; 0 is not obeyed for RE = Nd, Er with
the data [10].
The drawing of figure 4 compares the turn angles

of the Mnjj spin system before [2] and after [10]
Nd ordering according to Buisson (cf. Tables IV
and V). Although the variation of q can be measured
with confidence from a powder diagram, one may
have doubts on the variation of ysjj. Indeed if only

FIG. 4. - Order of Mn4+ spins in NdMn20s : a) before Nd
ordering ; b) after Nd ordering. The angles with the x-axis are
- tf1n, + tf1n, q - tf1n, q + tf1n for the points at heights - z, + z,

1 - z, 1 + z respectively.

the Mnii system is markedly affected by the Nd-or-
dering, one finds neglecting y

and from (6.13)

Thus if q3 increases in the ordering process from
131.4° to 146.9° by bq = 15.5°, t/ln should decrease,
for ôysii = - 2 bq = - 8° which is contrary to Buis-
son’s data.
We hope that more reliable datae will be made

available by single crystal studies.
For completeness we show in figure 5 a schematic

drawing of a helical order of RE spins with t/lUI = 0
(dashed arrows) and of a sinusoidal order given by
the projection of the helical spins onto the anisotropy
directions n for spins 9 and 10, n’ for spins 11 and 12
(B9 = 30°).

7.3 REMARK ON ANISOTROPY. - The oscillating
spin behaviour indicates that in the low symmetry
site of the mirror m in the Kramers ion Er is in a

doublet state far from excited states ; for the non

Kramers ion Tb we may expect a decomposition into

FIG. 5. - Schematic order of RE-spins. Helical order : dashed

arrows. The anisotropy directions n for spins 9 and 10, n for spins
11 ans 12 are indicated at the centre of the figure.

singlet states, the ground state being formed by a
pseudo-doublet of two singlet states of small sepa-
ration, far away from excited states. In these cases
a very high anisotropy of the g tensor is associated
with Kramers ions (Er) while the non Kramers ions
(Tb) show an Ising-like behaviour [11, 12]. For Nd
we may suppose an inverted behaviour of the level

system with respect to Er (Nd has three f electrons,
Er has three f holes) so that many excited crystal
field states mix in Nd to form a ground state of small
magnetic anisotropy in the x-y plane.
For non Kramers ions the sinusoidal structure

is perfectly stable until T = 0 in principle, as no

entropy is associated with singlet ground states.

For Kramers ions a squaring up should be expected
at sufficiently low temperatures with a change of the
intensities of the existing satellites and with the

appearance of new, higher order satellites. However
at very low temperatures, RE-RE interactions may
become significant and give rise to new features.

8. Connection with group theory. - (REPRESENTA-
TION ANALYSIS). - In earlier writings [13, 14] we
have defined Sk components of spins by

with

and

Here oj is constant on a given Bravais-lattice j. The
Sk-components transform like Bloch-waves in a

lattice translation AR. Indeed
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By comparing (8.2) with the definition of Qk
(1.14) it is seen that

This simple relation (8. 5) connects the (microscopic)
matrix method [1] to the (macroscopic) group theo-
retical method, called representations analysis [14,
15]. It also shows what is meant by equivalent points [1] ]
in the strict sensé ; in the helical and sinusoidal case,
equivalent points are those which are related by
symmetry operations of the space group Gk of the
wave-vector k.

8.1 SPACE GROUP Gk. - k = [1/2 0 i] is invariant

(modulo a vector K of the reciprocal lattice) under
the operations of mirror-planes mx and my perpendi-
cular to the x-and y-axes respectively and under a
rotation 2z. Consequently the space group of k
is Gk = Pba2. Taking as generators the glide plane b
in § yz and the twofold axis 2z in 00 z, one has

Thus for the case of the present wave vector

k = [2 0 r] b and 2, do not commute

One shows easily that

By a simple identification method [15, 16] one

finds the matrices of the two-dimensional irreducible

representation r of the wave vector group Gk, given
in the table VI. (An equivalent irreducible repre-
sentation is obtained by interchanging the matrix
representatives of b and 2,.) In the same table VI we
have summarized the transformations properties of
the k-components of the spins S1(MnI) and SS(MnII)
under the four group operations 8 (identity), b, 2z
and b2Z. The k-components of S9(RE) transform ’in
the same way as those of S,(Mn,), RE and Mn,
having the same site symmetry. We have omitted
the z-components not needed here.

TABLE VI

8.2 Mni-SPINS. - We consider first the qj-matrix
(2.3) of the Mni case. If we call (A ) (B) and (C)
the 4 x 4 matrices formed by the coefficients of A,
B and C respectively like (C) (8-9) for instance

one finds

Actually (B) is a permutation matrix realizing the
following substitutions : 1 --+ 2 ; 2 --+ 1 ; 3 ---&#x3E; 4 ;
4 ---&#x3E; 3. Thus (B) is a representative of 2z. In the same
way (C) is a representative of b and (A ) of the iden-
tity e. One also checks

Thus the matrices (A) (B) (C) and (BC) form a
reducible representation of the group Gk. Conse-

quently the eigenvectors of the matrix n (MnI) must be
normal modes of Gk.

8. 2.1 1 Basis vectors. - In fact the demonstration
of say, the orthogonality relations (2.11) is rather

tricky. With the help of the matrices D(T) and the
transformations TSla;k of table VI we first construct
the basis vectors ij; by the projection operator
method

One gets from (8.5), (8.12) and table VI

Here we have used the conditions (see also (1.14)
with u = x and v = y)

8.2.2 Invariants. - We now investigate the inva-
riants formed by pair multiplication of the vectors
Vj,,, (8.13). For instance
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Thus incidentally

More particularly, using (8.13) and (8.14)

should be an invariant ; but actually, operating with
the glide plane b

Thus one must have

One shows in the same way

The three last relations are written explicitely and
omitting the subscript x :

It is an easy matter for the reader to check that the

eq. (8.19) are compatible with Qj 1 = 1 and with

the orthogonality relations (2.11) or (2. 16). We
postpone to the appendix B the proof that the ortho-
gonality relations are the only solutions compatible
with the matrix 111 and the system (8.19).

8.2.3 Remark. - One may question the mathe-
matical reason of the zero invariants (8.15b) (8.18 a,
b, c). Theoretically one has in the Mn, case four spins
in the x, y-plane, having eight components and giving
rise to four basis vectors of dimension two, thus

having altogether also eight components. One must
remind however the existence of the four relations

(8.14) in the Sk- (or Qk-) formalism. Hence the basis
vectors are not independant and the relations (8.14)
imply the zero invariants.

8.3 Mnn-sPINS. - One finds the basis vectors

The vectors h2x and V2y are identically zero.

The invariant Vlx V is again zero by the same rea-
soning as above and gives rise to the trivial identity

A more interesting relation is obtained by studying

The transformation by b shows this mixed invariant
to be zero, implying Q5 = iQ7. This orthogonality
relation here appears as being due to the coupling
of the Mnn to the Mn,-system. The second ortho-
gonality relation (3.9) is demonstrated in the same

way.

8.4 RE-sPINS. - 8.4.1 Helical case. - The rea-
soning is the same as for Mn,, the lower indices 9,
10, 11, 12, replacing the indices 1, 2, 3, 4. Thus the
phase relations (6.6) are demonstrated as those of
Mn,.

8.4.2, Sinusoidal case. - One can show (see
appendix C) that the basis vectors can be written

where the t/J ij;a are the basis vectors of the helical
case. Thus the phase relations between the Qj of
the helical case are conserved.

APPENDIX A

The anisotropy tensor. - The anisotropy energy
of the ion i is

The constants au and a2i are determined by the

requirement of a minimum of Wân. Thus

wherefrom follows (7.4), K being an anisotropy
constant.

~
We consider the transformation of Jg under the

operations 2z and b (glide plane) of the wave vector
group Gk. The rotation 2ztransports point 9 to point 10

and leaves Jg invariant. Thus

The plane b transports point 9 to point 11, changes
~

so that the easy direction for the moments 11 and
12 is - B9.
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APPENDIX B

The orthogonality proof. - a) Let us try the substi-
tution (B .1) in (8.19)

with

By identifications of coefficients one gets

and

Thus the orthogonality relations (2 .11 ) (2. 16)
are compatible with group theory.

b) Let us try the substitution (B.3) in (8.19)

One now finds

Returning back to the matrix q, (2. 3) it is seen that

is solution for the root Â’ (2 . 19) where v is defined
by (cf. (2.13))

(B . 5) shows that here  Q  * Q2 1. Thus this
solution is at least incomplete.
The other possibility to be investigated is

which is still solution for A +. One may now construct
a complete solution, satisfying Qj 1 = 1 with for
instance the c6mponents in (B. 5) along Ox and
those under (B. 7) along Oy, as visualized in the

following scheme :

The eigenvector

One recognizes again the

orthogonality relations (2.11).

c) We have also studied the most general type of
linear substitutions (B. 9) in (8.19)

with the following result, after some lengthy calcu-
lations

However the requirement of Qj 1 = 1 introduces
the condition sin J1 cos J1 = 0 with two types of

solutions, either cos J1 = 0 and sin y = + 1 or

sin p = 0 and cos J1 = + 1, already discussed under
a) and b) respectively.

. APPENDIX C

Sinusoidal case. - We shall show that the phase
factors Qj are still the same as in the isotropic case.
We define

so that

complex conjugate .

Split the dyadic into two parts

No transforms according to the representation F2 or
F2, i. e. according to the identity representation To and

~
N1 according to the representation Fx x fy = Fz of
the following group table VII (associated with
k = 000).

Thus No Qj,,, (oc = x, y) transforms according to F

(Table VI) and Ni Qj,,, according to TZ x F so that

Note that the matrices of rz x r still satisfy the
multiplication rules of Gk so that rz x r is equivalent
to F.

TABLE VII
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The application of the projection operator for-
mula (8.12) gives

Actually

so that finally

where the t/J ij;a are the basis vectors of the helical
case.
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