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QUANTUM THEORY OF ONE- AND TWO-DIMENSIONAL FERRO-
AND ANTIFERROMAGNETS WITH AN EASY MAGNETIZATION PLANE

I. IDEAL 1-D OR 2-D LATTICES WITHOUT IN-PLANE ANISOTROPY

J. VILLAIN

Institut Max-von-Laue-Paul-Langevin, BP 156, 38042 Grenoble-Cedex, France

(Reçu le 14 mai 1973, révisé le 3 juillet 1973)

Résumé. - Nous introduisons une représentation dite « semi-polaire » des opérateurs de spin,
qui permet, dans l’approximation harmonique, de définir des magnons de n’importe quelle lon-
gueur d’onde à basse température dans les systèmes magnétiques à 1 ou 2 dimensions dépourvus
d’ordre à longue distance, à condition qu’ils aient un plan de facile aimantation (système « pla-
naire »).
Nous utilisons la représentation semi-polaire pour calculer à basse température la fonction de

corrélation de spins. Sa transformée de Fourier spatio-temporelle (directement observable par
diffusion des neutrons), comporte un pic relativement large dû aux fluctuations des spins dans le
plan de facile aimantation, et un pic plus étroit dû aux fluctuations hors-plan. Nous calculons,
pour toutes valeurs du transfert d’impulsion, l’intensité, la largeur et la forme des 2 pics dans le cas
à une dimension aussi bien qu’à 2 dimensions, ainsi que le déplacement de la fréquence avec la
température.

Abstract. - A « semi-polar » representation of the spin operators is introduced, which makes
possible, in the harmonic approximation, the definition of magnons for any wavelength at low
temperature in one-dimensional (= 1-D) or two-dimensional (= 2-D) magnetic systems without
long-range order, provided they are of the « planar » type, i. e. they have an easy magnetization
plane.
The semi-polar representation is used to calculate the spin pair correlation function at low

temperature. Its space-time Fourier transform (directly observable by neutron scattering) consists
of a relatively broad peak due to spin fluctuations inside the easy plane, plus a narrower peak due
to out-of-plane fluctuations. The intensity, width and lineshape of both peaks are calculated in
both 1-D and 2-D cases for all momentum transfers, as well as the frequency shift as a function of
temperature.
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2. THE TRANSFORMATION. - In a magnetic system
with an easy magnetization plane, a transformation in
the Holstein-Primakoff style can be carried out, even
if there is no long range order. This allows for a
quantum extension of the classical, zero-time calcu-
lations of other authors.

3. THE HARMONIC APPROXIMATION. - It is shown

that magnons can be defined even in certain magneti-
cally disordered media.

4. DOMAIN OF VALIDITY OF THE HARMONIC APPRO-

XIMATION. - We have only been able to justify the
harmonic approximation for large values of the spin s ;
however, there are arguments to believe that it is still
acceptable for lower values ; on the other hand, cal-
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s petit ; d’autre part, dans la limite des grands spins,
notre méthode a l’intérêt de fournir une vérification

de calculs basés sur d’autres techniques.

5. APPROXIMATION HARMONIQUE SELF-CONSISTENTE

(SCHA). - C’est l’amélioration la plus simple de
l’approximation harmonique. Elle ne donne pas
d’amortissement, mais seulement un déplacement de
raie de type Hartree.

6. FONCTION DE CORRÉLATION SPIN-SPIN. - Des

formules générales sont données dans le cadre de

l’approximation harmonique.

7. PROPRIÉTÉS DANS L’ÉTAT FONDAMENTAL. - Pour
D = 2 il n’y a qu’une réduction de spin dont le calcul
ne présente pas de difhculté. Pour D = 1, il n’y a pas
d’ordre à grande distance dans l’état fondamental,
sauf pour s = 00 ou pour les ferromagnétiques iso-
tropes qui ne sont pas pris en considératiori dans ce
travail. Cependant, dans la plupart des cas usuels, on
trouve une fonction de corrélation statique qui décroît
très lentement avec la distance ; un cas extrême est le
modèle XY avec s = 1/2, où on trouve un taux de
décroissance très proche de la valeur exacte.

8. FRÉQUENCE DES MAGNONS A TEMPÉRATURE FINIE.
- Dans l’approximation SCHA, le déplacement à
basse température est proportionnel à TD + 1.

9. LA CHAÎNE LINÉAIRE A BASSE TEMPÉRATURE

(FLUCTUATIONS DE GRANDE LONGUEUR D’ONDE). -
La section efficace de diffusion inélastique des neutrons
est donnée dans la limite classique par une formule
analytique : c’est une fonction très simple de la fré-
quence, qui présente 4 pôles. Les magnons sont visibles
dans le spectre de neutrons si q &#x3E; k. La principale
correction quantique à la fonction de corrélation sta-
tique se présente comme une érosion des ailes de la
Lorentzienne d’Ornstein et Zernike.

10. LA CHAÎNE LINÉAIRE A BASSE TEMPÉRATURE : :
COURTES LONGUEURS D’ONDE. - Il apparaît une diffé-
rence essentielle avec le cas isotrope : outre la contri-
bution à S(q, co) due aux fluctuations dans le plan,
dont la largeur devient importante à température rela-
tivement basse, il existe des corrélations hors-plan, qui
ne s’élargissent qu’à température plus élevée. La lar-
geur du pic dans le plan doit avoir un minimum relatif
en bord de zone.

ll. SYSTÈMES MAGNÉTIQUES BI-DIMENSIONNELS DANS
L’APPROXIMATION DES GRANDES DISTANCES OU DES

TEMPS LONGS. - La principale correction quantique à
la fonction de corrélation statique classique se réduit
à une constante multiplicative. Les magnons appa-
raissent dans le spectre de neutrons pour toutes les

longueurs d’onde à basse température.

12. SYSTÈMES MAGNÉTIQUES BI-DIMENSIONNELS DANS
L’APPROXIMATION DES COURTES DISTANCES ET DES

TEMPS COURTS. - On montre que S(q, cv) a un pic

culations in the large s limit provide a check of other
theoretical calculations.

5. SELF-CONSISTENT HARMONIC APPROXIMATION

(SCHA). - It is the simplest improvement to the
harmonic approximation ; it gives a Hartree shift,
but no damping.

6. SPIN-PAIR CORRELATION FUNCTION. - General
formulae are given within the harmonic approxima-
tion.

7. GROUND STATE PROPERTIES. - For D = 2 there
is just a spin reduction which is easily calculated. For
D = 1, there is no long range order in the ground
state, except for s = oo or for isotropic ferromagnets
(which are not considered here). In most usual cases,
however, the static correlation function is found to
have a very slow decay in space ; an extreme case is
the XY model with s = 1/2, where the decay rate is
found to be very close to the exact value.

8. MAGNON FREQUENCY AT FINITE TEMPERATURE. -

It is found in the SCHA approximation to have a
shift proportional to T D + 1 .

9. THE LINEAR CHAIN AT LOW TEMPERATURE (FLUC-
TUATIONS OF LONG WAVELENGTH). - An explicit
formula for the neutron inelastic scattering cross
section is given in the classical limit ; it is a very simple
analytic function with 4 poles. Magnons show up in
the neutron spectrum if q &#x3E; K. The main quantum
correction to the classical correlation function is
calculated : in the 1-D case it can be described as an
erosion of the wings of the Orstein-Zernike lorentzian
function.

10. THE LINEAR CHAIN AT LOW TEMPERATURE : :

SHORT WAVELENGTH CASE. - Here a basic difference
with the isotropic case appears : besides the in-plane
contribution, which becomes broad at fairly low

temperatures, there is an out-of-plane correlation,
which broadens at higher temperature. The width of
the in-plane peak is predicted to have a relative
minimum at the zone boundary.

ll. TWO-DIMENSIONAL MAGNETS AT LOW TEMPERA-

TURE IN THE LONG DISTANCE OR LONG TIME APPRO-

XIMATION. - The first order quantum correction to
the classical result is found to be a mere multiplicative
constant.

Magnons are found to show up in the neutron

spectrum at any wavelength, at low temperature.

12. TWO-DIMENSIONAL MAGNETS IN THE SHORT DIS-

TANCE, SHORT TIME APPROXIMATION. - The neutron

scattering function is found to have an infinite peak
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infini à co = úJq à basse température, et une singularité
avec dérivée infinie à température plus élevée ; ces

singularités sont en fait émoussées par l’amortissement
des magnons.

L’amortissement des magnons est calculé dans

l’Appendice A. Il coïncide avec la largeur du pic
hors-plan. Un calcul approximatif de cette largeur est
également donné au paragraphe 10. 5. Les Appen-
dices B et C contiennent des calculs relatifs au para-
graphe 11.
La présente théorie explique certains faits expéri-

mentaux mais seules des recherches expérimentales
ultérieures pourront indiquer si l’accord est tout à fait
satisfaisant. La forme de raie que nous donnons dans
le cas unidimensionnel semble être en désaccord avec
les résultats expérimentaux et théoriques relatifs à des
systèmes isotropes (le bord externe n’est pas abrupt
selon nos calculs), et on voit mal comment ce désac-
cord pourrait être expliqué par l’anisotropie.

Table of symbols. - The reader interested in only
a part of this paper can meet difficulties in under-
standing the symbols, when defined in another part of
the paper. For this reason, most of non-standard

symbols, which are used in more than one chapter,
are listed below.

A : anisotropy constant, eq. (2).
G RR (t) angular correlation function, eq. (24).
Gl(q, t) : spatial Fourier transform of GRR,(t).
Gl(q, w) : space-time Fourier transform of GRR,(t).
9RR’(t), YRR’(t) : see eq. (25), (26), (27).
19(k) see eq. (13).
JRR, : coupling constant, eq. (2).
,T defined by G(0) - g(k) --- Ja2 k2 for small k ;

1. Introduction. - In this paper will be investigated
the static and dynamical properties at low temperature
of a system of spins SR localized at Bravais lattice
points R and submitted to a Hamiltonian of the gene-
ral form :

where the xOy plane is assumed to be an easy magne-
tization plane. This clearly implies some inequality
between the J’s and the K’s. The case generally consi-
dered in this paper is :

so that the Hamiltonian becomes :

In this case the modulus s of the spins must of
course be différent from 1/2.
Another case is the « anisotropic Heisenberg model »

corresponding to

JRR = KRR = 0 , ,

at the magnon frequency at low temperature, and a
singularity with an infinite derivative at higher tem-
perature.

In Appendix A is calculated (in the ferromagnetic
case) the damping of the magnons, which coincides
with the width of the out-of plane peak. A rough
calculation is also given in paragraph 10.5. Appen-
dices B and C contain calculations related to para-
graph 11.
The present theory explains certain experimental

facts but further experimental work is necessary to
decide whether there is a good agreement or not. Our
lineshape in the 1-D case disagrees with both experi-
mental and theoretical results in the isotropic case

(the outer edge is not sharp according to our calcula-
tion), and it is not clear that this can be an effect of
the anisotropy.

J &#x3E; 0 for ferromagnets, J  0 for antiferroma-

gnets.
3(kl : FT of JRR,, eq. (13).
fRR’(t) : see eq. (28) and (29).
1/k : correlation length.
R : lattice site.
r = R’ - R.

SR : spin operator at R.
s : (SR)2 = s(s + 1).
?R : semi-polar angle of SR, eq. (4).
81b V1R : see following eq. (10).
T = characteristic time defined by (58), when dealing

with 1-D systems.
ï = reduced temperature defined by (74), when deal-

ing with 2-D systems.

a special case of which is, for KRR, = 0, the XY model :

The models considered here have no long range
order [1], [2], [3] in the case of a lattice of dimensio-
nality D = 1 or 2. For D = 1 as well, there is no

long range order in the ground state, except for
A = 0 or s = oo (classical limit). However, the corre-
lation length is large in both cases [2], [5], [6], [7] at
low temperature. Moreover for D = 2, there is a

phase transition without long range order [2], [7], [8],
[9], below which the spin pair correlation decays as
some power of the distance r, rather than exponen-
tially.
These properties are true for the isotropic case

A = 0 as well. However, the mathematical treatment
is much easier for A &#x3E; 0. A very good example of
model (2) is CsNiF3, which has been recently investi-
gated by Steiner and Dorner [10], [11] and has a
linear structure (i. e. D = 1).

In the present paper will be considered ideal one-
dimensional (= 1-D) or two-dimensional (= 2-D)
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systems with no in-plane anisotropy. Real systems will
be treated in a subsequent paper.

2. The transformation. - Conventional representa-
tions of the spin operators are not adequate in the
absence of long range order.

Therefore, use will be made of the following repre-
sentation of the spin operators :

This representation is a generalization of an obvious
equality for classical spins (s = co) ; then the angle ({JR
is a semi-polar coordinate. For finite s, (PR is a hermitian
operator defined by :

A solution of (5) is :

From (5) can be deduced the following commutation
relation :

Using (7), it is easy to check that the operators
defined by (4) verify the following 3 relations :

And this proves that (4) is a representation of the
spin operators. A quite similar representation has
been used by Berezinskii [15] for Bose operators.
Making use of (4), the Hamiltonian (2) can be

written as follows :

whereas the XY Hamiltonian is obtained if the last

2 terms of (8) are omitted.
It is important to note that eq. (5) and (6) only

make sense if ({JR and SR are continuous variables,
similar to the abscissa and momentum of a harmonic

oscillator. However, 9R appears in (4) through its

exponential e"»R, which, in contrast with ({JR itself,
conserves the discrete set of eigenvectors of SR for
integer (or half-integer) eigenvalues. Eq. (4) and (8)
make sense inside the subspace SR (  s of this set.

This is related to the « kinematic » interaction of spin
waves [16].

3. The harmonic approximation. - Similar to the
Holstein-Primakoff transformation, expression (8) is

rigorous, but not very useful unless approximations
are made. A good approximation is easy to find at
low temperature if s is large and if A lies in some
interval, as is shown in paragraph 4.
As A is positive, classical spins clearly satisfy at

low temperature the inequality :

What about the ç’s ? Assume a nearest-neighbour
interaction J (although this is not very important) ;
then, if J &#x3E; 0 (ferromagnetic case), one clearly has :

r e’ «PR - (PR’) _’JRR e 
iOPR- DR’) _ ,"

We shall restrict our investigation of antiferro-

magnets to those cases where the lattice naturally
splits into 2 sublattices (determined by the condition
that the first neighbour interaction JRR, is zero if R
and R’ belong to the same sublattice) ; this excludes,
for instance, the triangular lattice. Then :

where e, = 1 on one sublattice, - 1 on the other,
V1R = 9R on one sublattice and + ({JR on the other.

Inserting (10) into (8), expanding the square root
according to (9) and retaining the terms of second
degree, one obtains a harmonic Hamiltonian :

Only the terms of highest degree in s have been
retained, since approximations (9) and (10) are only
correct in the classical limit s = oo.

This expression also holds for ferromagnets with
e, = 1 and V1R = ({JR. If there are non-nearest-neighbor
interactions, the appropriate division into sublattices
can be determined from the classical (Néel) ground
state or from experiment.
The Hamiltonian (11) can easily be diagonalized by

a Fourier transformation (1) :

(1) All k-summations are over the first Brillouin zone ;
therefore each term in (12) appears twice (+ k and - k). From
this fact arises the factor 2 in (16).



31

with :

It is easy [17] to derive from (12) the following
correlation functions :

with the following dispersion relation :

4. Domain of validity of the harmonie approxima-
tion. - The approximations made in paragraph 3
amount to three :

i) The condition SR  s has been relaxed. This

approximation is also made in the Holstein-Primakoff
formalism. The present case implies :

ii) The Taylor expansions (10) and (11).
Approximation (10) is correct if :

This condition has been written without taking into
account linear terms in (10), as they do not contribute
to (11).
The approximate Hamiltonian (11) is correct if

both (17a) and (17b) are satisfied.

iii) The condition that SR should be integer (or
half integer) has been relaxed.

Consider SR as the momentum of a particle labelled
by R, and tfiR as its abscissa. The condition SR = inte-
ger means that the wave function (as a function of
tfiR) should be periodic, which means physically that
the particle moves in a circle. The case SR = half-
integer can be investigated in a similar way (for
instance, by translating the origin in the momentum
space).
Now, if the condition SR = integer is relaxed, the

eigenfunctions of (12) are square integrable and there-
fore not periodic. However, for values of T and s
such that physically significant (i. e., with an appre-
ciable probability e- PE IZ) wave functions satisfy

(17b), there is a one-to-one correspondence between
physically significant square integrable functions and
periodic functions : indeed, to any periodic function
F(V11, V12’ ..., V1 N) satisfying 1 V1R - V1R’ | ~2 nn for R,
R’ neighbours, can be associated a square integrable
function equal to F if 1 V1R - V1R’ |  n for R, R’

neighbours, and to zero otherwise. This is clearly a
one-to-one correspondence and it can be seen that

physically significant eigenfunctions of (12) correspond
to approximate eigenfunctions of (8).
To summarize, the harmonic approximation is

valid if both conditions (17) are satisfied.
Insertion of (14), (15) and (16) into (17) yields at

Strictly speaking, this leads to the very disappointing
condition (ferromagnetic case) :

which is rarely satisfied, as very large values of s are
not physically available.

The case A &#x3E; Js2, which is of interest for rare

earths, will be considered first. This condition means
that the exchange energy is a perturbation with respect
to the anisotropy. i) If s is an integer, the unperturbed
ground state is non-degenerate and therefore the true
ground state is not ordered. ii) If s is half-integer, the
unperturbed ground state is 2N times degenerate,
because it is defined by SR = + 1/2. It is then easy
to show that the Hamiltonian (1) reduces to an aniso-
tropic Heisenberg Hamiltonian with s = 1/2. The
conclusion is that the case A &#x3E; Js2 can be discarded
and must be treated by completely différent methods.

If A  Js-2, it turns out that many of the results
derived below remain correct to a good approxima-
tion, although it is not easy to explain why. Our
theory only gives the quantum correction of first
order in Ils ; as this correction generally turns out to
be small (see § 7), it is expected that higher corrections
are also small, and the foregoing theory will therefore
be applicable to materials which do not satisfy (18),
and especially to CsNiF3, where A ~ Js2/2.

It is however of interest to improve the harmonic
approximation ; this is done in the next chapter, but
the resulting theory is so cumbersome that we shall in
many cases be content with the harmonic approxi-
mation.

5. Self consistent harmonic approximation (SCHA).
- The Hamiltonian (8) will be approximated by a
temperature-dependent hamiltonian :

determined by means of the following property :
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Let F(Çl’ Ç2, Ç3, Ç4) be any analytic function of

If the system is large and if the Hamiltonian has the
form (13’), the function

satisfies the following relations, where ç, j’ = SRz" or
t/JR" and R" is any lattice point :

~

Thus, F can be considered as a good approximation
of F.

Proof. - Since F is analytic, it is sufficient to prove
the property for a product of powers of the çi’s :

This function can be written as a sum of products
of n operators Sk and .pk’ where

are also the sums of such products of (n + 1) or

(n + 2) operators ; when taking the mean value, the
dominant contribution for a large system comes from
terms where k takes the values kl, - ki, k2, - k2, ...,

with all ki’s different. Closer inspection shows that
eq. (21) follow from this fact. Of course the second
term of (20) vanishes if n is even, and the 3rd term
vanishes if n is odd.
The approximate Hamiltonian (19) can now be

determined from (20) with F = H, defined by (8),
and where all mean values  A &#x3E; are replaced by

with

It is readily seen that :

Indeed both X and JC are invariant through the
transformation (SZ --&#x3E; - Sz, cp --&#x3E; - cp) which there-
fore changes a Je/ aÇ into - aJe/ aÇ i.

It is somewhat more difficult to prove that

The left hand side is a sum of terms of the form :

times a coefficient.

i) Terms with m + n + p + q odd give a negligible
contribution proportional to 1/ÙN.

ii) Terms with (p + q) and (m + n) even vanish
because JC is invariant under the transformation

(SZ -+ - SZ, tf -+ - gj) 
iii) Terms with (p + q) and (m + n) odd are

(neglecting contributions proportional to 1/N) sums
of terms of the form :

times an imaginary constant. (p + Q) should be odd
because p + q = 2 ,u + p + o. Now :

so that terms of class (iii) also vanish.
The formal calculation of the remaining derivatives,

is straightforward, but the explicit calculation of their
mean values as functions of ak and bk is difhcult, unless
additional approximations are made ; these approxi-
mations consist of a few factorizations, and finally the
self-consistent equations which determine ak and bk
are (dropping the tildes) :
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To establish (23d), use has been made of the fact that the probability distribution for S:, 1/Ik is gaussian [18].
The method indicated above can be shown to be equivalent to the use of the Bogoljubov variational prin-

ciple, which détermines je by minimizing

6. Spin pair correlation function. - The longitudinal part is readily given by (15). The most important
part, however, is the transverse part, which according to (4) can be written as follows :

This expression results from a factorization approximation combined with a maximum simplification of
the factor depending on SZ. Clearly the second factor is most interesting ; using the fact the probability distri-
bution is gaussian, it can be written [18] as :

It turns out that the quantitative application of the SCHA approximation is difhcult ; the explicit form
of (24) will therefore be given in the harmonic approximation of paragraph 3 :

with :

The quantity of interest in many cases, especially in neutron scattering, is the Fourier transform of (25) :

with :

It is relevant to express G(q, t) in the following manner :

We now replace eiq .(R - R’) in the bracket by :

When inserted into (30), the last 2 terms of this identity give 01.( q, t), times something which does not depend
on t ; the term - 8R’, together with the second term in the bracket of (30), yields a term which contains the
difference e - f OR(t) - e - f OR,(t). The result is :

The advantage of this expression is that at low temperature the variation of f is slow in space, so that the
bracket can be replaced by a Taylor expansion limited to 2nd order :
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7. Ground state properties. - They are contained
in the factor gRR,(t) given by (26).
The 2-D case will not be considered : (26) describes

zero-point fluctuations plus a spin reduction which
can be calculated by other methods as well (Dyson
transformation, etc.).
Much more interesting is the 1-D case : the summa-

tion in (26) exhibits a divergence at k = 0 for

Thus long range order is destroyed in 1-D systems
even in the ground state for finite s and A #- 0, or
even for A = 0 in the antiferromagnetic case (this
last point does not result from the present paper but
was already known [4]).
The expression of gRR-(t) is given below, using (26)

and (16), neglecting the imaginary part, which is

finite, and using the following long wavelength
approximation :

where a is the interatomic distance. Then for ferro-

magnets :

with

and r = R’ - R 1. y is generally small. For instance
if A = J/2, and s = 1, then y = 1/9 and 90RR’ = 1/2
for r = 510 a.

For antiferromagnets, A must be replaced by
[A + S(0) - J(0)1 and y can be larger.

The 1-D XY model is of special interest as a check
of our method, because its static properties can be
calculated exactly for s = 1/2 [4], [19]. The XY model
is obtained from (12) with A = J(k) = 0 ; the fre-

.quency spectrum is :

The static correlation function at

For s = 1/2 the correlation function decays as

r -0.45 in very good agreement with the rigorous

result [4], [20] r -1/2, which is rather unexpected after
paragraph 4.

The longitudinal correlation at T = t = 0 in the
linear chain decays as r - 2 for large r, as can be
seen from (15). For instance for the XY model

(A = J(k) = 0) :

or :

The rigorous result for s

Comparison of (37) and (38) shows that for small
spins our description of long wavelength phenomena
is qualitatively correct but our method fails to account
for short wavelength features.

8. Magnon frequency at finite temperature. - In
this chapter the SCHA approximation (§ 5) is used
to show that the magnon frequency in the long wave-
length limit is of the form :

in agreement with 3-dimensional results [21], [22] for
antiferromagnets (of course eq. (39) does not apply to
isotropic ferromagnets) but in disagreement with the
classical result [12] that C - B - B’ T.
To prove this, eq. (23c) and (23d) will be approxi-

mated as follows :

where the cut-off kc is defined at low temperature by :

The summations in (40) and (41) run over the
Brillouin zone when not specified otherwise. The case
of nearest-neighbour interactions only will be consi-
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dered ; if R and R’ are nearest-neighbours, (41) can
be written as follows :

where

and ô is the fraction of the Brillouin zone which
satisfies (42) ; at low temperature :

This formula holds for the anisotropic ferroma-
gnet ; for the antiferromagnet, A should be replaced
by [A + 9(0) - 3(0)].

It is easily checked from (23a), (23b), (40), (43) and
(45) that the relative decrease of all quantities ak, bk,
 (SR)2 &#x3E; and x is proportional to TD+ 1, and the
same property for nWk then follows from (23e). A
rough order of magnitude for large s can be obtained
if the second factor of (34) is neglected as well as the
temperature variation of y :

This quantity defines the relative variation of ak
and therefore (if the variation of bk is neglected) of
the frequency. The curve (Fig. 1) exhibits a part in

FIG. 1. - Temperature dependent frequency of magnons in

CsNiF according to eq. (46).

TD+1 followed (for s large enough) by a part linear
in T, for KB T &#x3E; 2 s J AJ. There is a first-order tran-
sition at some temperature T,, but this is clearly an
artefact (as in ref. [21] and [22]) : the SCHA approxi-
mation is only correct at low temperature. In fact
there is no transition for D = 1, and probably a
second-order transition for D = 2 [23].

According to (46), the transition temperature is
defined by

and at the transition :

9. The linear chain at low température (fluctuations
of long wavelength). - In this chapter the time-

dependent correlation is investigated and the quantum
correction of first order in 1/s to the classical result [24]
is calculated. The temperature variation of the fre-

quency is neglected (which is correct at low temperature
and seems experimentally justified) and a long wave-
length approximation is used, namely :

(antiferromagnets) .

Moreover the Bose factor in (27) will be approxi-
mated by a cut off kc defined by (42) at low tempera-
tures ; at large temperatures, where the solution of
(42) would be greater than n la, kc is defined by
kc = xla, and the classical results of [24] are reco-

vered. The approximate form of (27) is, using (16) : :

For large t (Wkc t » 1), or long distance (k,, r » 1),
this can be approximated as :

The second factor is the classical expression [24]
and the first factor is the quantum correction, a factor
greater than 1 ; do not forget, however, that eq. (25)
also contains a correction 9ROR(t) independent of

temperature, and which is smaller than 1. At low tem-

perature where kc is defined by (42) the quantum
correction in (50) is also independent of T. The eva-
luation of the integral in (50) is straightforward (25]
and the final result is :
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where the magnon velocity c is defined by :

Neutron scattering. - The neutron scattering cross
section is essentially proportional to the Fourier

transform Gl(k, w) of (25). The formulae given below
hold for ferromagnets in the classical limit. The space
transform after some elementary calculation is found
to be :

and the space-time Fourier transform is easily found
to be :

with

All formulae hold for ferromagnets, but can be
extended to antiferromagnets if k is replaced by
- + k, with k small.
a

An alternative form of (56) is :

For small wavelengths, formula (56) is most conve-
nient (K « k « Ila). The spectrum essentially consists
of 2 Lorentzians represented by the first term of (56),

whereas the second term is a small correction except
at high frequency where it truncates the Lorentzians.
For k  x, expression (59) clearly shows that spin

waves do not show up in the neutron spectrum (Fig. 2).

FIG. 2. - In-plane lineshapes in the classical linear chain. The
ordinates are in different units for the 3 curves.

An alternative condition for the observability of spin
waves is :

where ç = 1/x is the correlation length. Thus our
formula (59) confirms the existence of a factor 2 n
in the condition (60) as suspected by other authors [26].
This point is essentially confirmed by the quantum
calculation in chapter 11 ; however, the concept of
correlation length is not clear for finite s : one can

imagine the correlation length as something smaller
than 1/k (defined by eq. (57)) at small temperature
because of 9ROR’ (see §§ 6 and 7), but larger than 1/x
at higher temperature because of the first factor in

eq. (51).
Let us compare our result (59) with analytic formu-

lae obtained by other authors [13], [14]. The derivation
is of course quite different and involves a new method
of calculation of the second moment (a method which
is not applicable to the isotropic case). Now our for-
mula has only 4 poles and satisfies fewer moment
relations than in [13] and [14]. The 4th and higher
moments are infinite because of the replacement of
the upper bound kc by + oo in an integral at the
beginning of the calculation. This approximation
seems correct for small frequencies, and thus, if one
believes eq. (27), the effect of the finite 4th moment
would be to cut large frequencies off, rather than to
add intensity at zero frequency, as seems to be the
case in the continued fraction method used in [13]
and [14].

10. The linear chain at low temperature : short

wavelength case. - lO.1 STATIC CORRELATION. - In
what follows, it will be shown that the static correla-
tion function is gaussian at short distances, instead of
exponential, as in the classical case, represented by
the second factor of eq. (51). For t = 0 and
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small with respect to k; 1 = 2 fi as (AJ)1/2 (this for-
mula holds for ferromagnets), eq. (27) reads :

This expression can be calculated by means of the
formula :

yielding :

with :

The extension to antiferromagnets involves the

replacement of A by G(0) - 3(0) + A, thus obtaining
smaller values of K’.
The static correlation function, resulting from (51)

and (61), is plotted in figure 3 for K’ = x (which is

FIG. 3. - Static correlation function in CsNiF3 (full curve), as
obtained by interpolation between the exponential form (e)
(eq. (51)) and the gaussian form (g) (eq. (61)). The result is

higher than the classical curve (59) and this effect would be
increased in an antiferromagnet. The factor (26) has been

neglected. The ordinate is in « arbitrary units » : clearly
 |S0 |2 &#x3E; is of order s2, but was not accurately calculated.

approximately the case for CsNiF3). The Fourier
transform is given by figure 4. The classical, Ornstein-
Zernike law is not modified for small k, but the wings
are gaussian-like.

Expressions (61) and (62) are correct whenever k,
lies in the linear part of the spectrum, even if n/na
does not.

IO.2 INELASTIC NEUTRON SCATTERING IN-PLANE AND
OUT-OF-PLANE CORRELATIONS. - Although magnon
peaks are already present in the classical formula (59),
this formula is quite unable to describe the experiments

FIG. 4. - Fourier transform of figure 3. The dashed curve is
classical.

on CsNiF3, where quantum effects, and especially
dissymetry between energy gain and energy loss are
present. Moreover, beside the in-plane correlation
calculated in paragraph 6, the out-of-plane correlation
given by eq. (15) can also be observed for large momen-
tum transfer, which gives rise to a very narrow peak
whereas the in-plane contribution is broad except at
very low temperature. The presence of a narrow peak
at fairly high temperature is characteristic of an

anisotropic system : it was observed in CsNiF3 [29]
but not in TMMC [26], [12].
A hand-waving description of the situation is given

below : locally, the system looks like a helimagnet,
with a pitch described by a vector Q, the direction of
which is very close to Oz, whereas its magnitude varies
between - x and x (for a ferromagnet). The magnon
frequency is [27], [28]

(note that this formula reduces to eq. (16) for Q = 0
or half a reciprocal lattice vector). A neutron scattering
experiment with a momentum transfer q « sees »

magnons of wave vector q through the out-of-plane
correlation  S’ Sz &#x3E;, and magnons of wave vectors

q ± Q through the in-plane correlation. It is seen

from (63) that the correction to coq±Q is proportional
to Q, and the correction to wq is only proportional to
Q2. Therefore the spread in co,±Q is proportional to x
whereas the spread in wq is proportional to x2, as

see below, paragraph 10.5.
Of course, correlation functions of the type

 SRx SR-(i) &#x3E; vanish because of the invariance under
the transformation

Clearly the existence of a narrow peak due to out-
of-plane correlations is typical of systems with an easy
magnetization plane, whereas the in-plane component
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is expected to be similar to the spectrum of isotropic
systems.

10.3 IN-PLANE CORRELATION. - The problem is to
evaluate the 2 terms at the right hand side of (31).
The first term is readily obtained from (29)

and after summation over R appears 

The second term at the right hand side of (31) is

small at low temperature except for small values of q ;
indeed, for q = 0, the second term is a sum of positive
terms, which is not the case for the first one. An appro-
ximation is obtained as follows from (51) and (28),
neglecting g° in (25) :

This is clearly an overestimation because the left
hand side decreases with t. The final result obtained

by insertion of (64) and (65) into (31) is for first

neighbour interactions :

The magnon peak clearly comes from those values of k which are close to - q, because G1(q + k, t) is
then large. Then the variation with time of the bracket is much faster than the variation of Z-(q + k, t) ; there-
fore a satisfactory description of the magnon peak is obtained by replacing Gl(k + q, t) by Gl(k + q, 0)

The Fourier transform of this function is :

or : 

Here k(w) is the inverse function of co(k), chosen to
be positive in order to have a single-valued function.
The result is shown in figure 5 for CsNiF3 at 10 K

FIG. 5. - In-plane scattering function in CsNiF3 at 10 K for a
momentum transfer 0.3 7rhla.

with q = 0.3 n/a. Numerically, our curve seems to

agree with what might be obtained by the McLean-
Blume method [12] for an isotropic system ; however
the outer edge of the line is not as sharp. Our curve

was also compared with a calculation using the method
of reference [13], which was kindly communicated to
us by S. W. Lovesey : it turns out that : i) Lovesey’s
spectrum is somewhat narrower, which can be due to
underestimation of the quantum correction in (50) for
s = 1 ; ii) Lovesey finds a larger intensity at small
frequency. As stated before (§ 9), we do not see any
reason for a strong scattering at co - 0 and, although
there is some experimental evidence for such an

effect [26], it is not excluded that it is an artefact of
the continued fraction method.

In CsNiF3, no broad spectrum similar to figure 5
has been observed, which is not surprising, due to
statistical errors. Instead, a narrow peak has been
observed [11], [29], which can be attributed to the
out-of-plane correlation (see 10.1 and 10.2). Further
experiments are necessary to check : i) that a broader
peak appears at lower temperatures ; ii) that the nar-
row peak vanishes when q becomes close to the z-axis,
in agreement with general neutron scattering formulae.

There is a much simpler way to obtain eq. (67) for
q &#x3E; k : the equation
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(which is a classical approximation, but a quantum
version can easily be given) is factorized into :

Then t/lR,(t) is replaced by t/lR’(0) in the exponent of
the right hand side, the equation is integrated and
Fourier transformed in space and one recovers (67) ;
the sophisticated proof has the advantage of giving
the range of validity of (67).

It is possible to check the approximation (67) for
t = 0 for very large frequencies where the Boltzmann
factor ep1irok is large ; one has :

in agreement with (20) and the Taylor expansion of (26).
Q is a superlattice point (Q = 0 in a ferromagnet).
Use has been made of G(Q + k) = J(k).

In the classical limit, eq. (67) reads :

It is of interest to note that in the ordered case the

function G(k + q, 0) contains a b(k + q - Q), so

that in this case eq. (67) describes undamped magnons.

10 . 4 ZONE BOUNDARY NARROWING. - The « magnon
damping » calculated in Appendix A is not included
in this expression. Neglecting this damping, the
linewidth of the neutron line is roughly given by :

where ôk is the width of the static correlation function

Gl (k, 0). For classical spins, k = K, given by (57).
According to (69), the linewidth vanishes at the zone
boundary ; this is actually not the case because of
higher order terms neglected in (69), and because of
the « magnon damping » of Appendix A. However,
the magnon damping is expected to be minimal at
the zone boundary in a linear chain (or at the superzone
boundary in an antiferromagnet). This zone boundary
narrowing can also be obtained (from a decoupling
approximation) in one-dimensional Heisenberg (iso-
tropic) systems. Its existence is clear for systems with
an easy magnetization plane, at least in the classical
case where (69) is proportional to T, whereas the

magnon damping is proportional to T . In quantum
systems, however, the efliect might be killed by the
magnon damping.

10.5 OUT-OF-PLANE CORRELATIONS. - It has been

seen above (§ 10.1) that at low temperature the out-of-
plane correlations give rise to a very narrow peak.

The basic questions are : i) what is the intensity of this
peak compared with the broad, « in-plane » peak ?
ii) what is the damping ? iii) up to which temperature
will the narrow peak persist ?
The intensities follow at once from (15) and (68).

The last two questions will be answered by means of
(63), although more sophisticated calculations of
the damping can be made (see Appendix).
To simplify the formulae, a long wavelength

approximation :

will be used inside (63), yielding :

Here q is a small vector which describes the local
pitch of the local helix ; in the classical approximation :

This gives both the shift bWk and the relaxation
time ik :

1 o

To find the domain of validity of the theory,
one can remark that the spins are aligned inside a
region containing about (Ka) -1 spins, which therefore
has a total spin of about (s/Ka), and an anisotropy
energy of about A(s/ka)2, which has to be much

larger than KB T for the theory to be valid :

Note that the k-dependent shift that appears in (70)
is different from the one that results from the SCHA

approximation. The relaxation time, however, is

qualitatively consistent with the calculation in Appen-
dix A, at least in the linear region of the spectrum.

Il. Two-dimensional magnets at low température in
the long distance or long time approximation (kr r » 1
Or ckc t » 1). - 11.1 GENERAL FORMULAE. - Only
the in-plane correlation will be considered here. As
in the linear case, the out-of-plane correlation is

observable at large momentum transfer by neutron
scattering, and gives rise to a very narrow magnon
peak even at reasonably high temperature.

Using the same approximations as in paragraph 9,
it is shown in Appendix B that the in-plane correlation
function is defined by :
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where a is a constant and :

c is defined by (53).
11.2 EQUAL TIME CORRELATION. - The space

Fourier transform at t = 0 is obtained from (72) :
1 r

with

Without e the integral would be meaningless at

low temperature. Nevertheless, the Fourier transform
of y(r, 0) is quite well defined as a distribution [30].

11.3 NEUTRON INELASTIC SCATTERING. - Func-

tion (72) has the very remarkable feature that, for
finite t, it increases with r for r  ct (Fig. 6). It has

v

FIG. 6. - In-plane correlation function in a 2-D system as a
function of r for given t (for r = 1/2).

a square root singularity at r = ct, and this results,
as shown in Appendix C, in a singularity of the
scattering function y(q, ce) at w = ± Wq (Fig. 7).
Namely :

v 
1If t  1, y(q, w) diverges as 1 W ± wq |t-1.

If T = 1, y(q, w) diverges logarithmically at ± coq.
If 1  1  2, y(q, w) is peaked at ± Wq and its

derivative diverges as 1 W - Wl t - 2.

FIG. 7. - Fourier transform of figure 6 at t = 0.

FIG. 8. - Typical curves for the in-plane scattering function in
a 2-D system.

The case r &#x3E; 2 is beyond the range of validity of
the harmonic approximation.
The above results are stated for ferromagnets ;

for antiferromagnets, co, must be replaced by Wq+Q’
with e, = e’Q. R (see § 3).

11.4 CONCLUSION. - In agreement with other
authors [2], the equal time correlation function is
found to diverge at q = 0 for r  2 ; the quantum
correction to the classical formula [2], [7], [9] is
contained in kc in eq. (72).

It is found that spin waves are visible by neutron
scattering (neglecting instrumental resolution) even

at very small q ; in reference [24] we were unable to
prove this, and a sufficient (but not necessary) condi-
tion was given, which is therefore meaningless. Of
course, the peak is rounded by the damping (see
Appendix A) but should be observable at least at

small q, where the damping is small ; a remarkable
conclusion of the theory is that, at moderate tempe-
rature, spin waves might be observable in the in-

plane correlation at low momentum transfer, but
not for larger q ! This is based, of course, on a per-
turbation expansion whose convergence is questionable
(see Appendix A) ; it surely diverges above some
temperature, perhaps the Stanley Kaplan transition
temperature [23].

In the next paragraph, the time dependent corre-
lation is calculated in the short wavelength limit ;
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the results are identical to those demonstrated in the

present section, and this is not surprising because the
long wavelength region and the short wavelength
region turn out to overlap.
Mikeska has obtained results quite similar to ours

in a phonon problem which is mathematically equi-
valent to our problem [31].

12. Two dimensional magnets in the short distance,
short time approximation. - 12.1 THE STATIC CORRE-
LATION (t = 0) at short distance is obtained from (27)
by a calculation quite similar to that of paragraph 10,
and is again described by a gaussian law :

with

Formula (77) holds for kc r  1, or r  hclKB T,
in agreement with (73).

12.2 The time dependent correlation function is
still given by (31). Neglecting the second term on the
right hand side, one obtains an equation similar
to (67) :

Here the a2 k2 term of (67) is lacking in the deno-
minator. Now the second term of the right hand
side of (31) will be evaluated at t = 0 ; using (72),
it is found that if R and R’ are neighbours :

Hence the order of magnitude of the second term
on the right hand side of (31) is :

The upper bound has been obtained by replacing
eiq.r by 1.

A sufficient (but not necessary) condition for (79)
to be correct is that this upper bound be much smaller
than the left hand side of (31) (for t = 0), which is
given by (75), namely :

12.3 THE CASE T  1. - It will now be shown that

eq. (79) defines 2 peaks with divergences at cv = ± coq*
The vectors k such that (Ok lies between w and W + dom

are defined, in the vicinity of k = - q, by :

FIG. 9. - Equal frequency surfaces in the reciprocal space.

This is the equation of a strip of width :

centered at a point kw lying on the parallel to Vqcoq
through point - q (Fig. 9). Defining k = k - kw,
eq. (79) can be written as :

where, according tc

Therefore :
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The scattering function G1 follows at once ; 2 correc-
tions are to be made :

-1 --

with :

Indeed the integration must be carried out on
- kc  k  kc, where kc is given by (73), and not
from -oo to ce, as done above.

ii) The divergence is smeared out by the damping,
which in the appendix is found to be proportional
to T5 q2. As this is small at low temperature, it is
seen that the magnon peaks can be observed if condi-
tion (80) holds.

At low temperature, condition (80) is extremely
weak and its domain of validity overlaps with the
domain of validity of chapter 11. Thus magnons
show up in the neutron spectrum for all momentum
transfer. Note that the results obtained in paragraphs
11.3 and 12.3 are the same.

12.4 THE CASE 1  1  2. - A similar calculation

shows that G1(q, w) has an infinite derivative at

+ Wq, in agreement with the result of the previous
section. It is believed, however, that the inelastic

scattering neutron spectrum will be essentially struc-
tureless, due to the damping as well as the instru-
mental resolution.

12.5 Below are summarized the results obtained

for the space Fourier transform y(k, 0) of the func-
tion (27) at t = 0 :

12.5.1 Quantum case (K, T  hcla) :

Classical case :

Comparison of our results with experiment is
difhcult : in K2CuF4 [32], [33] the planar anisotropy
is too weak (1 %) to use the present theory; moreover
it is likely that even a very weak uniaxial anisotropy
or 3-D interaction is sufficient to spoil the 2-D cha-
racter [31], [34], [35].
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APPENDIX A

1. Damping of magnons (ferromagnets). . - In

this Appendix will be calculated the damping of
« magnons » (i. e. the quasi-particles which appear
in the harmonic approximation) ; The Hartree renor-
malization will not be considered, for the sake of

simplicity : one has to assume that it is already per-
formed. Only the fourth-order interaction between
magnons will be considered, and a formula due
to Mori and Kubo will be used, together with a
decoupling approximation, to obtain a self-consistent
damping. Because of the decoupling, this formula
is equivalent to a perturbation theory without vertex
renormalization. It is of interest to ask the dangerous
question : « what would happen in a perfectly correct
theory ? » Our answer is :

1) « The perturbation series would diverge ;
2) However, the foregoing treatment is expected to

be correct for a sufhciently large k. »

The complete perturbation series is expected to

diverge because the interaction - cos (wi - &#x3E;fj)
has a negative fourth order term ; to understand the
meaning of this fact, consider a solid with a first

neighbour interaction consisting of a harmonic

attraction plus a fourth order repulsion : clearly,
it will explode after some time (which can be long
at low temperature, if the solid is finite), and thus the
perturbation expansion has to diverge. Of course,
the explosion is prevented by higher order attractive
terms in the hamiltonian, but this is probably not
sufficient to prevent the divergence of the perturbation
expansion : the physical meaning of this divergence
is that at any finite temperature an atom has some
finite probability (even though perhaps very small)
of leaving its site and diffusing across the crystal ;
one can argue that this divergence has no physical
meaning because particles are indistinguishable and
sooner or later a new particle will come and occupy
the vacancy, whereas the old particle will fall into
another vacancy, etc... ; but in conventional phonon
theory a divergence must appear in the calculation
of the phonon propagator. It is the same in our case,
but we do not know the effect of this divergence. At
least in the 1-D case, a dramatic increase of the

damping at very low wave vector is expected ; indeed,
the result derived in this Appendix is that magnons
are well defined for small k. On the other hand we do
not expect this at high temperature and there must
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be a transition temperature, but this is not very

likely in one dimension, so the results derived below
are expected to be wrong.

Nevertheless, they are probably correct for large
wave vectors k. Indeed if we assume that the break-
down of the perturbation theory is due to the possi-
bility of thermally excited jumps over a barrier of
height 4 Js2, the number of atoms within a period
being about 1/ka and the number of attempts made
by each atom to jump over the barrier during a period
of time being about 1/ka, we see that the probability
of jumping is negligible if

This result suggests that at temperatures well below

the mean field Curie point, the foregoing calculation
is good except in a very small region around k = 0.
It is also of interest to note that this calculation is in

qualitative agreement with the hand-waving calcu-
lation of paragraph 10.4.
We emphasize that the divergence of  pR &#x3E;,

inherent to the 1-D or 2-D character of the system,
has no influence on the perturbation theory at least
at lower orders, as only the (finite) fluctuations of

(qJR - ({JR’) for first neighbours are relevant.
The quantitative calculation of damping is extre-

mely tedious ; our purpose in this appendix is only
to show that damping is small at low temperature,
especially at large wavelength, and to describe quali-
tatively how the damping varies with T and k in a
few limiting cases.

The fourth-order terms of (8) are in the classical limit

where a is the vector distance between 2 nearest neighbours and

Henceforth a long wavelength approximation will be made :

It is convenient to introduce the magnon destruction operator :

in terms of which the hamiltonian reads :

The equations of motion are :

Here the Hartree shift AWk comes from the commu-
tation of c+ with the terms of H(4) which contain

twice the same wave vector ; fk+ comes from the

commutation of ck with the other terms of H(4)
and is a sum of products of 3 creation or destruction
operators with 3 different wave vectors. fk+ will be
identified with Mori’s operator f1+(t) [36]. Thus, the
Laplace transform
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is given by Mori’s eq. (3.6 in ref. [36]) :

with :

The relaxation time is therefore given by :

( fk, fk+(t)) can then be evaluated by a factorization
approximation.

2. The linear chain. - 2. 1 DAMPING IN THE GROUND

STATE. - It is directly given by the Dyson equation :

In the linear part of the spectrum, the energy-
momentum conservation is identically satisfied, pro-
vided that :

The relaxation time is given in order of magni-
tude by :

The relaxation time is independent of s, whereas
the frequency is proportional to s.

Ions of the damping for larger q have not been
made. In view of the fact that no ground-state damping
has ever been observed in CsNiF3, this is not too

surprising considering the results of paragraph 7.

2.2 DAMPING OF SUB-THERMAL MAGNONS. -

(h,f:(t)) can be approximated by fl  fk f k (t) &#x3E;,
which can be evaluated by means of (A. 3) and (A. 4)
as a sum of 6-fold correlation functions which can
be evaluated by a decoupling approximation, for

instance :

The inverse relaxation time is found to be proportional to :

In the linear region of the spectrum, energy-momen-
tum conservation is again identically satisfied and the
relaxation time is found to be proportional to (Tk2)-1 ;
this contribution is only relevant if it is larger than
the zero-point contribution of the last paragraph.

2.3 DAMPING OF SUPER-THERMAL MAGNONS. -

It turns out that the formula above is still correct.
In the linear part of the spectrum, the relaxation time
is found to be proportional to T- 2/Wk, in agreement
with (70).

3. Two-dimensional case. - As a rule, the damping
is weaker at low temperature than in the linear case.

3.1 GROUND STATE DAMPING. - The Dyson equa-
tion is the same as for D = 1. Energy-momentum
conservation is satisfied if q and q’ lie inside a cigar
of axis k and of thickness (k/Lk)1/2. The inverse rela-
xation time is proportional to a factor k4, due to the
conservation law, times a factor k’/rk, due to inte-
gration over q and q’, times a factor Lk, due to inte-
gration over time. The resulting relaxation time is

proportional to k-’ in the linear region of the spec-
trum.

Here again the damping might be appreciable at
the zone boundary for small spin, especially in the
antiferromagnetic case.

3.2 HYDRODYNAMIC REGION, h(Ok  KB T. - The
contribution calculated above (due to the decay of
a magnon into 3 magnons) would be proportional to
k-5 T-2. The dominant contribution comes from
the absorption of a magnon with creation of 2 magnons :

The energy-momentum conservation is ensured

(in the linear part of the spectrum) if, for given q,
q’ lies on the ellipse through k, with foci 0 and (k + q).
In eq. (A. 4), the conservation law provides a factor k,
the factor  nk &#x3E; -1 provides a factor k/T, the 3 fac-
tors q  nq &#x3E; yield a factor T3, and it turns out that
the integration over q and q’ yield another factor T3,
so that finally the relaxation time is proportional
ot T -5 k -2
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APPENDIX B

Function (27) can be written in the small k approximation as :

We now choose an arbitrary distance ct0 &#x3E; a, and write :

Using eq. (11.4.39) of reference [37], it is possible to evaluate the derivative :

For c = oo, Jo(kr) can be replaced by 1 in (B. 3) and g( 00, r, t) is found from eq. (858.51) of reference [25] :

The calculation of g(c, r, t) from this equation and (B. 4) is straightforward :

go(T) will now be calculated in the low temperature limit, where (B. 2) reads :

Use has been made of eq. (3.951.6) and (3.951) of references [38], [25] and eq. (858.51) of reference [25].
C = 0.577 is the Euler constant and if to is large, one has [39], eq. (1.7.1) and (1.18.1) :

Eq. (72) follows from (B.1, B. 5, B. 6, B. 7) with

It is easily checked that (72) is still correct (but only qualitatively) at higher temperature (classical region).



46

APPENDIX C

As we did not succeed in Fourier transforming (72), we shall deduce the long time behaviour of the Fourier
transform from general properties of the Fourier transformation. These are more likely available in textbooks,
but we could neither find them in elementary books, nor understand advanced treatises. Therefore, the relevant
properties are proved below :

One possible method is to write y(r, t) as

where , f(r, t) has all its derivatives continuous up to f(2n){r, t) and

The existence of the identity (C.l) is easily checked from the Taylor expansions of y(r, t) near r = ct. For
instance :

y(r, t), ({J(r, t) and f (r, t) are of the form

Therefore their FT is of the form

Note that the FT are defined in the continuous pïane, e. g. :

Thus q can go to infinity, and the behaviour of y(q, t) at large t for given q can be deduced from the beha-
viour of y(q, t) at large q for given t, because

Now the integration of the expansion

shows that

vanishes at least as fast as 1/q2n as q goes to oo at finite t.

Therefore the large q behaviour of y(q, t) is determined by that of :
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It is easily seen, for instance, by calculation of these integrals, that the asymptotic behaviour of cp(q, t)
is dominated by the term m = 1. From eq. (1. 3.2) of reference [38] one has :

From the asymptotic expansion of Kummer’s hypergeometric series ([39], § 6.13) one obtains the long-time
expression

Taking the Fourier transform of this function ([38], eq. (1.3.2), it is found that for cv N wq :

where all 3 constants are positive.
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