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THE EVALUATION OF BRANCHING RULES FOR LINEAR GROUPS
USING MAPPINGS BETWEEN WEIGHT SPACES
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Résumé. 2014 L’étude des règles de branchement associées au plongement du groupe linéaire L(h)
dans L(g) conduit à une méthode pour la détermination des pléthysmes { 03BB }h ~ { 03BC }g correspon-
dants. Le plongement de L(h) dans L(g) est défini par une correspondance entre vecteurs de base des
représentations { 1 } et { 03BB } de L(g) et L(h) respectivement. Ces vecteurs de base sont spécifiés par
leur poids, et les règles de branchement associées sont obtenus en établissant une application entre
les espaces des poids du groupe. On utilise au maximum la symétrie de Weyl pour établir un algo-
rithme dont on s’est servi pour calculer un grand nombre de pléthysmes.

Abstract. 2014 Consideration of the branching rules associated with the embedding of L(h) in L(g)
leads to a method for the determination of the related plethysms { 03BB } ~ { 03BC }. The embedding is
defined by the correspondence between the basis states of the representations { 1 } and { 03BB } of L(g)
and L(h). These basis states are specified by weights, and the branching rules are determined by
carrying out mappings between the weight spaces of the groups. Maximum use is made of the Weyl
symmetry to establish an algorithm which has been used to calculate a large number of plethysms.
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Introduction. - An important problem in the study
of representations of groups is the determination of the
branching rule associated with the decomposition into
irreducible parts of the representation subduced in a
subgroup by an irreducible representation of a contain-
ing group. The determination of these branching rules
is equivalent to the evaluation of plethysms, as defined
by Littlewood [1], and this equivalence has already
been exploited to some extent [2]-[5].

Of the classical continuous groups of transformation
in an n-dimensional space : L(n), 0(n) and Sp(n), the
key role is played by L(n) since all the finite dimensio-
nal, irreducible, tensor representations of 0(n) and
Sp(n) may be related to those of L(n) by means of
fairly simple branching rules [6].
A finite dimensional, irreducible representation of

L(n) may be specified by {À,}n = { Âl, À,2, ..., À,p 1,
where (Â) = (Âl, À,2, ..., À,p) is a partition of 1 into p
parts, so that 1 = à + Â2 + ’" + À,p, and

Corresponding to this representation there exists a

Young tableau consisting of 1 boxes distributed into
p rows of lengths Âl, Â2, ..., 1 Âp* Conversely every parti-
tion (À,) of 1 into p parts defines an irreducible represen-
tation { Â 1. of L(n) for all n &#x3E; p. If n  p then

(*) Present address : School of Mathematical and Physical
Sciences, The University of Sussex, Falmer Brighton BN 1 9 QH,
G. B.

The defining representation of L(n) is the n-dimen-
sional représentation { 1 In- In general the dimension
of the representation { À. 1. is denoted Dl n "}.
Given a representation { À. }h of L(h) with

then the corresponding representation matrices form a
subset of those of the représentation { 1 }, of L(g).
Thus L(g) =3 L(h) and the embedding is defined [7] by
the mapping

With this embedding an arbitrary representation
{ Il }, of L(g) subduces a representation of L(h) which,
in the notation of Littlewood [6], [8] is given by the
plethysm { Â lh (8) { Il J.. Thus under the mapping (1. 3)
it follows that

with

The decompostion of the plethysm { À. } h (8) { Il } 9 into
irreducible representations of L(h) corresponds to the
evaluation of that plethysm, and furnishes the branch-
ing rule associated with Lez L(h).

It is well known that
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where the product on the left contains m factors, and
fil is the degree of the irreducible representation of the
symmetric group on m symbols which is specified by
the partition (Il) of m. It then follows from (1.3)
and (1.4) that [9, p. 66]

The Littlewood-Richardson rule [6, p. 94], [10] for
evaluating Kronecker products of L(h) is such that the
left hand side of (1.7) is a linear combination of
irreducible representations { v 1, where (v) is a partition
of ml into not more than mp parts. It is clear from this,
and the fact that the product is independent of h for
h &#x3E; mp, that the plethysm { A }h Q9 { Il }g with g and h
satisfying (1.2), is also independent of h provided that
h &#x3E; mp. If use is made of (1.1) and (1.2) in interpret-
ing the terms in a plethysm, then the plethysm is

independent of h and g and the subscripts may be
dropped. Then

where (p) is a partition of lm and the plethysm coeffi-
cients Gare independent of the dimensions g and h of
the associated groups. The above argument indicates
that to evaluate these coefficients it is sufficient to carry
out the calculation for h = mp. Even this value of h is
not necessary if full use is made of conjugacy theorems.
To each partition (2) there corresponds a conjugate

partition (,) which is such that the number of boxes in
the ith row of the Young tableau specified by (X) is
just the number of boxes in the ith column of the
Young tableau specified by (À). Correspondingly there
exist mutually conjugate representations {2} and

{ Z 1. Plethysms satisfy the theorem of conjugates [8]
which implies that :

where (À) is a partition of 1.
These relations reduce the number of independent

plethysms by a factor of about two and they may be
used to reduce the value of h needed in the evaluation
of a plethysm below the limit mp.
Many methods have been developed for evaluating

plethysms of which the most efficient appears to be
Littlewood’s third method [6, p. 291], [8] taken in
combination with some principal part theorems

developed by Ibrahim [11]. Unfortunately the calcu-
lations necessarily become very cumbersome and this
particular technique is not well suited to machine
calculation. Two other distinct methods [12], [13]
have however been programmed for the computer.
These give, very rapidly, those plethysms { /} 0 { m 1
in which { 1 } and { ml correspond to symmetric
tensor representations. From these all other plethysms
{ /} 0 { y 1 may be obtained using Littlewoods

algebra of plethysms [6, p. 290], [8]. This stage of the
calculation has also been programmed successfully.

Despite this advance it seems worthwhile calculating
plethysms from first principles by evaluating branching
rules and simply interpreting the results in terms of
plethysms.

In section 2 the irreducible representations of L(h)
are discussed and the basis states of these representa-
tions are defined by means of weights. A method is
given for the calculation of a multiplicity matrix each
of whose elements is the multiplicity, in a particular
irreducible representation, of a set of weights all
related by the Weyl symmetry of weight space. In
addition a method is given of calculating the inverse of
this multiplicity matrix which enables the representa-
tion corresponding to any given set of weights to be
determined.
The method of calculating plethysms is then explained

in some detail in section 3. It consists essentially of
three steps : Firstly the mapping (1.3) is defined more
precisely using the theory of weights developed in
section 2. Secondly this mapping is applied to the
decomposition (1.4) to give a set of weights. Thirdly
the inverse multiplicity matrix is used to generate from
this set of weights the corresponding set of irreducible
representations.

This technique of calculating branching rules has
been used for particular group-sub-group decomposi-
tions in both nuclear [14] and atomic [15] physics.
More generally a formula involving weights, their

multiplicities and the Weyl symmetry operations of the
groups has been derived [16] which determine branch-
ing rules. This formula is rather unwieldy but has been
used to determine some specific branching rules [17],
[18]. The role played by the mapping between weight
spaces in specifying the embedding of one Lie group in
another has been emphasized by many authors [7], [17],
[19] and the importance of the inverse multiplicity
matrix has also been stressed [20]. Despite these

developments the use of mappings between weight
spaces has not been systematically applied to the

embedding of L(h) in L(g) to give branching rules
which are essentially independent of h and g, and
which therefore furnish the evaluation of plethysms.
Care has been taken in section 3 to develop a method

suited to such a systematic application using a com-
puter. Using this method all the plethysms { Â 1 Q { Il }
have been calculated for which lm  18 and for l = 10,
m=2andl=2,m= 10.

In section 4 plethysms on a restricted number of
variables are discussed. These furnish the branching
rules appropriate to Lu) =3 L(h) is cases for which h
is too small for the result to give the complete plethysm
even using the conjugacy relations (1. 9). It is shown
that the method of section 3 is well suited to calcula-
tions of such restricted plethysms. In particular a
generating function is found for the coefficients

G’{" lm ’ in the case when h = 2, i. e. (p) is restricted
to be a partition into not more than two parts. More
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generally the plethysms { Â Q { y 1 on 2 variables
have been calculated with 1  12, m  12, m  100.
For h = 3 and h = 4 other tables have been compiled
for values of 1 and m beyond the range for the complete
plethysms.

2. Weights and their multiplicities. - The basis
states of an irreducible representation { Â 1 h of L(h)
may be enumerated by inserting in the boxes of the
Young tableau corresponding to this representation
the numbers 1, 2, ..., h in any combination such that

reading across any row the numbers are non-decreasing
whilst reading down any column they are increas-

ing [21, p. 385]. Distinct arrays of numbers then define
distinct basis states. 

,

The weight associated with such a basis state is then
defined to be [oc] = [1 0152I 201522 ... h0152h] where oci is the
number of times the number i appears in that array.
Several distinct arrays may give rise to the same weight
and it is necessary to specify M , the multiplicity
of the weight [a] in the representation { Â }h. The rules
associated with the insertion of numbers in the boxes
of the Young tableau are just those rules which imply
that ’Â " is the number of times { À 1. is contained
in the product of symmetric representations

Since the Kronecker product of representations of
L(h) is both a commutative and an associative opera-
tion it is clear that the weights [a] and [Sa] defined by

where Sl s2 ... s,z is any permutation S of 1, 2, ..., h,
have the same multiplicity in every representation
{ Â } h. This symmetry of the weights is known as the
Weyl symmetry. For every weight [a] there exists one
weight in the set [Sa], namely [Ta), such that

where (p) = (pi, 1l2, ..., Ilq) is a partition of 1. It is
convenient to denote this particular weight not by [Ta]
but by the partition symbol (Il).

Furthermore the Kronecker product in (2.1) is

independent of h so that without loss of generality

where Mf:)} is an element of a square matrix M since
both (p) and (Â) are partitions of 1. Using

it is a straight forward task to enumerate those repre-
sentations { Â 1 containing the weight (y) and the
corresponding multiplicities. All other weights and
their multiplicities may then be generated by the use
of the Weyl symmetry operators S.

It is worth pointing out that (2.3) implies that

M/p.1} may also be obtained by a process involving
division. In fact this multiplicity is given by

The evaluation of Mfu} } by means of this procedure
corresponds exactly to the Method B given by Delaney
and Gruber [17]. The advantage of using (2.3) rather
than (2.4) is that (2. 3) furnishes a complete row of the
matrix M whilst (2.4) furnishes only a single element.
For example (2.4) gives

whilst (2.3) gives

A weight [a] = [1 0152I 201522 ... h«h] is conventionally said
to be higher than a weight [fi] = [101 2P2 ... h°h] if the
first non-vanishing term ai - Pi is positive. With this
definition the highest weight of the représentation { A }
is just [À], which may be denoted by the partition (Â).
This weight clearly has multiplicity 1 and may be
used to specify the representation.

It is convenient to introduce a different ordering
scheme for weights and representations defined by
partitions. A partition (Il) = (pi, 1l2, y.), involving
q parts, is said to precede a partition (v) = (v 1, V2, ..., vr),
involving r parts if the last non-vanishing term

Ili - Vi is negative. With this definition all partitions
into q parts precede those corresponding to partitions
into r parts if q  r. If the partition (p) precedes the
partition (v) then correspondingly the weight (Il) is said
to precede the weight (v), and similarly the representa-
tion { li 1 is said to precede the représentation v }.

Clearly the highest weight of the représentation {/(.},
given by (î), precedes all others. Furthermore if both
the représentations { Â 1 and the weights (p) are listed
in order of precedence it follows that the matrix MIÂ) }
will be a lower triangular square matrix with each
diagonal element 1. The inverse matrix B is also lower
triangular and may easily be evaluated. The existence of
the matrix B implies that if a set of weights of a repre-
sentation is known then it is possible to determine the
irreducible constituents of that representation.
From a computational point of view the task of

evaluating the product (2.3) where q is greater than
about 12 is very lengthy and it is simpler to calculate
the inverse multiplicity matrix B by a different method.
The matrix element B{ is just the coefficient of
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1 Pi 1 . 1 92 } ... { Ilq} in the formula expressing { /) 1
as a sum of products of symmetric representations.
The relevant formula is the identity due to Little-
wood [6, p. 98]

which expresses { Â 1 as a ptb order determinant whose
elements are symmetric representations { k }. Expand-
ing the determinant in (2.7) gives

In the déterminant the elements along the diagonal
are { mai 1 and decrease to the left and increase to the
right in steps of one across each row. The convention
to be adopted is that { 0 } = 1 and { k } = 0 for all
k  0. If the determinant is expanded with respect to
the elements in the extreme right-hand column which
are

then { Â } is obtained by adding together all those

products of non-negative terms obtained by subtract-
ing from the numbers in (2.9) all possible permuta-
tions of the numbers

and assigning a factor + 1 or - 1 to each term accor-

ding as the permutations is even or odd.
Thus for example

and the corresponding terms obtained by the subtrac-
tion procedure are :

where terms involving negative numbers have been
omitted. Thus

and the corresponding row of the matrix B is given by

where the zeros correspond to partitions (Jl) of 10
not contained in (2.11), and terms omitted on the
right are all zero. The partitions are enumerated in
order of precedence i. e. (10), (91), (82), (73), (64),
(55), (811), (721)...

This method of evaluating the expansion of { Â } is
due to Murnaghan [22] and is well-suited to machine
calculation. Blaha [20] has independently derived the
same procedure for the determination of the matrices B
and has tabulated these matrices for partitions of 1
with 1  6. These results are also contained in the work
of Murnaghan. For use in connection with the calcu-
lation of plethysms, the matrices M and B have been
computed in their entirety up to 1 = 16 and in part
up to 1 = 32.

3. The évaluation of plethysms. - It is convenient
to consider in the first instance that embedding of the
linear group L(h) into another L(g) which is defined by
the symmetric representation 1 of L(h) subduced
by the defining représentation { 1 } 9 of L(g), i. e. under
the reduction L(g) :D L(h)

with

The mapping (3.1) can be made explicit by enume-
rating the weights of { 1 } 9 and { 1 } h and placing them
in one to one correspondence. For example the reduc-
tion L(4) ::&#x3E; L(2) is defined by the mapping

with the weights of these representations in the one-
to-one correspondence

The ordering of these weights is arbitrary, as can be
shown by applying the Weyl symmetry to the weights
of { 114, although here the lexigraphical rule is follow-
wed in drawing up both lists of weights of { 1 }4
and { 3 } 2.
The weights of a symmetric representation m 1,,

of L(g) can be obtained in a straightforward manner
from the weights of the defining representation { 1 } 9’
and their images can than be found under the

mapping (3.1). These will be the weights of the repre-
sentation { 1 } h Q9 { m } 9 which is in general reducible,
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For example under the mapping (3.3) defined more
precisely by (3.4) the image of { 2 } 4 is given by

The weights of { 3 1, p { 2 }4 have been written in
the first instance as two weights from { 3 }2 placed
one above the other to form a 2 x 3 rectangular
array.

As explained in section 2, given a set of weights cor-
responding to a representation such as { 1 }h Q9 { m }g
the irreducible constituents of this representation may
be established by a consideration of only those weights
defined by a partition of n = lm. All other weights may
be obtained from these by the use of the Weyl sym-
metry. Thus in the example given the relevant weights
of L(2) are such that their frequencies of occurrence
in the list (3.6) are specified by the column matrix W :

The corresponding inverse multiplicity matrix, B, is

The product BW gives the column matrix, G :

The elements of G specify the number of times a par-
ticular irreducible representation of L(2) is contained
in {3}2 (8) { 2 } 4’ Thus

It should be stressed that the mapping

may be associated with the reduction Lez L(h)
where

i. e.

In this general case it is necessary to extend the list (3.4)
to include g terms and the list (3. 6) to include Dg t 2 1
terms. However this extension is such that all the
additional weights of { 3 } h Q9 { 2 } 9 defined 11y parti-
tions necessarily involve partitions of 6 into 3 or

more parts. These partitions are all preceded by those
of (3. 7), so that {3} h (8) { 2 } 9 must contain, as

before, the terms { 6 lh and { 42 lh- It is then a straight
forward matter to verify that

if g and h satisfy (3.12). This implies that

where the redundant subscripts g and h have been
dropped.

Since the enumeration problem increases rapidly
with increasing values of g and h it is essential to
choose the lowest value of h consistent with the result-

ing plethysm containing all possible terms. The
discussion of section 1 indicates that h may be chosen
in the evaluation of { 1 } Q9 { m } as low as m. This
implies that in the example given here of the evalua-
tion of {3}0{2}, the complete answer (3.13)
follows immediately from (3.10) without the necessity
of applying any dimensionality check. Clearly in this
example it was indeed necessary to choose h = 2.

Choosing h = 1 does not give enough information
In fact if h = 1 then g = 1 and

It is clearly inefficient to carry out the enumeration
procedure without making full use of the Weyl’
symmetry, which, even in the trivial example of (3.5),
implies that the last four lines of (3.6) are redundant.
It is best to construct the mapping from right to left i. e.
to list all possible weights of { l} Q9 {m} correspond-
ing to partitions (v) of ml, and to find the combina-
tions of weights of { /} from which these can be
derived.

From all possible rectangular m x 1 arrays corres-
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ponding to a partition (v) containing v i l’s, v2 2’s, etc.
it is necessary to select only those arrays vA satisfying
the following conditions : A(i) Each row of the array
must be a possible weight [a] of { /}, so that the
numbers in it must be non-decreasing from left to

right. A(ii) The set of rows of the array must corres-
pond to a weight [fi] of { m }, so that they too must
be non-regressive relative to the lexigraphical ordering.

If the total number of ways of forming such an array
corresponding to a partition (v) is wl:/ {m}, then the
plethysm coefficients of (1.8) are given by :

The problem of enumerating the arrays is simply
combinatorial and can be regarded as an application
of Pôlya’s Theorem. Permutations within the rows,
and of the rows, are regarded as inessential so the
symmetry group relating equivalent arrays is the
wreath product Em[Ez]. The cycle index of this group
determines the number of arrays vA for each par-
tition (v). So, as Read [23] shows, the cycle index
Z(Z,,,[Iil) is equivalent to the plethysm { 11 (8) { m }.
Unfortunately the recognition of this equivalence
does not help to evaluate plethysms as the number of
cycle indices of wreath products which have been
evaluated is very limited.

If the enumeration of arrays only yielded plethysms
of the type { /} 0 { m }, this technique would be of
no great interest since other methods of evaluating
these particular plethysms are available. The approach
is much more powerful than this however, for it

enables all plethysms { Â 10 { J1} to be evaluated,
where (À) and (Il) are any partitions of 1 and m.
Each of the distinct rectangular arrays vA corres-

ponding to a partition of (v) and an arrachement A of
the set of vl l’s, v2 2’s, ... etc. within an m x 1 rec-

tangle, subject to the conditions A(i) and A(ii), may be
thought of as a weight of a representation of L(h)
which is the image of a weight of the representation
{ J1 } of L(g) under the mapping,

The rows of this array correspond to the weights [a],
and (u) is defined by the condition that [Tot] = (u).
The weights [a] occur P0152 times in the array and the

multiplicities M¡:/ 1 of each of the weights in all pos-

associated with the reduction L(g) :D L(h). Each row
of vA represents a weight [0153] associated with the repre-
sentation { Â 1 of L(h) and corresponds to just one of
the weights of the representation { 1 } of L(g). The
number of distinct basis states of { À } having identical
weight [a] is just M(fÂ) where (u) is a partition of 1 and
[Ta] _ (u). In general vA may contain P0152 rows corres-
ponding to the weight [a]. These rows are the image
in the weight space of L(h) of a set of P0152 weights of the
representation { 1 } of L(g), and they constitute a basis
of a representation { il 1 of L(g) where (q) is a partition
of P0152’ Since each one of the weights [0153] may be any one
of a set of MI,’,.Âl = M’ } weights, the number of

ways in which they can form a basis of f il 1 is just

The addition of sets of weights corresponding to
différent weights [oc] to produce the array vA is exactly
equivalent to forming the Kronecker product of the
sets of representations of L(g) associated with each [a].
This Kronecker product gives

where the coefficients V,{,Â } { u are the number of ways
a particular rectangular array vA, corresponding to
the partition (v), may be formed from the weights of
the representation {J1} of L(g) by virtue of the

mapping (3.17), associated with L(g) =) L(h).
Summing over all arrays A gives the coefficients

which is the number of times the weight (v) occurs
in the plethysm {À} (8) { J1}. Then the plethysm
coefficients of (1 . 8) are given by

As an example consider the 6 x 5 array VA corres-
ponding to the partition (v) = (14, 7, 5, 22) of 30

given by :

sible representations { Z 1 have been indicated. Corres-
ponding with this array is a weight [{J0152] = [1123 3’]
of { J.1 } and this weight is associated through the Weyl
symmetry with the partition (i) _ (321).
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Using, for example, the information in the columns
labelled by fi. and { 411, it then follows from (3.18)
that

In this example the products which have to be
evaluated are all fairly small, but even this much cal-
culation is seldom necessary.

First of all, the terms of VtÂ} {Il} with { À } = 312 ),
2 2 1 }, { 213 1 and { l’ 1 are, in this example, all
zero since for at least one partition (u), corresponding
to a row of vA, M(I’,"Â) ) = 0, and Dl ’ 0 = 0 for all { il }.

Secondly, if for any { Â 1, VA is such that M’,Â’ = 1

for all the row partitions (cr), as in this example in the
case of { Â 1 = { 6 1, then

where (,r) = (Tl, i2, ...) is the partition whose elements
suitably ordered are the set of fi,,, associated with vA.

Thirdly if the rows of VA are all distinct so that

fi,,, = 1 for all a, then ( q ) = { 1 ) and

so that

Thus in these three cases

so that the calculation merely involves manipulation
of elements of multiplicity matrices and no Kronecker
products need be evaluated.
The conjugacy relations (1.9) between plethysm

coefficients are usually used to obtain {} Q9 { Il }
(or { 1} (x) { ,û 1), from { Â 1 Q { ,il} so that only
about half of the plethysms for given 1 and m need be
evaluated. Since in the approach used here the complete
set of plethysms is found at once, the conjugacy rela-
tions may be used to restrict the representations { p 1
that need be considered. It is necessary to evaluate

Gl z1 1 } for only one of each conjugate pair { p

and {p} and it is simplest to take the preceding
representation of each pair.

Since Bt p is lower triangular this means it is neces-
sary to evaluate W(Â } for all (v) preceding and
including the last partition which precedes its conju-
gate. Some of these partitions (v) may nevertheless be
preceded by their conjugate partition, in which case
wf (v) A) tu} is more easily found from

and the conjugacy relations (1.9), than from the enu-
meration procedure.
The details of the calculation of the plethysms

Â 1 (8) { Il} for (Â) and (p) partitions of 3 and 2
respectively are given in Table I. The partitions (v)
which need to be considered run up to (321) so that
the calculation is effectively carried out in L(h)
with h = 3. Without the use of the conjugacy relations
it would be necessary to carry out the calculation, in
the notation of section I, with h = lm = 3.2 = 6.
For each row of all the possible arrays VA the multi-
plicity M(’,,Â» is given, where (a) is determined by the
weight of each row and { A } is { 3 }, { 21 } or { 13 1.
Similarly the multiplicity M{ is given for each array,
where (r) is determined by the weight [Pa] correspond-
ing to the frequencies of repetitions of rows in the
array and {Il} is ( 2 ) or { l’ 1. These multiplicities
are such that vyÂ } u may be calculated using (3.21).
Summing over vA for each (v) then gives W’Â {Il}.

The ordering of the terms in v and W corresponds to

Then (3.15) gives in matrix notation
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The terms of the matrix G must be read both ways,
i. e. first using the labels at the top and on the left and
then using the labels at the bottom and on the right,
except for self conjugate partitions (v) such as (321)
which must only be counted once. This gives the
results

Further results will be published elswhere.

4. Plethysms on a restricted number of variables.
- The method of section 3 is especially valuable as
it is readily adapted to calculations with a restricted
number of variables. For the evaluation of Â
in L(h), the weights of both ( Â 1 and Â © ( p )
must correspond to partitions into not more than h
parts. So both B and W need be found only for such
partitions, and these are always the easier ones.

In L(2), the result is particularly simple. The rectan-
gular arrays contain only l’s and 2’s and the condi-
tions A(i) and A(ii) of Section 3 imply that all the l’s
must be adjacent whilst the 2’s complete the rectan-
gular array, e. g.

The number of 2’s must be less than or equal to the
number of l’s. So the pattern of 2’s corresponds to
a partition of p  lml2 with no part greater than 1
and not more than m parts. For each of these arrays
the associated multiplicities are easily obtained, so

giving W.

Therefore

where (p)’ is the partition immediately preceding (p).
It then follows from (3.20) that

Results have been computed in L(2) for 1 % 12,
m , 12 and lm  100.
For the special case of { l} (8) { m } all the multi-

plicities of the weights of both { 1 ) and { m } are 1,
so that in L(2), W(I,,’) l’) is simply the number of
partitions of p with no part greater than 1 and not
more than m parts. This is well known [24, p. 5] to
be the coefficient of x-’ in

So, using (4. 3), Gn } p p3 is the coefficient of xp in

This generating function for the plethysm { 1 ) 0 { m }
in L(2) differs slightly from the erroneous result of
Littlewood [6, p. 208].
Apart from the calculations of plethysms in L(2)

which are of immediate relevance [5] to atomic and
nuclear spectroscopy, plethysms { A 10 { y } in L(3)
have been calculated for these pairs of values of (l, m) : -.
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(10,3) ; (9,3) ; (8,4) ; (7,4) ; (6,4) ; (6,5) ; (5,5) ; (4,6) ;
(4,7) ; (3,7) ; (3,8) ; (3,9) ; (3,10). The results include
plethysms relevant to the U(3) nuclear shell model of
Elliott [2]. Plethysms in L(4) have also been calculated
for (12,2) ; (11,2) ; (8,3) ; (7,3) ; (5,4) ; (4,5) ; (2,11) ;
(2,12).

5. Conclusion. - It has been demonstrated that
it is feasible to calculate plethysms by making use of
their connection with the branching rules associated
with L(g) :D L(h) and a « first-principles » method of
evaluating such branching rules. The method has

yielded, through the use of a computer, tables of all

plethysms { Â 1 (D { y 1 for lm  18, and for 1 = 10,
m = 2 and 1 = 2, m = 10. This exceeds slightly the
work of Ibrahim [25], [26] and of Butler and

Wybourne [12].
The method has the advantage of yielding for each

1 and m all plethysms { Â 1 (&#x26; { y 1 in a single calcula-
tion, unlike any other method developed to date.
Moreover the method is such that for each 1 and m
the calculation depends on no results obtained for
any other values of 1 and m. Finally in contrast to some
methods of calculation [13], [25], [26] this method is
very well suited to the calculation of plethysms on a
restricted number of variables.
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