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SOME SIMPLE FLOWS OF A PARA-MAGNETIC FLUID

J. T. JENKINS

Laboratoire de Physique des Solides (*), Faculté des Sciences, 91, Orsay, France (**)

(Reçu le 24 mai 1971)

Résumé. 2014 En utilisant un simple modèle phénoménologique pour le fluide paramagnétique,
nous analysons un écoulement parallèle dans un tuyau. Nous examinons aussi la possibilité de
maintenir un écoulement circulaire dans un cylindre par rotation d’un champ magnétique homo-
gène.

Abstract. 2014 Using a simple continuum model for a paramagnetic fluid we analyze a simple
shearing flow and parallel flow through a pipe. We also examine the possibility of maintaining a
steady circular flow in a circular cylinder by rotating a homogeneous magnetic field.
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1. Introduction. - Recently, fluids have been pre-
pared by suspending sub-micron sized ferro-magnetic
grains in a non-magnetic, non-conducting liquid [1].
The grains are treated with a dispersing agent which
operates in conjunction with the thermal agitation
of the particles to counteract the tendency of the
particles to agglomerate and eventually precipitate
from solution as a result of the mutual magnetic
forces. Consequently, colloidal suspensions of this

composition are ultra-stable and behave, for all

practical purposes, as non-conducting, magnetizable
fluids. Most fluids prepared in this fashion are repor-
ted to exhibit no magnetic hysteresis [2] so, although
ferro-magnetic fluids have been synthesized [3], we
will limit our discussion to para-magnetic fluids.

Because of the marked magnetic properties of these
fluids it is possible to influence their behaviour by
applying a magnetic field. The application of the

magnetic field induces magnetization which interacts
with an inhomogeneous magnetic field to produce
a body force and, in the event the magnetization and
the magnetic field are not co-linear, a body couple.
Additionally, static experiments [4], [5] indicate that
the pressure distribution in the resting fluid is modified
due to the interaction of the magnetization with the
magnetic field ; while dynamic experiments [6], [7]
show that the general state of stress in a paramagnetic
fluid depends upon measures of the magnetization
as well as upon measures of the motion and tempe-
rature. Conversely, we anticipate that in these mate-
rials the local magnetization is influenced by the
thermal and kinematic variables as well as by the
magnetic field. The magnetic field itself, of course,

(*) Laboratoire associé au C. N. R. S.
(**) Present address : Department of Theoretical and

Applied Mechanics Cernell University, Ithaca, New York.

depends, in part, upon the distribution of magneti-
zation in the fluid.
A continuum theory for magnetic fluids has recently

been proposed [8] in order to provide a formulation,
including these unique features of para-magnetic
fluids, which will serve as a simple, general framework
for the interpretation of experimental results. As

yet, this theory has only been applied to static, iso-
thermal states of para-magnetic fluids. Here we use
the balance laws of this theory in conjunction with
particular constitutive assumptions to examine some
simple viscometric flows of a model para-magnetic
fluid. We also consider the possibility of maintaining
a steady rotational flow of this fluid in a cylindrical
vessel by rotating an external field in the plane of the
circular cross section [9].

2. Governing équations. - We use cartesian tensor
notation except where otherwise indicated. We consi-
der a non-conducting magnetizable fluid confined in
some region V with surface 1. In the absence of
electric fields and for field frequencies which are

much less than the ratio of the speed of light c to a
typical dimension of V, the integral forms governing
the magnetic field H are, in Gaussian units,

and

Here, dl is a differential element of length tangent to
the arbitrary closed circuit B, dS is the differential
area element, S is any surface capping B, j is the

electric current density, S is an arbitrary closed sur-
face and M is the magnetization per unit volume.
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For sufficiently smooth fields, the local forms of

(2 .1 ) and (2 . 2) are

and

At the surface Z (2.1) and (2.2) yield the jump
conditions

and

Here [j A ... 1] == A+... - A- ..., where A+... (A- ...)
is the limiting value of the tensor A ... as E is appro-
ached from the outside (inside). The unit vector v
is the outward normal to 1.
We shall find it convenient to separate the magnetic

field H into an external field HO which would be
present even if the magnetic fluid were not and a
self-field H’ due to the presence of the magnetic
fluid ; so

We regard the external magnetic field as determined
by known distributions of electric current in the region
exterior to V. Then that part of the system (2.3),
(2.6) which remains to be satisfied by the self-field
is

everywhere, with

in

exterior to V and

The integral forms for the conservation laws for
mass, linear momentum, bi-vector momentum of
momentum and energy are assumed to be slightly
modified forms of these obtained by Brown [10]
in a direct calculation for magnetic materials.

Here V is an arbitrary part of V, p the masser unit
volume, pm = M, S the surface bounding V, t the
stress tensor, S n 1 the portion of S common to E,
f the external body force per unit mass, f3 a dimensio-
nal constant, 1 the magnetic stress tensor, 8 the internal
energy per unit mass, q the heat flux, and r the heat
supply per unit mass. Superposed dots indicate the
material time derivative and bracketed indices are to
be antisymmeterized.
The law of conservation of mass (2.12) assumes

its usual form. 
In the conservation law for linear momentum (2.13)

the additional flux of linear momentum at the material

boundary results from the discontinuity of the self-

field due to the discontinuity of the magnetization
there. The volume force density due to the self-field
has been distinguished from the external body force
which includes, for example, the volume force due to
an external magnetic field.

In the conservation law for bi-vector moment of
momentum (2.14) the moment of momentum includes
a contribution arising from the spin of the magneti-
zation vector. We ignore the component of the spin
which is parallel to the magnetization - a simpli-
fication which appears plausible when considering
suspensions of either rod-like or spherical grains.
In a similar fashion, the flux and external volume
sources of moment of momentum includes surface
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and volume couples in addition to moments of trac-
tions and body forces which appear in the conser-
vation law for linear momentum.
The conservation law for energy (2.15) includes the

kinetic energy associated with the moment of momen-
tum of the magnetization and the rates of working
of the generalized surface and volume actions.
We introduce, in the form of a balance law, a

generalization of the common constitutive assumption
relating the magnetization and the magnetic field :

where * is called the intrinsic magnetic field. Equation
(2.16) expresses that the time rate of change of the
magnetization inertia in an arbitrary material volume
is balanced by local fields acting over the surface
and throughout the volume in addition to the macros-
copic magnetic field.
For sufficiently smooth fields local forms of (2.13),

(2.16) may be written in the form

on 1.
Here t is the appied surface force and L is the applied

surface couple.
Notice that the reduced local form (2.19) of the

balance of moment of momentum requires that, in
general, the stress tensor be asymmetric.
An entropy production inequality of the form

applieds to each material volume V. Here 11 is the

entropy per unit mass, p the entropy flux vector and T
the temperature. With sufhcient smoothness the local
form of (2.24) is

The field equations (2.17)-(2.21), the boundary
conditions (2.22) and (2.23) and the entropy produc-
tion inequality (2.25) apply to an arbitrary magne-

tizable material. We must provide next constitutive
assumptions which specify the magneto-mechanical
nature of the material. That is, we must express
E, il, q, w, p, t, and l in terms of measures of the motion,
magnetization and the temperature. The particular
measures we choose will determine the type of beha-
viour the material will exhibit. We define a para-
magnetic fluid as a material in which e, il, q, g*, p, t
and 1 are single valued functions of m, m, Vx, T, and
VT. We restrict the way in which the constitutive
functions may depend upon these variables by requi-
ring that these functions have the same form in any
two motions of the fluid which differ by a time depen-
dent rigid motion - that is, the material response is
unaltered by rigid motions [11 ]. If we assume that
under these transformations the magnetization beha-
ves as an axial vector, this requires that the indepen-
dent variables m and Vx appear only in the combi-
nations

and

where

In addition, the constitutive functions are required
to satisfy both the form (2.19) of the balance law for
moment of momentum and the entropy production
inequality (2.25) identically in the independent
variables. The first requirement brings the number
of field equations into agreement with the number
of unknowns ; the second requirement excludes from
consideration materials in which a negative local

entropy production is possible [12].
Jenkins [6] shows that constitutive functions

consistent with these requirements have the form

where F is the Helmholtz free energy per unit mass.

Quantities bearing hats are the non-equilibrium parts
which are functions of m, m, D, T and VT vanishing
when m = VT = 0, D = 0. These quantities must
satisfy, identically, the relations
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and

3. A model paramagnetic fluid. - We here restrict
attention to isothermal phenomena and ignore the
energy equation (2.20) which is, in general, incom-
patible with this assumption.
We shall consider a simple continuum model of an

incompressible paramagnetic fluid. The constitutive
relations are designed to represent a dilute homoge-
,neous suspension of spherical ferromagnetic grains
in which rotational motion of the grains due to thermal
agitation is significant.
The magneto-static behavious of the fluid is assu-

med to be governed by the free energy density

Here the constants xo and ms are called the initial
magnetic susceptibility and the saturation magneti-
zation per unit mass respectively. For m = 0, Vx = 0
we combine (2. 21) and (2. 31) to obtain

or

Consequently, the magnetization in the resting fluid
increases, monotonically with H, so that

when H = 0, and M --+ MS as H --+ oo.
For the non-equilibrium parts of the stress and the

intrinsic magnetic field we take

and

respectively. In general, the coefficients y and y are
functions of m. The forms (3.4) and (3.5) satisfy the
identity (2.35) while the entropy production inequality
(2.36) requires that

In the model paramagnetic fluid which we consider
we specify that

where a is a constant. A consequence of the assump-
tion (3.7) is that in a steady simple shearing flow

the viscous torque at a point in the material (the anti-
symmetric part of the stress tensor) is proportional
to the number of orientated grains at that point.

4. Two parallel flows. - Simple shear. The parallel
flow easest to treat is that of the homogeneous shear
of an unbounded material. That is

In this flow, the stretching tensor D and the spin
tensor W are given by

and

We consider an external magnetic field which is

homogeneous and acting in the plane of shear

Then the external body force per unit mass f, given
by

vanishes.
With (4. 1) and (4.2) it is natural to consider ma-

gnetization fields m which are homogeneous and in the
plane of shear

where m = m(t) and = Â(t). In this event, the self-
field H’ is zero and the momentum equation (2.18)
is satisfied if the pressure p is constant.

Equation (2.21) governing the magnetization is,
with (3.2) and (3.1),

in what follows we neglect the inertia associated with
the magnetization. Setting B = 0 and using (4.2)
and (4. 4), we may rewrite (4. 5) as

and

where
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and a dash indicates derivatives taken with respect
to 1 = 2 t/k.

Steady solutions to the system (4.6), (4.7) are,

for  Ho 1 &#x3E;, 1,

and

Solution (4.10) can be shown to be an unstable
singular point of (4.6), (4.7), while (4.9) is the stable
steady solution. Note that for this constitutive theory
the angle between the magnetization and the external
magnetic field is, in this simple flow, independent
of the magnitude of the magnetization.
The non-vanishing steady components of the stress

associated with the solution (4.9) are

and

The apparent viscosity v, defined by

is, 10r a fixed external field, a decreasing function of
the rate of shear. For a fixed rate of shear, v increases
with the magnitude of the external field.

Equation (4.13) indicates that in para magnetic
fluids described by this model the differences t Il - t33
and t22 - t33 are zero. Thus, experiments to deter-
mine the existence of normal stress effects [13] will
test the validity of the constitutive theory (3.1), (3.4),
(3 . 5) and (3 . 7). 
For H° = 0 equation (4.6) shows that m’  0

and an initial magnetization field will always vanish.
In this case, the off diagonal components of the

steady stress are given by

When 0  1 HI  1 the magnetization and the, stress
are time dependent.

Poiseuille flow.

McTague [6] has experimentally investigated the
flow of a paramagnetic fluid through a thin tube for
orientations of the external magnetic field parallel
to and perpendicular to the axis of the tube. Here we
analyse his experiment, in terms of our model, for the
longitudinal orientation of the field.

In this case, we assume that the flow through a
cylindrical tube of radius R is steady and parallel.

In a cylindrical coordinate system the physical compo-
nents of the velocity field are

with the conditions

When the external magnetic field is perpendicular to
the axis of the tube we do not anticipate that the
velocity field has the simple form (4.16).

For the flow (4.16) the non-vanishing physical
components of the stretching tensor and the spin
tensor are

and

respectively.
The external field HO is

The magnetization field is taken to be

where ç = (p(r, t) and m = m(r, t).
The magnetization field (4.20) has a non-vanishing

divergence and a component normal to the boundary.
In this case, equations (2 . 8)-(2 .11 ) indicate that a
self-field will be present. For an cylinder of great
length there will be only a radial component of the
self-field H’ given as a solution to (2.8) and (2.9)-
(2. 10) by

within the cylinder, and

outside of the cylinder.
With the assumptions (4.17) and (4.20) and the

self-field (4.22) the linear momentum equation (2.18)
becomes
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If we ignore, for the moment, the self-field (4.22)
and use (4.19), (4.20) and (4.21) in equation (4.5)
with fl = 0, we obtain, when k is replaced by - u’
in the definitions (4. 8)3 and (4. 8)4, equations governing
the magnetization of the same form as (4.6) and
(4.7). Thus, in this approximation, a stable steady
magnetization is possible if

and is given by (4.9). Note that this condition gover-
ning the possibility of obtaining steady solutions

depends upon u’ = u’(r) and may be satisfied at some
values of r but not at others.

If we include the influence of the self-field the
character of the steady solution is not essentially
altered. Physically, the self-field directly surpresses
the magnitude of the radial component of the magne-
tization and induces a couple tending to align the
magnetization vector in the direction of flow. Thus
the self-field effectively augments the external field
and acts contrary to the orienting influence of the flow.
In what follows, we shall assume that the steady field
of magnetization is adaquately described by (4.9).
The non-vanishing physical components of the

stress are

and

With

and

or,

and

The integration constant in (4.33) is zero by (4.17)2.
In principle, we may substitute for m = m(u’)

from (4.9) using the modified definitions (4.8)2
and (4. 8)3, solve (4.33) for u’, and integrate the resul-
ting differential form to obtain the steady velocity
field.

However, equation (4.33) integrates directly in the
limit of large external magnetic fields. The solution
(4.9) gives m - ms as Ho --+ oo ; so upon replacing
m by ms in (4.33) and integrating, we obtain

The volume rate of flow Q associated with this

velocity field is

Thus, for a magnetic fluid described by this model,
the coefficient J1 may be measured in the absence of
an external magnetic field. With this, the coefficient
a2 may be determined by comparing the flow rates
(for a fixed capillary and pressure gradient) in the
saturated and in the unmagnetized fluid.

5. The experiment of Moskowitz and Rosensweig [9].
- Moskowitz and Rosensweig subjected a para-
magnetic fluid contained in a cylinder to the influence
of a homogeneous magnetic field rotating uniformly
in the circular cross-section. They observed that an
apparent steady rotation of the fluid resulted. They
determined how a measure of this induced rotational

velocity field was related to the magnitude and angular
velocity of the external field. In an attempt to explain
this phenomenon Moskowitz and Rosensweig assumed
that the paramagnetic material was an incompressible
Newtonian fluid characterized by a symmetric stress
tensor linear in the stretching tensor. They further
assumed that a body couple was exerted on the fluid
when the induced magnetization and the external

magnetic field were not parallel. However, in this case,
if the equation expressing the conservation of linear
momentum is satisfied, the assumption of a symmetric
stress tensor and the existence of external body couples
are not consistent with the conservation of angular
momentum.

Conversely, if a solution to the differential equation
expressing the conservation of angular momentum is
obtained it will be, in general, inconsistent with the
conservation of linear momentum Moskowitz and

Rosensweig (and earlier Tsvetkov [14] to explain a
similar experiment performed with nematic liquid
crystals) obtain a steady rotational velocity field as

a solution to the balance law for angular momentum
which fails to conserve linear momentum.
To repair this defect in approach we utilize the

more general constitutive theory (3.1)-(3.7) which
satisfies the angular momentum balance (2.19) iden-
tically. We attempt to determine whether, using this
model, steady rotational flow can be induced in the
cylindrical vessel by the homogeneous rotating ma-
gnetic field.
The physical components of the velocity field in

cylindrical coordinates are assumed to be of the form



937

Then the non-vanishing physical components of the
stretching tensor and the rate of deformation tensor
are 

and

The homogeneous, rotating external field is

The physical components of the magnetization field
are assumed to have the same time dependence as
the external field

where m = m(r) and ç = qJ(r) .
Again we ignore the magnetization inertia ; and,

in this case, we neglect entirely the effects of the self
field introduced by the distribution of magnetization
(5. 5).
When viewed from a frame rotating with the exter-

nal magnetic field

the fields (5.1), (5.4) and (5. 5) are independent of the
time :

Using equation (4.5) a straight-forward calculation
shows that in this coordinate system the values of
m and 9 corresponding to the steady stable magne-
tization are, when k is replaced by F in the definitions
(4.8)2 and (4.8)3, given by (4.9).

In this case, the non vanishing physical components
of the stress are

The divergence of the stress tensor, given in cylin-
drical coordinates by the left hand side of (4.24),
(4.26), must be balanced by the radial centripital
acceleration

Using (5.12), (5.14) we obtain

and

Thus the single valued pressure in given by

and

or

Again, upon replacing m by ms, we may integrate
equation (5.20) to determine the flow field in the

limiting case of a large external field. It is

where c = Cte. However, requireing the velocity
to be zero at the wall and finite at the center yields

De Gennes [15] was the first to mention the apparent
impossibility of inducing a rotating flow in a saturated
paramagnetic fluid by means of an external magnetic
field. The calculation here is in agreement with his
remarks. Inversion and integration of equation (5.20)
will determine whether a steady rotational velocity
can be maintained in the general case for the model
considered here. Judging from the behaviour in the
limiting case, it seems inprobable that in the general
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case a steady velocity will result. The experimental
observations of Moskowitz and Rosensweig might
be explained by examining in detail the effects of the
self-field or by introducing a more complicated
constitutive theory ; however, before multiplying
the mathematical diinculties it may be wisé to repeat
the experiment under conditions which insure negli-

gible interaction between grains and a homogeneous
external magnetic field.
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