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INFRARED CATASTROPHY AND EXCITONS
IN THE X-RAY SPECTRA OF METALS

M. COMBESCOT and P. NOZIÈRES

Groupe de Physique des Solides de l’E. N. S. (*)
Faculté des Sciences, Tour 23, 9, Quai Saint-Bernard, Paris 5e

(Reçu le 18 mai 1971)

Résumé. 2014 Les singularités aux seuils des spectres X des métaux sont étudiées par une méthode
nouvelle, utilisant une description des états initiaux et finaux à l’aide de déterminants de Slater. Le
calcul des spectres de raies et de bande se ramène à celui d’un unique déterminant, pour lequel une
approximation asymptotique est mise au point. On étudie particulièrement le cas où le potentiel
final est assez fort pour lier un électron : les spectres d’absorption possèdent alors deux seuils, dont
les caractéristiques sont précisées. La position de ces seuils, ainsi que la nature des singularités sont
en accord avec les prédictions d’Hopfield [3]. Lorsque la densité des électrons diminue, le spectre
évolue continûment vers celui d’un isolant, la divergence au seuil se transformant en une raie
d’exciton élargie par effet Auger.

Abstract. 2014 The singularities near the edges of X-ray spectra in metals are investigated by a new
method, using a description of initial and final states in terms of Slater determinants. The calcula-
tion of line and band spectra is reduced to that of a single determinant, for which an asymptotic
approximation is developed. Special attention is paid to the case in which the final potential is
strong enough to bind an electron : the absorption spectrum then possesses two thresholds, whose
characteristics are found. The position of the threshold, as well as the nature of the singularities
agree completely with the predictions of Hopfield [3]. When the number of electrons decreases, the
spectrum goes continuously into that of an insulator, the infrared catastrophy divergence turning
into an Auger broadened exciton line.
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1. Introduction. - As originally suggested by
Mahan [1], the X-ray emission or absorption band
spectrum of metals displays a characteristic threshold
singularity, arising from the interaction between
conduction electrons and the localized disturbance
due to the X-ray transition. Depending on the para-
meters, the transition probability I(co) may be either
infinite near threshold (Fig. la), or instead zero,
with no discontinuity (Fig. lb) [2]. Near the threshold
wo, I(co) behaves as

where a is a critical exponent, which is positive in
case (a), negative in case (b). Such an unusual behaviour
has its origin in the readjustement of the conduction
electrons to the sudden change in the ionic core poten-
tial brought about by the X-ray transition. The latter
tends to excite electron hole pairs out of the Fermi
sea, by a process analogous to the Auger effect.
Because of the large density of pair states, the number
of such pairs is infinite, even though the total energy

(*) Laboratoire associé au C. N. R. S.

transferred to the electrons is finite. As pointed out
by Hopfield [3], we may speak of an infrared catastro-
phy in which infinitely many excitations of an infinitely
small energy are created, in much the same way as
photons in the scattering of two charged particles.
The above discussion is concerned with band spectra,

in which the transition occurs between a deep core
state and the conduction band. As shown by Doniach
[4], a similar effect is expected in line emission spectra,
involving transitions between two discrete core states.
Because the conduction electrons are scattered diffe-

rently in the initial and final states, they must again
readjust to their new surroundings : the transition
involves Auger excitation processes, leading to an
asymmetric broadening of the sharp line on the low
energy side. The spectrum has again the shape (1)
(with however a different exponent) [5].
A theoretical treatment of this « infrared catas-

trophy » was proposed by Roulet, Gavoret and
Nozières [6], [7], and by Nozières and De Dominicis
[8]. It is formulated in a simplified model based on
the following assumptions :

(i) The disturbance in the inner shells is supposed
to have no recoil : it remains localized at a given
site in the lattice.
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FIG. 1. - Typical behaviours for the band X-ray spectra of metals. The full line corresponds to the actual spectra, the
dotted line to a one electron approximation. Besides the usual low energy Auger tail in the emission case, the spectra display

either a singularity near threshold (case a) or instead no discontinuity at all (case b).

(ii) The deep hole is considered as structureless,
acting only as a scattering potential for the conduc-
tion electrons. Exchange processes involving Coulomb
transitions between different core states are comple-
tely neglected (they would lead to Kondo singulari-
ties).

(iii) The Coulomb interaction between conduction
electrons is ignored. We assume that it is included
in the form of renormalized quasiparticles ; this is

certainly correct close enough to the threshold, for
processes which involve electron hole pairs with

energies much smaller than the Fermi energy /1.

(iv) Finally, the finite lifetime of the X-ray excited-
state is not taken into account.

Let us consider first band spectra, and let b * be the
creation operator for the deep core state involved in
the transition (with bare energy 80). The above assump-
tions are summarized in the following model hamil-
tonian

ck is the creation operator for conduction electrons

(spin indices have been omitted). Vkk, is the matrix
element for scattering from the excited atom, which
appears only when the deep level is empty. The

coupling to the X-ray field is described semi-

classically by a perturbation

The transition rate is proportional to the imagi-
nary part of the Fourier transform S(cv) of the res-
ponse function

In the case of emission line spectra, we introduce
the operator b* which produces the transition between
the two core states, with bare energies

The model hamiltonian is then
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where Vi and V2 = V 1 - Y are the scattering poten-
tials before and after the transition. The X-ray cou-
pling has the form

the transition rate being again given by (4). Within
the model, the calculation of the spectrum is reduced
exactly to that of the appropriate correlations func-
tions,

(where T is the usual chronological operator).

As shown in ref. [8], the inner core distrubance
only acts as a transient one body potential acting on
the conduction electrons. When calculating G(t - t’)
or F(t - t’), one need only study the response of the
Fermi sea to the scattering potential + Vkk, applied
between times t and t’. The problem is easily formu-
lated in field theoretical language. + ei£ot g corres-
ponds to the « vacuum amplitude », i. e., to the dia-

gonal element of the S-matrix in the initial ground
state ; the linked cluster theorem allows to write

where C is the sum of all simply connected closed
loops. Similarly, the function Y takes the form

where L is the contribution of an open conduction
electron line going from t to t’. The problem is thus
reduced to solving a Dyson equation for the electron
Green’s function in the transient potential vkk-. Up
to that point, the model is treated exactly.

In order to proceed further, approximations are

needed. An asymptotic solution may be found, which
is valid in the limit of long times (i. e. close to the

threshold). The Dyson equation then reduces to a
singular integral equation of the Mushkhelishvili

type, whose solution is known. The asymptotic
solution is controlled by the phase shifts ô, of conduc-
tion electrons of’ the transient potential Ykk, (or
more exactly by the changes in ôl brought about by
Vkk’)’ It is found that

A is the change in the ground state energy of conduc-
tion electrons arising from Vkk,, which according to
Friedel [9] may be written as

(the origin of energy has been chosen at the bottom

of the conduction band). The exponent 6 involves
the phase shifts at the Fermi surface, ôi(p) = bl

(We note that each spin angular momentum chan-
nel 1, m, s contributes independently to Li and B.)
In similar fashion, a partial wave analysis of Wk.
yields following form of the open line contribution

The shape of the spectrum is obtained by Fourier
transforming Y and 9. The threshold is located at

mo = - eo + J for line spectra, at mo = J1 - eo + Li
for band spectra. Near the threshold, we indeed find
the behaviour (1), with

The results are particularly simple if we consider only
a single channel - e. g. s-wave scattering for spinless
particles ; then we have

Such an approach only provides the asymptotic
behaviour of the spectrum. It should noted that it
is non perturbative, in that it does not assume Ykk-
to be small. However, there remains an ambiguity
in the definition of the phase shift : should it be the
actual b, or its determination in the range (0, n) ?
Mushkhelishvili’s method cannot answer that ques-
tion, as different determinations of ô correspond to
different solutions of the same integral equations.
The result (15) has a finite range of validity, but it
is not clear where it breaks down.
The critical exponents P and y l are closely related

to the number of conduction electrons ni which must
be brought in each channel near the excited core in
order to achieve the new equilibrium ground state.

This was shown very clearly by Hopfield [3]. Accor-
ding to the Friedel sum rule [9], an extra potential
vkk, gives rise to an excess localized charge in the
ground state, which in the channel (1, m, s) is equal
to b zln. In the simple case of line emission spectra,
the net charge ni to be brought from infinity in that
channel is equal to - ôi/z. From (1) and (12), it

follows that the critical exponent a may be written
in the form
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It turns out that (16) is correct in all cases studied so
far. Consider for instance the (1, m, s) component of
the absorption band spectrum. The net charge ni,
needed in the conduction band is given by

(Since one extra electron has been provided by the
core in the l, m, s channel.) Inserting (17) and (16),
one recovers the critical exponent of :F lm( úJ). It thus

appears that the physical origin of the infrared catas-
trophy lies in the difficulty of bringing electrons from
infinity to the neighbourhood of the excited site.

One may wonder what happens to these infrared
singularities when the Fermi-energy goes to zero.

The answer is straightforward if the potential Ykk-
has no bound state : all the phase shifts ôi then go
to zero, and the singularities disappear. The spectrum
ouf 19 goes into a single discrete line at frequency - 80 ;
the emission part of Y goes to zero altogether, while
the absorption part reflects the usual density of one
particle states in the conduction band (see Fig. 2).

FIG. 2. - The spectrum of 19 and Y when Il -+ 0, in the absence
of bound states. The full line refers to the limit u = 0, the
dotted line to u small, but finite. The shift of the threshold mou

has been ignored in drawing the curves.

The situation is less clear if the potential vkk, of
the core hole is strong enough to bind a conduction
electron, thereby forming an exciton state. Let us

consider only the case of band spectra, and let ! 1 tp 0 &#x3E;

and Yo &#x3E; be the ground state of conduction elec-
trons respectively in the absence and presence of the
deep hole. For a strict insulator, the absorption spec-
trum has the usual form shown on figure 3, the exci-
ton line lying at an energy - 80 - EB, where 8B is the
exciton binding energy ; there is no emission, for lack
of an electron to fill the deep hole. If a few electrons
are introduced in the conduction band, the absorption
spectrum should not vary appreciably, as in state

1 tp 0 &#x3E; these electrons are spread throughout the

crystal, far from the excited site. On the other hand,
in state 1 tp 0 &#x3E; one of these electrons is in the bound

state, and a sharp line should appear at - 80 - 8B in
the emission spectrum. If y is small but finite, we
expect these spectra to broaden as shown on figure 3,

FIG. 3. - Absorption and emission band spectra in the presence
of a bound state with binding energy 9B. The full line refers
to u -&#x3E; 0 (although not --- 0 in order to have emission), the
dotted line to u small but finite. The shift of the threshold as ,u
increases is not taken into account in drawing the dotted curve.

because of the Auger excitation of conduction elec-
trons. We recover « infrared » singularities, which
here appear as a broadened exciton line (we note that
when p - 0, the threshold goes to - 80 - 8R’ not

to - 80). When y increases, the threshold shifts, while
the gap between exciton and the continuum gradually
fills in. It is likely that for Il » 8R’ the influence of the
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exciton is no longer noticeable : we recover the usual
Fermi edge singularity.
The main purpose of this paper is to clarify the

nature of absorption and emission spectra in the

presence of a bound exciton : how does the exciton

singularity appear in the calculation, where is the

threshold, does there remain a discontinuity at the

edge of the continuum absorption, what are the
critical exponents ? Admittedly, the problem is
somewhat academic, in view of the crudeness of the
model. We nevertheless feel that these points must
be elucidated in order to appreciate the nature of
infrared singularities, and the way they evolve when
one goes from a conductor to an insulator. Actually,
this example belongs to the general problem of inelas-
tic broadening of collective excitations, which is far
from trivial. Moreover, in the course of solving this
problem, we introduce a new approach, based on a
remark of Friedel [10], which is more explicit than
the field theoretical method. That, too, sheds some
light on the nature of the phenomenon.

If in a given channel there exists a bound state,
the corresponding phase shift goes to n at the bottom
of the band, instead of zero. The question arises to
whether (11) and (13) remain valid in that case. The
approach of reference [8] is not appropriate, since it
does not specify the determination of ô. Moreover, it
relies on the assumption that the one electron propa-
gator G(r, r’, t) varies smoothly for large t, because of
the destructive interference between various conti-
nuum states. This assumption breaks down when
there is a bound state, which gives rise to an undamped
oscillatory term in G. As it stands, the argument of
Hopfield does not help either - first it does not
constitute a proof - and also one may wonder whether
in (16) ni should include or not the electron bound
to the deep hole. We shall indeed show that (16)
is correct if we do include the bound electron - but
that must be proved. It turns out that the most conve-
nient method is the one proposed by Friedel in 1952,
and described in reference [10]. We shall see how it
can be expanded as far as to describe exactly the
various singularities.

Let us consider for instance the absorption case,
and let H and H be the conduction electron hamil-
tonian in the initial and final states (i. e. without and
with the scattering potential Ykk,). As shown by Frie-
del [10], the propagator G(t) may be written as

where Eo is the ground state energy of H (for an N-
electron system). (18) may be expanded on to the
eigenstates 1 Pn &#x3E; of Ho, with energy E,,, which yields

The calculation ouf 9 is thus reduced to that of the

overlap of two Slater determinants, one built with

plane wave states, the other with scattering states.

It was shown by Anderson [11] that any such matrix
elements is exponentially small for large systems :
it is the summation over n which yields a finite result
- and which in fact constitutes the difficult part of
the calculation. In the same way, one may write F(t)
in the form

(20) resembles (19), but for the fact that there is one
more electron in the Slater determinants. According
to (19) and (20), the threshold energies correspond to
the minimum En. Let Eo = Eo + d be the ground
state energy of H for an N-electron system (J is the

ground state shift given by (11)). It is clear that the
threshold are located at

(in agreement with the field theoretical results).

If H possesses a bound state, the eigenstates 1 ijï n &#x3E;
fall into two classes, depending on whether the bound
state is full or empty ; each class gives a continuous
spectrum, but with a different threshold. The absolute
threshold corresponds to the bound state filled, and
is given by (21). The secondary threshold, which

corresponds to the bound state empty, is shifted
towards higher energies by an amount (p + e,).
In practice, the secondary threshold will be broadened
if we take into account the Coulomb interaction
between conduction electrons, which acts to damp
the bound states. In our model, however, the two
thresholds should be sharply defined, and we may
study the nature ôf the singularity near each of them.
In the reverse emission case, the bound state is filled
in the initial ground state Y’o &#x3E;, and we expect only
a single threshold given by (21). Note that when
p - 0, the absolute threshold corresponds to the
exciton state, while the secondary one corresponds
to the bottom of the conduction band, as pointed out
by Friedel [10].

If the system is enclosed in a spherical box, the one
particle eigenstates correspond to definite quantum
numbers (1, m, s) both for H and H. In calculating
the overlaps  tp 0 1 ip n &#x3E;, it is clear that the different
angular momentum and spin channels will be com-
pletely decoupled. For simplicity, we consider only
a single channel, that where there exists a bound state
- say the S-wave channel. From now on, the momen-

tum k will be a scalar refering to the radial part of the
wave function. Moreover, we assume that the particles
are spinless (we ignore the existence of two spin
channels). We are almost forced to this oversimpli-
fication by our neglect of the Coulomb interaction
between conduction electrons. Such an approximation
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was sensible near the Fermi level, where it amounted
to a renormalization of a quasiparticles. On the other
hand, it becomes very bad far from the Fermi level,
especially for the bound state. As it stands, nothing
prevents the excited core from accomodating two
bound electrons with opposite spins - a situation
which would alter drastically the shape of 9(co) and
F(w). In practice, the repulsion between the bound
electrons will very likely prevent the formation of
such a double bound state. This could only be included
in the theory by using an extended Hartree-Fock
scheme, in which the potential felt by spin up electrons
depends on the occupancy of spin down states. Since
we only wish to achieve a qualitative understanding,
such complications do not appear worthwhile, and
we choose to ignore spin altogether (an attitude
which probably amounts to assuming an infinite

repulsion of conduction electrons with opposite spins
near the excited site). However crude an approxi-
mation, it is not worse than the neglect of the Coulomb
interaction between conduction electrons (for instance,
the use of a statically screened Ykk, is very bad far
from the Fermi level).

In order to simplify the algebra, we shall consider
only band spectra, and we shall assume that Ykk-
is separable

where uk is a form factor which accounts for the range
of the potential and ensures convergence. We shall
also assume that Wk = Uk, within a constant factor
which can be taken out of F : this is by no means
essential, but it makes the calculation easier. With
the choice of (22), the scattering states are known

explicitly, and the overlaps can be readily evaluated.

II. Absorption spectrum in the absence of a bound
state. - Our method for calculating the correlation
functions Y and is best introduced by considering
the simplest possible case, that of an absorption
experiment in the absence of a final bound state.

The initial state 1 tp 0 &#x3E; in (19) is then a Slater deter-
minant of N plane waves, with wave vectors k  kF.
Let YK be the corresponding one electron wave func-
tion : ( Y’o &#x3E; is an N x N determinant

Similarly, the final states 1 tp n &#x3E; are Slater deter-

minants of scattering states X q (in the final potential V).
In the expression (19) of g, 1 ijï n &#x3E; involves any combi-
nation of N different such states.

Anderson [11 ] has shown that all the matrix ele-

ments  tp 0 1 tp n &#x3E; are exponentially small - this is

the so called « orthogonality catastrophe ». In parti-
cular, he evaluated explicitly the overlap of the two
ground states,  !Fo ! 1 Po &#x3E;, by an elegant method
based on the use of Cauchy determinants ; he thus

showed that this overlap behaved as N-2/21[2 when
N - oo. Such an approach, although very concise,
is not very useful in evaluating (19) : Anderson’s

algebra must be carried out for each state 1 ijï n &#x3E;,
and then the sum over N-body intermediate states

is a rather formidable task.

Actually, the matrix elements of eiHt can be evalua-
ted directly, if we note that H is a sum of one electron
hamiltonians :

If in  tp 0 1 eillt 1 tp 0 &#x3E; we expand the two Slater
determinants (23), we therefore obtain an expression
of the form

(where P and P’ are any permutation of the N wave
vectors K  KF). Clearly, (24) depends only on the
relation permutation P - P’ : the remaining summa-
tion cancels the N ! in the denominator. (24) can thus
be cast in the very simple form

where AKK’ is a one electron matrix element

The summation over the N-body states 1 Pli &#x3E; is

completely avoided. (25) appears as a single deter-
minant, constructed on the N plane wave states

occuped in the ground state l ’Po&#x3E;.
In order to calculate the propagator 9 given by (19),

we must shift the energies by an amount

We see at once that

Note that h is the one electron hamiltonian after
the transition, while XK is an eigenstates of the cor-
responding operator h behore the transition. If h
were equal to h, A would be a unit matrix ; because
of the final state interaction, A is not diagonal, and p
is a complicated function of t.
The response function Y given by (20), can be

calculated along similar lines. It is easily verified that
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where Ppp- is again a determinant of matrix elements
Âkk’, but this time of dimension (N + 1) x (N + 1).
It rows are labelled by the N states K  KF and by p,
its columns by the states k  kF and by p’ (*). (Note
that the summation over p and p’ may be extended to
all space, since the determinant ppp, automatically
vanishes if p or p’  KF.) We expand the determinant
pp,, along the last row and column, in the usual way,
which yields

where AKK, is the minor obtained from the N x N
matrix Â by suppressing the row K and column K’.
If we note that AKK’I P is just the K, K’ element of the
inverse N x N matrix À - 1, we see that Y takes the
simple form

As expected, Y has the form (9), the « open line »
contribution being simply expressed in terms of À -1 .
In order to complete the comparison with the field
theoretical approach, we note that 

On comparing with (8), we see that the « closed loop »
contribution c is simply the trace of the N x N matrix
Log Ã.. It follows from (30) that

We are thus left with the mathematical problem of
inverting the N x N matrix À.

Our first task, of course, is to calculate ÀKK,. This
can be done by inserting in the middle of (27) a complete
set of scattering states Xp (including the bound state
when it exists : see section III). Let xp be the overlap
of x p and XK : (27) becomes

The overlap xp is calculated in appendix A, and is
given by (A. 11) ; in general, the summation in (32)
cannot be performed explicitly. Let us however consi-
der the asymptotic limit of large t (specifically, 8F t » 1).
Because of destructive interference, the summation in
(32) is controlled by the region p ~ k ~ k’, in which
the factors x are singular (put another way, AKK’ is

negligible unless k N k’). We may then replace x§
and XpK’ by their approximate form (A. 12) ; moreover,
the slowly varying factors ôp and vp may be replaced

(*) The notation K is systematically used for the N momenta
 KF, while p refers to an arbitrary momentum, &#x3E; or  kF.

by bK and vK (or by bK’ and vK, which are the same
when k ~ k’). (32) thus becomes

(with i = t/vK). The summation over p converges
rapidly, and can be extended from - oo to + oo : :
it is then readily evaluated by Poisson’s formula,
which yields for the matrix

(34) is the central result of this paper, on which all
subsequent calculations will be based. Let us emphasize
again that it is only valid for large t, when destruc-
tive interference acts fully. (The fact that (34) yields
the exact result X = 0 when t = 0 is accidental, and
will not remain true when there is a bound state.)
Such an approximation only provides the qualitative
nature of the spectrum in a narrow frequency range
around the singularities ; it gives no information on the
general behaviour far from the thresholds. The extent
to which this limitation can be released is briefly
discussed in Appendix B.

In the weak coupling limit (ô « n), X is small

quantity, and we may calculate J.. -1 (as well as log Â)
as a power series in X. In order to gain some insight
into the structure of the result, let us consider the
first terms of the expansion of C = Log p (see eq. (30)).
The lowest contribution is

(where y is the Fermi energy). For small phase shifts,
sin ô e - ib ~ b: on comparing with (8), (10) and (11),
we see that (35) is nothing but the leading part of the
threshold shift A. More generally, this shift will arise
from those terms of C which are linear in t. If we

proceed to second order, we find

Were it not for its finite range (from 0 to 1À), the
8’-integration would yield a factor t, thereby providing
a further contribution to the threshold Li. In addition
to that term, there appears corrections due to « edge »
effects, in the range 8, e’ N Il. (The other limit a, E’ N 0
is unimportant, as sin ô is then negligibly small.)
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Detailed calculation shows that in the limit of large t,
C(2) behaves as

(with here b = b(J1)). The first term of (37) contributes
to the threshold shift L1. The second term gives rise
to the characteristic power behaviour ouf 9 near thresh-
old : indeed, the coefficient of Log t is just the lowest
order approximation to the exact exponent (12).
The structure (37) persists to all higher orders :

the term C(n) contains a part linear in t, which contri-
butes to L1, and a term N Log t, which contributes
to the exponent B. If we were able to sum the full

series, we would get exact results for these quantities.
Actually, this summation can be performed easily
for the linear term, in a way which sheds some light
on the convergence of the expansion. For large t,
XKK, is negligible unless EK ~ BK, which allows us to
write

When calculating the leading linear term, we may
neglect edge effects and extend the integration from
- oo to + oo in the expression of an : an thus appears
as the nth convolution of f :

The Fourier transform of f is

from which it follows that

Inserting (39) into (38), we find

The series in (40) converges if 1 1 - e - 2iô 1  1 ;
its sum is then equal to

(In the intermediate range (z/6, 5 7r/6), the deter-
mination ôi cannot be deduced from a series expres-
sion). To the extent that the series convergences in
the whole range 0  a,  ,u, we recover the exact
result (11), which is obtained by replacing sin b e - iô
by the phase shift à in the first order expression (35).
We shall use this result later when discussing the
appropriate determination of phase shift.
A similar calculation of the exponent f appears very

difficult. Instead, we shall try to invert the matrix
1 - X directly, by a method closely related to that of
reference [8]. We note that the matrix element of X
can be written as

The fact that XKK, is separable before the z integra-
tion suggests that we try a solution of the form

where 9 is at the moment an unknown function. The
condition ÀÀ - 1 = 1 is satisfied if

where we have set

The inversion of 1 is thus exactly reduced to the

solution of the integral equation (45) - a problem
very similar to that encountered in reference [8].

If the integral in (44) extended from - oo to + cc,
the solution would have the form

g is easily obtained by a Fournier transform. Indeed,
it follows from (45) that

and therefore

Because of the finite boundaries in (44), 9 departs
from qJ 00 : these « edge effects » can only be calcu-
lated approximately.

In the limit of large 1:, g( 1:) and g (1:) are controlled by
the discontinuity of their spectrum at e = p. If we
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average out rapid oscillations near 1 = 0, they can
be replaced by their asymptotic form [8]

In (47), ô = ô(M) is the phase shift at the Fermi
level. When g is replaced by y, (44) takes the form of
a standard singular integral equation, equivalent to
a Hilbert problem. The corresponding solution may
be found in the book of Mushkelishvili [12] ; we shall
not go through the algebra, which is standard : we

only quote the result (see [8])

ô = b + kn is a determination of the Fermi surface
phase shifts which is still unspecified. As expected,
ç reduces to qJoo if 0 « r, r’ « t : the edge effects are
entirely contained in the last factor of (48).

Actually, (48) is not yet the correct solution ; as it
remains singular near r = 7:’ : as a consequence, the
replacement of g by y in (44) is not a satisfactory
approximation when i N 7:" ’" 7:’ ; put another way,
(48) does not account correctly for the « local » beha-
viour near r = 7:’. That difficulty can be by-passed if
we consider the difference qJ - qJ 00 : to the extent
that edge effects are small for large t, the difference
should be regular when r - 7:’, and the corresponding
region should contribute a negligible amount to the
integral

In that integral, the replacement of g by y is thus
permissible : the asymptotic solution is correct for

(cp - CPoo), although not for cp. We are thus led to

replace (48) by the more accurate result

(49), which is only valid for large t (Mt » 1), consti-
tutes the basis of our approximation solution.

We now turn to the actual solution of our problem.
We begin with the open line contribution L, which
is somewhat simpler to calculate. As shown in Appen-
dix A, the first term of (29) is negligible in the limit
of large t (it behaves as t - 3/2). The sums over p and p’
appearing in the second term of (29) are evaluated
in (A. 17) ; we thus obtain

We now replace Â -1 by its expression (43). In the
summation over k and k’, the main asymptotic con-
tribution comes from the vicinity of the Fermi level,
so that we can neglect the k dependence of ô, v and u.
Using the definition (45) of g, we may cast (50) in the
form

From the integral equation (44) obeyed by ç, it
follows that

When ç is replaced by the solution (48), or (49),
we obtain

where jo is a cut off - ,u, arising from our asymptotic
approximation. (53) is exactly the result of reference [8].

The « closed-loop » contribution C is given by
(30). It turns out that the relation (31) cannot be used
within our asymptotic approximation. Instead, we
assume that the interaction is changed infinitesimally
in such a way that the phase shifts vary by an amount

The corresponding variations of the matrix X and
of C are

We replace 1-’ by its expression (43), and carry
the momentum sum, making use of (45) : we thus
obtain

From (44), it follows that

The quantity (fi(’r:, i) is readily obtained from (49) ;
replacing g and ÿ by their expressions (46) and (47),
we find
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We can now carry the i integration in (57) ; making
use of (54), we see that

If we assume that the determination 3 remains the
same throughout the range of integration over dbK,
(59) yields at once

(60) is the generalization to all orders of the approxi-
mation results (35) and (37). The first term corresponds
to the shift of the threshold A, and agree with (11)
(remember that here we ignore spin) ; the second
term gives rise to the infrared catastrophy of G, and
agrees with (12). We recover exactly the results of
reference [8], which need no further discussion.

The only point which needs to be clarified is the

choice of the determination 3. For weak coupling,
the phase shift 3, remains  n/6 in the whole range
(0, Jl) ; the same conclusion holds for strong coupling
if y is small enough and if there exists no bound state
(in which case ô, --+ 0 when e, -+ 0). According to
our previous discussion, the perturbation expansion
in powers of sin ô e - i6 should then converge, and the
determination to be chosen is Î = ô. If the coupling
is strong and y large, bK may exceed n/6 at the Fermi
level : 3 remains undetermined. We can however
invoke a continuity argument : it is hard to imagine
how increasing y could lead to a discontinuous change
of à (and of the exponent f in (10)). Somehow, the
nature of the infrared singularity should vary conti-
nuously with the electron density. We are thus led to
assume that in the absence of a bound state 3 is equal
to ô whatever ,u, thereby extrapolating the low density
result. (As shown in section III, this is not true when
there is a bound state.) With such a choice, G(w)
has a threshold at (80 - A), where A is the change
of ground state energy due to the final potential ;
near the threshold it has the form (1) with an exponent a
given by Hopfield’s rule (16) (the displaced charge
(17) involves the real phase shift ô). The threshold
of F lies at (80 + ,u - A), and the corresponding
exponent is again given by (16) : we recover all the
results quoted in the introduction.

III. Influence of a bound électron in the final state. -

We now assume that the final state potential in an
absorption experiment is strong enough to bind a
conduction electron. This bound state is necessary
in order to produce, together with the scattering
states, a complete basis of one electron wave functions.
Consequently, the matrix element ÂKK’, given by (32),
acquires a new term, and we may write

X is the contribution of scattering states, given by the
same expression (34) as in the preceding sectiori, while

is that of the bound state (with energy 8B’ normali-
zation constant aB given by (A .14)). We note that Y
is a separable matrix, of the form

This feature will allow an exact treatment of the
bound state part, which is fortunate since YKK, oscil-
lates rapidly with t and does not lend itself to the

asymptotic method introduced previously.
Let us consider for instance the propagator 9 given

by (27). With the same notations as before, we may
write

Keeping in mind that

we obtain

The first term of (65) is the contribution Cs of
scattering states alone. The fact that Y is separable
permits an explicit calculation of the second term :
on expanding the logarithm, we verify that

The net propagator 19 is thus given exactly by

The influence of the bound state is entirely contained
in the second term of the bracket, AB.

It is interesting to note that the result (66) can also
be obtained by expanding the determinant p in powers
of eieBt. The zeroth order term is of course tlls. The
first order term can be cast in the form (66) by using
the relationship between the minors of p and the
elements of the inverse matrix (1 - X)-1. The higher
order terms cancel out when all the various combi-
nations of wave vectors are taken into account : this
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was to be expected since the bound state can only
be occupied once in the N-body intermediate states.
According to section II, the « continuum » part 9s

behaves as

where 3(a) is a determination of the phase shift which
for the moment we do not specify. In order to calcu-
late AB, we use the expression (43) of (1 - X)-1,
which leads to

For large times t, the integrals are controlled by the
region 8K’ eK, ~ J.1, in which uK = u, 8K = J.1, bx = b.
We can then perform the momentum sums in (68),
and we find (using the expression (45) of g) :

From the equation (44) obeyed by 9, it follows that
the integral in (69) is just the difference

the part - g( - t) cancels out the first term in the
bracket. Using the solution (48) for 9, we obtain
the explicit result, valid for large t :

In order to obtain explicit results, we must now

specify the determination 3 of the phase shift to be
used. We shall rely on an argument similar to that of
section II. When eK -+ 0, the real phase shift bK goes
to n when there is a bound state. If li is small enough,
ÔK will certainly remain in the range 5/6 - n when 8K
varies between 0 and y. We then know from our

perturbation expression (41) that à = à - rc at least
for the threshold shift L1 : we assume that the same
determination holds for the exponent B. If y increases,
ô(M) will eventually lie below 5 n/6, and the series

expansion will not converge. We may nevertheless

invoke the continuity of the determination 3 as a

function of y : one hardly sees how 3 could jump
suddenly for a critical y. We thus claim that in the

presence of a bound state ;5 = b - n, whatever the
Fermi level y.
We are now in a position to collect our results.

The spectrum of 9 possesses two thresholds.

(i) An absolute threshold, arising from gs AB, and
corresponding to the case where the final bound state
is filled. That threshold is displaced by an amount

(remember that b(E) jumps from 1C to 0 at the bound
state energy e.). (71) is just the usual result giving the
difference between the initial and final ground state
energies - which of course was to be expected. The
exponent defined in (10) is given by

According to Friedel, b/c is the net number n,
of particles brought near the impurity by the final

potential V in the ground state : we see that Pl n21 ,
in accordance with Hopfield’s’ rule of thumb. What
is important is therefore the total number of displaced
electrons, including the bound one, and not only
those displaced in the continuum.

(ii) A secondary threshold, arising from gs, corres-
ponds to final states in which the bound state is

empty. It is displaced by an amount

(the différence A2 - d 1 being the energy required to
excite the bound electron to the lowest empty state of
the conduction band). The corresponding exponent is

Since the bound electron is absent, the excess loca-
lized charge is then n2 = b/n - 1 : again, we have

2
03B22 = n2.

Near the two thresholds, the Fourier transform

9(co) has the form (1), with exponents al,2 = 1 - Pl,2.
The shape of the (line) absorption spectrum is sketched
on figure 4. Actually, the secondary threshold is

broadened by the Coulomb interaction between

conduction electrons. In our model, 0  ô  n,

and thus ai and a2 are both positive.
It is interesting to consider the limit u - 0 (i. e. the

transition toward the insulator). The phase shift ô
at the Fermi surface is then close to 7r : al is very small,
while a2 is close to 1. The singularity at the absolute
threshold d 1 is very mild - indeed, this whole part
of the spectrum is vanishingly small when y -+ 0 ;
this could be expected, as in that case there one very
few conduction electrons near the excited site : the
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FIG. 4. - The spectrum of 9(co) in the absorption case, when
there exists a bound state in the final potential. Note that the
secondary threshold at d 2 would be broadened by the Coulomb

interaction between conduction electrons.

chance to find one of them available to fill the localized
bound state is negligible (put another way, the overlap
of the bound state with the initial conduction electron

density is very small). The secondary threshold d2,
Qn the other hand, is very close to a l5-function, which
gathers most of the spectrum of G. Physically, that
means that the readjustment of the conduction
electrons plays a minor role - essentially because
dilute electrons are too far from the excited site to
feel its final state potential. Our conclusions thus
agree fully with physical intuition.
A similar analysis may be carried out for the func-

tion Y characterizing band absorption spectra, given
by (29). For that purpose, we need to invert

On expanding in powers of Y = y Q y, we obtain the
exact result

where Âs = 1 - X is the part of Â due to the conti-
nuum of scattering states. It is then straightforward
to collect the various parts of the factor L in (29),
making use of the relation (A.17). We shall not go
through the algebra, which is easy, but tedious. We
find that *

(*) In deriving (76), we need the fact that eieKt(Às1 )KK’ is
symmetric under the interchange K - K’.

Ls is the contribution found in section II in the absence
of bound states,

Using the expression (43) of À;- 1, as well as the

equation (44) obeyed by ç(i, i’), one finds that the
second term in the bracket of (76) is independent of t
and of order 1. Disregarding an unlikely cancellation
with the first term 1, the whole bracket of (47) is a
number of order unity, denoted as a.
The physical response function governing band

spectra is thus

(see (66) and (76)). Using (70) and (77), we see that
the term

is negligible as compared to the last term in the
bracket of (78). The absorption band spectrum thus
contains two parts.

(i) An absolute threshold arising from the last term
of (78) located at

In that case, the absorption process leaves the bound
state occupied.
The corresponding part of 5-(t) behaves as t-Y’,

with

Once more, y 1 = n 1, where n is the excess localized
charge which, together with the conduction electron
created by the X-ray, is required to achieve the new
equilibrium.

(ii) A secondary threshold, due to the first term of
(78), and located at

That part corresponds to excited states in which
the bound state is empty, the corresponding electron
being in some empty state of the continuum (Ep &#x3E; u).
The corresponding part of F(t) has an exponent

Here again Y2 = n2 2 since out of the b/n localized
extra conduction electrons, one is removed because
the bound state is empty, and another one is supplied
by the X-ray process.
Near the two thresholds, the spectrum has the

form (1), with exponents a1,2 = 1 - ’Yl,2. Since
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0  ô  n, the exponent a 1 is positive, while a2 is

negative. The main threshold thus displays a singu-
larity of the « infrared catastrophy » type, while the
second threshold appears only as a shoulder, with
infinite slope. The shape of such a band absorption
spectrum is sketched on figure 5 (note that the singu-
larity at úJ2 will be blurred by the interaction between
conduction electrons). In the limit of a near insulator
(u small), the Fermi surface phase shift is close to n :
al is close to 1, while a2 is very small. The main thresh-
old is very singular, and becomes a b-function in the
insulating limit : it then corresponds to the usual
exciton absorption line, as foreseen in the introduction

FIG. 5. - The spectrum of Y(co) in the absorption case, when
there exists a bound state.

(indeed, its position e), then reduces to eB). The secon-
dary threshold tends toward a step function when
a2 - 0. In the insulating limit, it lies at (02 = 0 and
marks the onset of continuum absorption. When Il

increases, the gap between the exciton and the conti-
nuum fills up progressively as shown on figure 3.

We note that for small p the rearrangement of conduc-
tion electrons after the transition is relatively unimpor-
tant (it broadens slightly the characteristic absorption
spectrum of an insulator). For larger y, k 8B’ the

Auger processes are far more effective : the distinction
between exciton and continuum becomes somewhat

meaningless (although the spectrum retains two well
defined thresholds). The singular spike at the absolute
threshold may be viewed as a remnant of the exciton

line, considerably broadened by Auger excitation of
the other conduction electrons.
To concluse this section, we note that the relation

(16) is verified in all cases, thereby confirming the
prediction of Hopfield. nl is the net number of particles
which must be brought near the impurity at equili-
brium, including the bound electron. It is interesting
to note that the shape of the spectrum is the same
whether the bound state is due to the final interaction
or whether it was preexistent. In the former case,
treated here, one may interpret the absolute threshold

of Y as a process in which the core electron fills the

newly created bound state, the rest of the Fermi sea
readjusting to the new environment ; the correspond-
ing exponent y 1 is given by (80). In a typical line

spectrum, one would instead consider the transition
of an electron between two preexistent core states :

the spectrum is then described by G, with an exponent
c52/n2 (assuming that there is no further bound state
created in the process). In the latter case, the bound
state is not considered as belonging to the conduction
electrons, and the phase shift is thus shifted by n :
the exponents are the same in the two descriptions,
given by Hopfield’s rule.

IV. Emission spectrum. - The correlation func-
tion Y and 6 can be evaluated by the same method
for emission spectra. We first consider the simple case
in which the potential V is not strong enough to
create a bound state. Using (7), the propagator G(t)
and the response function F(t) may be written as

where the initial state 1 ip 0 &#x3E; is the Slater determinant
of the N scattering states XK with energy 8K  Il and
the fundamental energy Eo is given by

We note that (83) differs from the absorption result
(18) by changing plane waves into scattering waves,
H into H and i into - i in the expectation values.
Such a correspondence makes the transposition from
absorption to emission very easy. We introduce a
matrix Â defined as

The matrix elements XKK, can be calculated by inserting
a complete set of plane waves Xp and using the overlap
xpK of xK and xp, given by (A.11)

For large times t, xi:: may be replaced by its asympto-
tic form (A .12). Since Xk is negligible unless k ~ p,
we may ignore the momentum dependence of bK :
it follows that
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On comparing (85) with (32), we see that the above
symmetry relation permits a direct evaluation of

IKK" which is obtained from AKK, by changing i

into - i, and à into - ô. The latter change was to be
expected : the potential discontinuities are opposite
in the absorption and emission case, as well as the
change of localized charge, which becomes - ôln
in the emission case instead of + Ó/n in the absorption
one.

The calculation of 1 proceeds as in section II.

From (34), it follows that Â has the form

Using (8) and (60), we obtain G(t) by a mere trans-
position of our former results

The discussion of the phase shift determination
can be reproduced exactly. b is the usual determination
that goes to 0 when K --&#x3E; 0.
The calculation of the response function is a little

more complicated because cp, destroys a plane wave
state and 1 ijï 0 &#x3E; is composed of scattering states.

We must first transform c* into the operator cp which
creates a scattering state Xp :

If we note that only the one electron states included
in 1 ijI 0 &#x3E; can be destroyed, the expression (83) of

Y(t) may be transformed as

where P,,, is the minor of X obtained by suppressing
the K row and the K’ column. pKk, is equal to the KK’
element of the inverse matrix  - 1, multiplied by its
determinant p. Hence, F takes the usual simple form
(see (A. 4) and (A .5))

The main contribution in L comes from the vicinity
of the Fermi level. If we neglect the K dependence of
aK, L looks like the expression (50) of L, and can be
calculated in the same way. We only quote the result

When there is no bound state, we find exactly the
same results for emission and for absorption, in

agreement with reference (8).

When the potential increases, a conduction electron
can be bound : the initial state 1 Po &#x3E; in (83) is now
the Slater determinent of the bound state and of N - 1

scattering states. The corresponding matrix elements
of 1 are

(the elements ÂKK, are unchanged). We expand
along that extra row and column. If we denote by
(1 - X) the (N - 1) x (N - 1) matrix due to scatter-
ing states alone, we find

The bracket of (91) is similar to the expression (29)
of the open line contribution L in the absorption case.
The first term is small, since the summation over p in
(90) extends over all space : it behaves as 1/t3/2, and
is negligible when t -&#x3E; oo, exactly as the first term of
(29). In order to calculate the second term, we replace
Â,, by its asymptotic form

(91) and (29) are formally identical if we neglect
the momentum dependence of IKB’ an approximation
which is valid in the asymptotic limit. We shall not
go through the calculation, which is similar to that

of section II ; we find

Except for the additional factor eieBt, (93) is obtained
from (53) through the usual replacement i --+ - i,
à - - Î. As discussed in section III, the determi-
nation g is that which vanishes when p - 0 : in the
present case, à = b - n (note that with our separable
potential, 0  ô  n, so that g is negative). From (86),
we know that 

Combining (91), (93) and (94), we finally obtain
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As expected, the emission spectrum possesses a single
threshold, at the same place and with the same expo-
nent as the absolute absorption threshold. There is
no secondary threshold, since in that case we are

sure that the bound state is filled before the X-ray
transition takes place. Once more, Hopfield’s rule for
the exponent is verified.

The function F(t) may be obtained in a similar

way. In (83), cp is expressed in terms of the operator
cp and CR which destroy a scattering state xK or the
bound state xB. F thus appears as a sum of (N - 1)
dimensional determinants, some with the bound state
full, others with the bound state empty. Whenever
there is a row or column involving the bound state,
we expand as for 9. The calculation is straightforward,
but tedious. We shall not give it, since it yields the
expected result that the emission threshold ; its position
is controlled by the difference between the ground
state energies of (N + 1) electrons with the potential
as compared to N electrons without the potential ;
the exponents, given by Hopfield’s rule [3], are the

same in the two cases (since n is opposite in emission
and absorption).

In conclusion, we see that the presence of a bound
state does not affect the results of reference [8]. For
both band and line spectra, the absorption possesses
two threshold, while the emission has only one, which
is identical to the absolute one for absorption. In all
cases, the critical exponents are correctly given by
Hopfield’s prediction. 

Appendix A. - Let ap, ap be the destruction and
creation operators for a plane wave with momentum p
(with no scattering potential). The one-electron hamil-
tonian in the présence of the potential is

The scattering states (eigenstates of h) are charac-
terized by creation operators

which obey the equation of motion

With our separable potential, (A. 3) is easily solved,
and yields

ap is a normalization constant ; (A. 5) is the dispersion
equation for the scattering state energy sp.

As shown by Friedel [10], the scattering states are

sandwiched between consecutive free states, the p’h
state being such that

VP is the density of states at energy 8p (in the channel
studied) ; bp is the phase shift at that energy, which
for a separable potential is given by

The normalization constant ap is fixed by the condition

Let us replace xpp’ by its expression (A. 4) : we see
that the summation (A. 8) is controlled by the region
p’ ~ p (which would yield a double pole if the p’
variable were continuous). In that region we may
write

Since ô, v, u are practically constant over the relevant
range of p’, the summation can be carried out by
means of Poisson’s formula. After some simple algie-
bra, we find 

The overlap between a free state p’ and a scattering
state p is thus

If p’ is close to p, we can use (A. 9), and set up’ = up :
(A. .11 ) then reduces to -

a result which has been widely used by Anderson [11 ].

If the potential V is strong enough, there appears
a bound state, whose energy EB  0 is a root of the

dispersion equation (5). The overlap of that state with
a plane wave p i s equal to 

1

where the normalization constant is given by
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With the help of (5), one verifies that

In this paper, we use widely the matrix

where n is any scattering (or bound) eigenstate of h.
On using (A. 4) and (A. 5), it is easily verified that

In the limit of large t, the summation over scattering
states n is limited by destructive interference, and is
controlled by the singularity of xi. The corresponding
contribution can be obtained along the same lines as
(33). To that we must add (when it is exists) the
contribution of the bound state, which stands out as
a single oscillatory term. We thus find

In the last of these relations, the first term is negligible
for large t, since there is no cut off on the summation
over Eq (the lower limit 8q = 0 gives a contibution
- t-3/2, which is negligible as compared to the other
terms). These results are used in sections II and III.

Appendix B. - The results obtained in this paper
are based on an asymptotic evaluation of 9 and Y
for large times t. Thus, they provide only the nature of
the singularities near the thresholds - namely the
exponents a in (1). The cut,of o (which appears as
a multiplicative factor in the spectrum) lies outside
the range of our theory. Of course, so does the spectrum
far from the thresholds. Here, we briefly discuss to
what extent one can overcome these limitations.

Approximations were made at two stages : in the
evaluation of À (where we used the approximate
expression (34)), and in the inversion of Â (1. e., in the
solution of eq. (44)). While the former approximation
could be reconsidered, the second one appears critical.

For dense systems (large u), there is little we can do
we are faced with an intermediate coupling problem,
and there exists no obvious approximation scheme.
On the other hand, for dilute systems, sin ô is small
at the Fermi level : somehow, the final state interaction
should be a small perturbation, and we should be
able to calculate the spectrum far from the threshold,
at distances &#x3E; /1. (Close to the threshold, infrared

divergences require a more accurate solution.)
Let us consider for instance line spectra in the

absence of a bound state, characterized by the func-
tion G. According to (30), we have

Far from the threshold, we cannot use the asymptotic
expression of Â (34). On the other hand, we can use
the orthogonality of the scattering states to write the
exact expression

(cf. (32), (A. 4) and (A. 10)). (B. 2) provides an exact
expression of the matrix X = 1 - Â. For dilute sys-
tems, we expect X to be a small perturbation ; that
was obvious for large t (in the asymptotic expressions
(34), sin ôK is small) - on the other hand, for t -+ 0
the bracket of (B.2) vanishes. As an interpolation
procedure, we can therefore assume X to be small,
and expand (B .1 ) to lowest order

(remember that K  KF, while p is arbitrary). (B. 3)
provides at once the Fourier transform G(w) for w &#x3E; u :

Physically, the result (B. 4) describes first order pro-
cesses in which the final state potential ships an elec-
tron from the initial unperturbed state k to some
scattering state p. If J1 is really small, 8K is negligible
and uK = uo. (B. 4) then reduces to

(in agreement with the result of Friedel). In fact (B. 4)
can be obtained directly from the Anderson expansion
(19) if we assume that only one electron is affected by
the final potential : in 1 afin &#x3E;, all particles are in plane
wave states, except that of wave vector K which is

replaced by a scattering state p.
The result (B. 4) is somewhat academic. On the
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other hand, there is some interest infinding the shape
of the band spectrum for an extrinsic insulator between
the exciton line and the continuum, in the interme-
diate region of figure 3 i. e., in calculating the Auger
tail of excitons. In principle, that can be done by the
above method : treat exactly the bound state part
of k, and expand to lowest order the continuum
contribution (making use of (75) and (78)). In fact,
the algebra is very difficult, as one finds a large number
of complicated terms. Physically, there are two pro-
cesses which interfere : the X-ray can shift the core
electron into the bound state, while a conduction
electron is excited in a scattering state ; conversely,

the core electron can go into the continuum while
a conduction electron falls into the bound state.

Clearly, our approach is unnecessarily complicated :
in that approximation we are faced with a two particle
process, and it is much simpler to use the Anderson
expansion (19), assuming that all but two of the
electrons are unaffected by the final potential. In

calculating the overlap  Po 1 iji n &#x3E;, we assume that
only two particles, with initial momenta K and K’,
are shipped in new states, one in the bound state and
the other in some scattering state p. We shall not

pursue this calculation, which has a spirit quite diffe-
rent from that of this paper.
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