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EFFECTS OF EXTERNAL STRESSES ON THE METAMAGNETIC
TRANSITION OF A HIGHLY ANISOTROPIC ANTIFERROMAGNET

C. TSALLIS

Service de Physique du Solide et de Résonance Magnétique,
Centre d’Etudes Nucléaires de Saclay, BP N° 2, 91-Gif-sur-Yvette

(Reçu le 21 janvier 1971, révisé le 15 mai 1971)

Résumé. 2014 Dans le cadre d’une théorie de type Landau, on étudie les propriétés de la transition
métamagnétique d’un cristal antiferromagnétique très anisotrope sous l’influence de contraintes
extérieures. On donne l’expression de nombreuses grandeurs physiques intéressantes. Cette théorie
est illustrée à l’aide d’un modèle d’Ising afin d’obtenir des résultats plus spécifiques. Certaines carac-
téristiques théoriques nouvelles sont obtenues et une comparaison avec la situation expérimentale
est donnée.

Abstract. 2014 Within the framework of a Landau-type theory we study the properties of the
metamagnetic transition of a highly anisotropic antiferromagnet under external stresses. We give
the expressions of a number of physical quantities of interest. This theory is illustrated with an Ising
model in order to obtain more specific results. Some new theoretical features are obtained and a
comparison with the experimental situation is given.
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1. Introduction. - A number of materials exhibit
first order magnetic transitions. Such a behavior is
not expected to occur within the framework of the
classical Weiss molecular field theory. However,
Bean and Rodbell [1], assuming that the exchange
energy is a function of interatomic spacing, were able
to give a simple treatment of the first order ferro-

magnetic phase transition of MnAs. As a consequence
of the magnetoelastic coupling the magnetic properties
of MnAs are pressure dependent. In particular the
order of the transition can be changed and in fact
Bean and Rodbell predicted that the transition
becomes of the second-order at high pressure.
The modification of the order of a transition under

the influence of an external action is rather frequent.
Metamagnetism is a well-known example. Field-
induced transition from an antiferromagnetic state

to a nearly saturated paramagnetic state are usually
first order at very low temperature and second order
at higher temperature. Here again magnetoelastic
effects can be responsible for this behavior and it is
of interest to study the properties of an antiferro-

magnet placed in a magnetic field and under external
stresses. Various authors have investigated certain

aspects of this problem ([2] to [17]).
In order to concentrate on the essential features of

the problem and, at the same time, to simplify the
calculations, we shall suppose the antiferromagnet to
be highly anisotropic and consequently we shall not
take into consideration a possible spin-flop phase.

We shall first give a Landau-type phenomenological
theory [18] of this system and then illustrate more
explicitly the various results on an Ising model with
strain-dependent exchange integrals.

II. Thermodynamics. - II.1 THERMODYNAMICAL

THEORY. - Let us consider a periodical tridimen-
sional (*) array of spins 1/2, and let us assume that their
location enables us to distinguish two families, each
one having the same number of spins. We shall also
assume that each spin may be parallel or anti-parallel
to an unique easy axis. If we want to study the beha-
vior, as function of temperature T, of such a system
under external stress t (the problem is easily generalized
to more than one non vanishing stress-tensor

component) and magnetic field H, we must consider
the Gibbs thermodynamical potential (per site)

where mb m2 (reduced magnetic moment per site of
each family respectively : - 1  MI m2  + 1) and e
(lattice-strain-tensor component associated to t)
are the variational parameters. To precise the ideas
let us have in mind a particular model (which will
be treated later) corresponding to :

(*) Actually dimensionality does not appear explicitly in the
model considered in this paper.
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where the Boltzmann constant KB has been chosen
equal to unity, J2(e) and Ji(e) are the exchange inte-
grals between sites of the same and different family
respectively, V(e) is the crystalline potential energy
supposed the same for all sites, and the entropy term
is given by the Bragg-Williams approximation. Let us
remark that such a model does not account for thermal

expansion for a2f/ae aT = 0. We may define in

general m = 1/2(M1 + m2) and n = 1/2 (m1 - m2) where
2 m is now the total magnetic moment per unit cell
and il the antiferromagnetic order parameter. Hence
we have :

where f is an even function ouf 11 and m. Minimizing g
with respect to the variational parameters we obtain

Solving this system we obtain

We shall assume from now on that m = 0 for
H = 0, this is to say no spontaneous ferromagnetic

order. In practice it is frequently impossible to solve
exactly the system (2). That is why we shall limit
ourselves to study the behavior of the system near
the second order transition surface. In the disordered

phase, system (2) reduces to

for the first equation of (2) is identically satisfied.
Let us then suppose a second order transition and

expand the first equation of (2) near the transition
surface (which is noted with the sub-index 0) :

This equation has two solutions :

il = 0 paramagnetic phase (P)
11 f::. 0 antiferromagnetic phase (AF).
The transition surface is determined by

in the case of a second order transition, and by
g(T, n, m, e) = g(T, 0, m, e) in the case of a first order
transition.

If we expand also the second and third equations
of (2) we obtain :

The system (3) gives the behavior in the (AF)
phase ; and the system (3’) gives the behavior in the
(P) phase.

Solving for n2 we obtain :

where D is the determinant of the left side matrix

of (3) and NT, NH and Nt are immediately obtained
as functions of the derivatives of f. Obviously

determines the transition surface, whose slopes are
given by :



905

Therefore the zeros of NT, NH, N, determine the

singularities of the slopes. In particular NH vanishes
for Ho = 0 and in general (ôHo/ô To)  to diverges.
D may vanish and in this case D = 0 determines

the critical line which separates the transition surface
in two or more regions : D &#x3E; 0 (  0) means second
order (first order) transition. Clearly system (3) is
not valid in the regions where D  0. In the regions
where D &#x3E; 0 we obtain from (3), that

and hence the signs of NT, NH or Nr determine the
side of the transition surface where the ordered phase
appears. For example NT  0 ( &#x3E; 0) means that the
ordered phase is on the low (high) temperature-side
of the transition surface. Clearly the limiting situa-
tion NT = 0, in general, means also that

If no magnetic field is applied and no magnetoelastic
interaction is allowed then D reduces to :

and each factor being necessarily positive (because
of the stability of the physical system) the transition
is of the second order. If this is not the case, D will
also include terms necessarily negative and first order
transitions will then be possible.

Il. 2 THERMODYNAMICAL COEFFICIENTS. - Let us

first introduce the entropy s per site of the system.
Making use of s = - DFIDT and expanding near the
transition surface we obtain

This expression is valid in both (P) and (AF) phases,
where we must obviously use the corresponding

(m - mo), (e - eo) and 112. These three increments
are related, in the case-of an adiabatic process, by (5)
where we impose s - so = 0.
From system (3) all linear thermodynamical coeffi-

cients may be calculated, in both (P) and (AF) phases.
The most usual are :

Simple thermodynamical considerations lead to

d = d*, a = a* and q = q*.
Each coefficient of the set may be evaluated on any

path in the (T, H, t) space. To define such a path two
conditions are required, and usually two of the follow-
ing six are adopted : isothermal (T = To), adiabatic
(s = so), free crystal (t = to), clamped crystal (e = eo),
constant field (H = Ho), constant magnetization
(m = mo).

If we calculate, for example, the experimentally
usual magnetic susceptibilities, in both (P) and (AF)
phases, we obtain :
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For very weak fields, these reduce to

Quadratic thermodynamical coefficients may be
calculated in a similar way. For example let us evaluate
the magnetostrictive coefficient defined as

for a vanishing magnetic field and at constant tempe-
rature and stress.

System (3) is no more sufhcient because all odd
derivatives of f with respect to m vanish, so we must
expand (2) to the second order in m. We obtain

Solving this system we obtain (for t = to)

where (Xo,to) - 1 is given by (6) and
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III. Model. - IIL 1 GENERAL CONSIDERATIONS. -

Let us study the characteristics of the transition
surface corresponding to the free energy (1), which
may be re-written as follows

where iF = J2 + J1 and zAF = J2 - J1 are the

ferromagnetic and antiferromagnetic (respectively)
second order transition temperatures at vanishing
external field, as may be seen in the following equa-
tions :

The antiferromagnetic second order transition

temperature To is readily obtained from the first

equation by considering the limit n --+ 0 :

Using this and the second equation we obtain that
at 0 OK the second order transition field (considering
the positive-field portion of the transition surface)
is Ho = - r,.. As we are interested in a (P) H (AF)
transition we must suppose iAF &#x3E; ’rF, hence J,  0.
We shall treat, for simplicity, the case J2 -_- 0. If
all the partial derivatives of f required to use (4) are
evaluated we obtain

The critical line on the second order transition surface
is determined by making the first and the second

expressions between keys equal to zero. Let us study
the consequences of system (8).

III. 2 VANISHING MAGNETOSTRICTION. - We shall

study the plane t = to for which ’r’AF,, vanishes (assu-
ming it does for some value of e) ; hence (8) becomes :

We see that considering the point where ïAFo = 0
is equivalent to assume that zAFo is a constant, that
the transition is of the second order, and that

Using (7) it is readily obtained that

The transition line is given on figure 1.

FIG. 1. - Transition line for vanishing magnetostriction.

III . 3 VANISHING APPLIED MAGNETIC FIELD. - In the

plane H = 0 we have To = 2AFo and (8) becomes :
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We see that it may exist a critical point determined by

and in that case first order transitions will appear
on the low temperature side of the critical point.
The reason for this is that V"o (which is positive because
of stability) and T’ , are, in all usual physical situa-
tions, only slightly dependent on strain e. This point
is however discussed in some more detail in sec-

tion 111.4. We see also that (ôto/ôTo) H=O = VO AFo,
hence the sign of the slope is determined by the sign
of ’tAFo. Hence, if the transition temperature behaves
as indicated on figure 2, the transition line (with
possible critical points) will be as indicated on figure 3.

FIG. 2. - Two possible strain-dependences of the transition

temperature. a) zÂF &#x3E; 0 [2] and b) TAF  0 [4], [11] (*).

III.4 STABILITY, CRITICAL LINE AND ORDER OF THE
TRANSITION. - Let us study in this section some

characteristics of the transition surface (q = 0).
First of all, the stability of the system requires the
eigenvalues of the matrix on the left hand side of (3’)
to be positive. Hence the trace and determinant of

(*) In a similar way, both signs for Tp exist in actual ferro-
magnetic substances : TF &#x3E; 0 [3], [15] and TF  0 [10], [15].

FIG. 3. - Two possible transition lines (corresponding res-

pectively to the two cases in figure 2, for vanishing H, where the
existence of critical points has been assumed.

this matrix must be positive. This leads to the following
requirements (besides TAF. and V§ positive) :

where A o and Bo are (through iAF and V) functions
of e.

Let us now define, for a given plane t = to, the
function

where we have used To = ’tAFo(1 - mo). Clearly
60 = 0 determines the critical point (if such a point
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does exist at t = to) and 0, &#x3E; 0 (  0) means second
order (first order) transition. It follows that a critical
point exists if and only if the values of Ao and Bo
determine, on a (Ao, Bo) plane, a point laying between
the straight lines Ao = 1/3 (which corresponds to a
critical temperature 7c = TAFc) and Ao = 1/4(1 + Bo)
(which corresponds to 7c = 0). Clearly the stability
requirements must be simultaneously satisfied.

Let us now make a first order development of 00
in the vicinity of a critical point. Assuming

and using the third equation of (7) (which gives us
deo/dTo Tc) we obtain for (9)

where the coefficient

is a known function which we may discuss. It follows
that

implies that

which means that the transition on the high tempe-
rature side of the critical point is a second order

(first order) one (as a matter of fact the limiting value
is not exactly 1/3 but depends slightly on the actual
critical temperature Tc). This example shows that
both situations are thermodynamically possible.
However it is clear that, in all usual physical cases,
Be is expected to be almost vanishing, which enables
us to understand (at least for this particular model)
why the experimental evidence seems to be that, if a
critical point exists, the second order transition is

always on the high temperature side.
In section 111.2, we saw an example of lowering

of the symmetry with increasing temperature through
a second order transition. Let us study in a more
complete way this problem. For this we define the
function

t/1 = 0 determines the maxima line (noted M-line)
which separates the transition surface in two regions
corresponding to t/1 &#x3E; 0 (ordered phase at the high
temperature side of the second order transition tem-
perature) and t/1  0 (ordered phase at the low tem-
perature side) respectively. We shall note TM the
temperature values of the M-line. On the critical line
we have :

If we use equations (7) we may re-write ip, :

Hence for me = 0 (which means Hc = 0 and

Tc = LAFcIH=O) we obtain  = - LAFcIH=O and
dt/1cldmc = 0, and for mc = 1 (which means 7c = 0 and
Hc = LAFcIT=O) we obtain e = 0 and dt/1c/dmc = - oo.
It follows that, if a critical line exists, there is

necessarily a domain of stresses where Tc &#x3E; TM
and another where Tc  TM. As a consequence
of continuity of the transition surface and its slopes
(see for example [19]), this second situation means
that a lowering of the symmetry, with increasing
temperature is possible also through a first order tran-
sition.

The results of this and preceeding sections enable
us to present on figure 5 a typical transitiom surface
which corresponds to a behavior of TAF as indicated
on figure 4 (this is to say in the neighborhood of a

FIG. 4. - Possible strain dependence of the transition tempe-
rature.

maximum of iAF, whose experimental observation
should allow useful comparison with theory). We
assume in figure 5 the existence of a critical line and
that (.r"AF,,/2 Vo)  1/3 for all stresses t corresponding
to this critical line.
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FIG. 5. - Example of transition surface (The *-lines indicate
the location of the 2nd order transition, if no 1st order transition

had been « prefered » by the system).

IV. Conclusion. - Let us make some comments
on phase transition lines in a (H, T) plane, that is to
say at constant stress t :

a) Experimental results indicate that, if a critical

point exists, the transitions are of the second order
on the high temperature side of the line. We have
shown in Section III, that the opposite situation is not
theoretically forbidden, however it seems very unlikely
to be observed experimentally.

b) Usually the ordered phase is stable at the low

temperature side of the transition point. This is not
always true : our model allows for the opposite case
and this may occur not only for a second order tran-
sition (see for example [20]) but also for a first order
one. It should be interesting to obtain experimental
confirmation of these possibilities.

c) Rather general thermodynamic considerations

(see Section 11.1) indicate that, for a second order
phase transition, the threshold magnetic field Ho
increases very sharply immediately below the Néel
temperature TN. This fact is experimentally confirmed
in the case of FeCl2 (second order transition) [21]
and MnBr2 (almost second order transition) [17].
When, for a fixed magnetic field, there is a critical

point on the transition line in a (t, T) plane, the phase
transitions are of the second order on the high tem-
perature side of the line if the transition temperature
7: AF as a function of strain has no minimum. The
NiAs - type NiS [2] seems to be an experimental
confirmation of this result. It is finally worth while
to remark that the part of figure 5 corresponding
to ÏAF  0 gives a good qualitative representation of
the actual transition surfaces of FeCl2 and FeBr 2’
considering that they do have a negative rF [11]
and that the second order transitions occur, for cons-
tant stress, at the high temperature side of their
critical points ([21], [22], [23] for FeCl2 ; [21], [24]
for FeBr2).

In conclusion, a great variety of physical situations
can be met with a simple model involving a small
number of parameters. In particular we have pointed
out that the assumption of a non vanishing J2 is not
an essential one : however it modifies the very low

temperature behavior of second order transitions [20]
and it allows, at non vanishing temperatures, for
first order transitions from the antiferromagnetic
to other magnetic (for example ferromagnetic) phases.
The author wishes to express his sincere gratitude
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