Collisions of N+2 ions on noble gas atoms II.
Non-dissociative collisions at 0.3-3 keV

J. Fayeton, A. Pernot, P. Fournier, M. Barat

To cite this version:
J. Fayeton, A. Pernot, P. Fournier, M. Barat. Collisions of N+2 ions on noble gas atoms II. Non-dissociative collisions at 0.3-3 keV. Journal de Physique, 1971, 32 (10), pp.743-750. <10.1051/jphys:019710032010074300>. <jpa-00207131>

HAL Id: jpa-00207131
https://hal.archives-ouvertes.fr/jpa-00207131
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
COLLISIONS OF N_2^+ IONS ON NOBLE GAS ATOMS
II. NON-DISSOCIATIVE COLLISIONS AT 0.3-3 keV

J. FAYETON (*), A. PERNOT (*), P. FOURNIER (**) and M. BARAT (*)

(Reçu le 11 mars 1971)

Abstract. — Scattering without dissociation of N_2^+ molecular ions by noble gas atom targets (Xe, Ar, He) is investigated. In the laboratory coordinate system, the collision energy ranges from 0.3 to 3 keV and the scattering angles from 0.8° to 7°. An energy loss analysis of the scattered N_2^+ ions shows several competitive processes:

- Elastic scattering and vibrational excitation.
- Electronic excitation of projectile and target.

For the first of these processes our results are compared with the binary model proposed by V. I. Gerasimenko and J. D. Oksjuk, and T. A. Green. The different excitation processes are interpreted in the same way; particularly the simultaneous electronic and vibrational excitations are investigated. During the collision molecule and target are considered as a quasi-molecule complex decaying into several channels via potential surface crossing.

I. Introduction. — Up to now, most of the work concerning collisions between molecular ions and atoms has been restricted to dissociative processes at relatively large incident energies (above 2 keV) [1]. Particularly it has been shown that dissociation occurs mainly through two kinds of excitation:

(i) Electronic excitation via a repulsive or a predissociative state.

(ii) Adiabatic vibrational and/or rotational excitation towards the continuum of the initial state.

The second mechanism has been tentatively explained through a two-step model proposed by V. I. Gerasimenko and J. J. Oksjuk [2] and developed by T. A. Green [3]. In this simple model, called the «binary model», the dissociation is considered to take place via two independent steps:

- The first one is a binary collision involving the target atom and only atom of the molecule. In this step, the second atom behaves like a «spectator».
- Then the molecular ion is an isolated system so that the energy received by the active atom is partially transformed into internal energy of the molecule (such as vibrational excitation).

Provided the incident energy is large enough and the targets are light, a good agreement is achieved with experimental cross section measurements.

In such a model, the second step is independent from the way the energy transfer ΔE happened between the colliding particles, i.e., for a given ΔE, the probability of excitation towards a final state (vibrational continuum as well as bound state) can be calculated independently from the collision problem. This remark can serve as an introduction to experiments involving molecular ion-atom collisions without dissociation in which this model can be checked more directly.

Moreover, that kind of experiment permits the study of target excitation mechanisms which are not easily detectable in collision-induced dissociation experiments.

This paper is a report of differential measurements of N_2^+ ions scattered without dissociation by noble gas targets (He, Ar, Xe) the dissociative processes being studied in the accompanying paper [4].

(*) Institut d'Electronique Fondamentale (associated to the C. N. R. S.), Faculté des Sciences, 91, Orsay.

(**) Laboratoire de Physico-Chimie des Rayonnements (associated to the C. N. R. S.), Faculté des Sciences, 91, Orsay.
By a scattered ion energy analysis, a detailed study of the energy transfer involved in the different colliding systems is carried out, in terms of the scattering angle and the incident energy. In addition differential cross section measurements are given for some of these processes. Then the results are discussed in the frame of the binary model.

The N_2^+ is chosen as projectile because its potential well is deep enough to allow an easy energy loss analysis related to the vibrational excitation process, in spite of the relatively large energy spread of the ion beam. The laboratory energy ranges from 0.3 to 3 keV and is low enough to prevent dissociative processes from being important.

2. Apparatus and experimental procedure. — Only a brief review of the experimental set-up will be given here; a more detailed description can be found elsewhere [5].

N_2^+ molecular ions (*) are produced in a low pressure, low anode voltage, hot cathode positive ion glow discharge. The ions are then extracted, focussed, collimated into a beam and enter the collision chamber. The collision space is located at the crossing of the incident ion beam and of a target atom thermal beam. The energy of the scattered molecular ions is analyzed by a 127° cylindrical electrostatic sector, with a typical energy resolution $\Delta E/E = 2 \times 10^{-3}$.

The voltage between the plates of the electrostatic analyser is set on the incident beam, and the energy analysis of the scattered particles is achieved by giving to the scattered molecular ions a known small amount of energy so that they pass through the electrostatic sectors. Afterwards the scattered ions are individually counted with a tubular electron multiplier.

The resulting experimental data appear on intensity curves versus energy loss for a given scattering angle.

Due to the lack of incident ion mass analysis, the discharge voltage is kept low enough ($V \approx 25$ V) to insure that the N^+ contribution is negligible (this was checked experimentally).

The energy spread (typically 0.5 eV) of the incident beam is mainly limited by the ion source. Moreover the energy resolution of the scattered ion data is limited by the energy spread due to the finite angular resolution $\delta \theta$, their relation being

$$\delta(E) = 2 \frac{M_{ab}}{M_c} E_o \theta \delta \theta,$$

where $\delta \theta = 2 \times 10^{-3}$ rad, and M_{ab}, M_c are respectively the molecular ion and the target mass.

In order to improve the energy resolution the scattered ions are decelerated down to 0.5 keV before analysis.

(*) In our experiment the N_2^+ incident beam is mainly composed of 90 % of $X^2 \Sigma_g^+$ ground state ($v = 0$, $v = 1$) ions and of 10 % of first electronic excited state $\Lambda^2 \Pi_u$ ions [6].
FIG. 3. — Energy loss analysis of N$_2^+$ ions scattered by helium atoms: peak « A » « pseudo-elastic » process, peak « B » Electronic excitation of N$^+$; peak « C » Simultaneous electronic excitations of N$_2^+$ and He.

Generally three processes can be observed:

(i) Elastic and vibrational excitation (peak A). This process will be called « pseudo-elastic » scattering. It can be noticed that the energy resolution is not sufficient to resolve the different vibrational levels.

(ii) Electronic excitation of N$^+$ (peak B).

(iii) Excitation of the target (peak C).

3.1 ELASTIC AND VIBRATIONAL EXCITATION. — Before giving results it is necessary to recall the theoretical values of the kinetic energy loss undergone by an incident particle scattered at a θ angle.

The following notations will be used throughout this paper:

E_0 : initial translational energy of the N$_2^+$ ions in the laboratory system.

ΔE : energy loss of the scattered N$_2^+$ ion.

M_{ab} : mass of the molecular N$_2^+$ ion.

M_a : mass of the nitrogen atom.

M_c : mass of the target atom.

θ : Laboratory frame scattering angle.

χ : Scattering angle in the $M_a - M_c$ Center of mass coordinates.

According to the binary model, in the first step we have to consider the elastic scattering of only one atom of the molecular ion by the target atom: the kinetic energy loss undergone by this atom a is given:

$$\Delta E_1 = 2 \frac{M_a M_c}{(M_a + M_c)^2} E_0 (1 - \cos \chi)$$

in the second step ΔE_2 is partially turned into internal energy of the ab molecular ion (vibrational or rotational energy)

$$\Delta E_{int} = \left(\frac{M_a M_c}{(M_{ab})^2} \right) \cdot \Delta E_1$$

$$= \left(\frac{M_a M_c}{M_{ab}(M_a + M_c)} \right)^2 2 E_0 (1 - \cos \chi)$$

the center of mass scattering angle χ is easily given in terms of the laboratory scattering angle θ of the molecule

$$\tan \theta = \frac{\sin \chi}{\left(\frac{(M_{ab}) (M_a + M_c)}{M_a M_c} - 1 \right) + \cos \chi}.$$

Then the energy loss ΔE_0 of the scattered ions is the sum of the internal energy ΔE_{int} and of the kinetic energy ΔE_{el} given to the target particle (elastic energy)

$$\Delta E_{el} = 2 E_0 \frac{M_{ab} M_c}{(M_c + M_{ab})^2} (1 - \cos \chi)$$

$$\Delta E_0 = \Delta E_{int} + \Delta E_{el}.$$

Since these experiments are generally made with small scattering angles we can use an approximate formula directly giving the experimental energy loss in terms of the laboratory scattering angle θ:

$$\Delta E_\theta = \left(\frac{M_{ab} + M_b}{M_e} \right) E_0 \theta^2$$

on the other hand a different model (« elastic model ») considers the molecule as formed by two atoms at a constant internuclear distance so that, in this rigid model, the molecule can be considered as an atom and the energy loss is then given by

$$\Delta E_{el} = \frac{M_{ab} E_0}{M_e} \theta^2 \quad (for \ small \ values \ of \ \chi).$$

In order to directly compare the energy data independently from the incident energy, the energy losses are given versus $E_0 \theta^2$; as long as the C. M. scattering angle χ is small enough, the energy loss varies linearly with $E_0 \theta^2$ (this is not valid for the N$_2^+$-He data)

N$_2^+$-Xe.

Energy loss diagrams of N$_2^+$ scattered by Xe atoms are shown in figure 4 for different incident energies (0.5, 1, 2 and 3 keV). The theoretical values of ΔE_{el} and ΔE_θ are given on this diagram. It is noteworthy that ΔE_{el} is dependent on the incident energy E_0 and is only a function of the product $E_0 \theta^2$.

For small scattering angles ($\theta \leq 2^\circ$) our data closely agree with the binary model. On the other hand a break on the ΔE_{el} curve can be noticed near $E_0 \theta^2 = 4 \times 10^4 \text{ eV (d) }^2$,

the ΔE_{el} curve becoming parallel to the elastic model energy loss ΔE_{el}. This behaviour is easily explained if the maximum vibrational energy transfer is limited by the potential well depth; a larger energy transfer induces a dissociative process, since the energy difference $\Delta E_\theta - \Delta E_{el}$ between the two models corresponds to the transferred vibrational energy.
FIG. 4. — Energy losses of N^+ scattered by xenon: $\Delta E_{p\text{-el}}$ « pseudo-elastic » energy loss; ΔE_2 N_2^+ electronic excitation loss; ΔE_3 Xenon excitation loss; Curve 1 « Binary » energy loss ΔE_2; Curve 2 Elastic energy loss ΔE_{e1}; Curve 3 Asymptotic curve of the binary energy loss; impact energy (laboratory coordinates): + (0.5 keV), 0 (1 keV), Δ (2 keV) □ (3 keV).

The asymptotic curve 3, drawn in a direction parallel to the curve 1 at a distance equal to the potential well, shows this maximum energy transfer. The experimental data are in good agreement with this limit

N_2^+-Ar.

Energy loss diagram of N_2^+ scattered by Ar atom is shown in figure 5. For a given incident energy the experimental points are disposed along a straight line showing a linear dependence of $\Delta E_{p\text{-el}}$ versus θ^2. When E_0 varies, only the slope of the experimental curve changes, inferring that the real process becomes closer to the binary model when the energy increases. As in the previous case, above

$$E_0 \theta^2 = 3 \times 5 \times 10^4 \text{ eV (d2)},$$

the experimental curves follow the asymptotical curve 3. Nevertheless, for the largest values of $E_0 \theta^2$, the experimental data show that the maximum vibrational excitation transfer becomes smaller than the limit value

N_2^+-He.

Since the incident particle has a much larger mass than the target, the energy spread caused by the finite angular resolution is relatively important and of the same order of magnitude as the involved energy losses. In addition, the previously used approximate formulas of $\Delta E_{p\text{-el}}$ and ΔE_{e1} are no longer valid.

Consequently the energy loss given by the two models are not a linear function of $E_0 \theta^2$ (see Fig. 6). For all incident energies, experimental results are in quite a good agreement with the binary scattering model. However, for scattering angles below 3°, the experimental data are at about 3 eV above the theoretical curves this anomaly can be thus explained: if during the scattering each atom of the molecule receives symmetrically the same momentum transfer, the molecule is vibrationally excited without deviation of its center of mass.

3.2 ELECTRONIC EXCITATION OF N_2^+. — The scattering of the molecular ion N_2^+ by an atomic target can give rise to a second process: the electronic excitation of the N_2^+ projectile:

$$N_2^+ \left(X^2 \Sigma_g^+ \quad v = 0 \right) + C \rightarrow \left(N_2^+ \right)^* + C + Q \approx 8.5 \text{ eV}.$$

Indeed the 8.5 eV peak B cannot be assigned to a target excitation level, besides similar energy loss peaks are found whatever the target is (Fig. 1, 2, 3). The assignment of the involved electronic level will be discussed below.

As in a previous case the energy loss measurements ΔE_2 are investigated in the frame of the different models.

ΔE_2 data (N_2^+ electronic excitation) figures 4, 5, 6. It can be noticed that these curves are parallel to the elastic model ΔE_{e1} curves. The constant difference between them is assigned to the electronic excitation of the projectile. This difference ΔE is about 8.5 eV. The parallelism between the projectile excitation curves and the elastic model curves shows that no vibrational excitation occurs in this excitation mechanism.
The potential energy curves of N_2^+ (Fig. 7) are given by F. R. Gilmore [7]. The experimental excitation energy has been compared with the energy gap between the initial ground state of N_2^+ ($X^2 \Sigma^+_g \ v = 0$) and the available excited stages, taking the Franck-Condon principle into account.

Any excited electronic state is compatible with the 8.5 eV experimental excitation value. Nevertheless two excited states ($C^2 \Sigma^+_u$ and $^4 \Pi_u$) have an energy close enough to the experimental energy loss to be considered as probably excited.

In order to explain the apparent disagreement between theoretical and experimental energies we propose that this excitation take place through and « oblique » transition.

Actually, during the collision, the N_2^+ molecular energy curves are disturbed by the target atom and the real transition occurs between the « modified » energy curves (see discussion).

Fig. 6. — Energy losses of N_2^+ scattered by helium impact energy. 6a : 5 keV ; 6b : 1 keV ; 6c : 2 keV ; 6d : 3 keV.
4. Electronic excitation of the target. — N_2^+-Xe.

As shown in figure 1 the peak C is assigned to a single excitation of Xenon:

$$N_2^+ + Xe \rightarrow N_2^+ + Xe \ (5 \ p^3, nl).$$

The width of this excitation peak cannot be explained by the energy spread only. Several states are probably excited but the resolution is not good enough to resolve each excited state.

The energy loss $\Delta E_3 = f(E_0 \ \theta^2)$ curves are shown on figure 4. Contrary to the previous projectile excitation case, the ΔE_3 curve is parallel to the « pseudo elastic » one, showing a simultaneous vibrational excitation of N_1.

N_2^+-Ar. — Similar results are found for the N_2^+-Ar collision in which Ar $(3 \ p^5 \ nl)$ excitations take place. Nevertheless, the first excited levels are not so close to one another, therefore the 4 s excited level is separated from the remaining states (Fig. 2).

N_2^+-He. — As explained before, the energy resolution is lost, however the results are similar to those of the other targets (Fig. 6).

5. Cross-sections. — The differential cross sections $\rho = f(E_0 \ \theta)$ for each process are shown on figure 8 for several incident energies and colliding systems. The differential cross sections are given only in relative value.

The projectile excitation differential cross sections ρ_p present a maximum close to:

$$E_0.\theta = 1 \ 500 \ eV.\ m^o \ \text{for He}$$
$$E_0.\theta = 2 \ 000 \ eV.\ m^o \ \text{for Ar}$$
$$E_0.\theta = 1 \ 000 \ eV.\ m^o \ \text{for Xe}$$

This maximum occurs with a given target for the same $E_0.\theta$ value, whatever the incident energy. Furthermore ρ_p decreases with the incident energy.

This behaviour should be in agreement with an excitation process, taking place via a pseudo crossing of N_2^+-target potential energy surface (see discussion).

The differential cross section for every target excitation behaves in the same way as observed in the previous case. On the other hand the relative cross section increase with the energy, showing that the involved crossing is no longer adiabatic. Nevertheless we can notice that the crossing involved in the target excitation occurs at a lower value of the internuclear distance R than the N_2^+ excitation crossing.

6. Discussion. — We made these experiments first to check the validity of the binary model: whatever the target, the agreement between theory and experiment is good for the higher energies $(\geq 2 \ eV)$ used in this work. It appears that, effectively, the second atom of the molecular ion acts as a « spectator » during the collision. On the other hand, for the lower impact energies, the behaviour is different according to the target. With helium, the good agreement is preserved but with heavier targets, no definitive conclusion can be drawn, Argon and Xenon showing very different results. The process seems be close the binary model with Xe as the target but with Ar the experimental results lead to an elastic process interpretation. This last result was expected, because at low energy and for small angles, the collisions are more gentle and the impact parameter is larger; the distance between the target and each atom of the molecule becomes of the same order of magnitude. Therefore the difference between the interactions of the target with each atom is weaker than the binding energy of the molecule. But for N_2^+-Xe, the results are more surprising and no explanation can be proposed at the present time.

Let us now consider the excitation of the target. From the experimental results this excitation occurs in addition to the vibrational excitation of the molecule.

These two processes have a common feature which is well explained by the two steps binary model. Only the first step is different from the « pseudo elastic » process: if the distance of the closest approach is too large to reach the pseudo crossing line (Fig. 9) (a generalisation in 3 dimensions of the well known crossing point), no excitation takes place and only vibrational excitation occurs. For more violent collisions, when the crossing line is reached, the transition from the $(N_2 - \text{target})^+$ quasi-molecular ground state to an excited state occurs. According to the outgoing channel of the $(N_2 - \text{target})^+$ quasi-molecule, only two new kinds of process are expected in this energy range.

(i) $N_2^+ + \text{Target} \rightarrow N_2^+ + (\text{Target})^*$

(ii) $N_2^+ + \text{Target} \rightarrow (N_2^+)^* + \text{Target}$.

The first one decays into an excited state of the target, N_2^+ remaining in the electronic ground state. The
Differential cross sections for \(\Sigma \) projectile excitation (\(\rho \)) and target excitation (\(\phi \)). Reduced cross sections \(\rho = \Sigma \sin \theta \phi \) are given as functions of the product \(\tau = E \rho \phi \) [1]. Impact energy \(= 5 \text{ keV} \ldots 1 \text{ keV} \): [1] \(= 3 \text{ keV} \); [86] : Xenon target; [86] : Helium target.
FIG. 9. — Schematic diagram of (N₂ — Target)+ potential surface crossing, inducing an electronic excitation.

second step of the process is the same as the one in the pseudo elastic case. Therefore, the N₂⁺ exit channel being the same, a similar vibrational excitation is expected, as is shown by the experiment.

The second one induces an electronic excitation of N₂⁺. In this case the N₂⁺ state exit channel is different from the input one. Therefore, in the second step, we should expect a simultaneous vibrational excitation of (N₂⁺)⁺. Two excited channels being available, if we first consider the 4Πu state as the exit channel, only very few vibrational levels are present up to the 8.5 eV dissociation limit, which is in good agreement with the very small amount of vibrational excitation experimentally observed in the present case.

Let us now consider the C² Σ⁺ state of N₂⁺ excited as being involved in the channel, this state being crossed by the 4Πu state in an adiabatic collision. Then as already proposed by Rosenthal [8] for atomic ion-atom collision, a two crossing process can be considered:

— At the first crossing a transition occurs leading to the C² Σ⁺ state;
— At larger internuclear distances the second C² Σ⁺ — 4Πu crossing is reached and therefore the 4Πu becomes a possible exit channel.

It is remarkable that, by accident the excitation energy involved is about the same as that involved in the previous C² Σ⁺ case, and no definite conclusion can be drawn.

Acknowledgements. — The authors wish to thank Pr. J. Durup and Dr. J. Baudon for valuable discussions and helpful suggestions throughout the course of this work.

References

[1] Many papers have been published, among them we quote particularly.
Geramienko (V. I.), Oksiuk (J. D.), Sov. Phys. JETP, 1965, 21, 333.

[4] Fournier (P.), Pernot (A.) and Durup (J.), to be published in J. Physique, July, 1921 (part I of this paper).

