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SOFT-MODES IN DISPLACIVE TRANSITIONS

by S. AUBRY and R. PICK

Service de Physique du Solide et de Résonance Magnétique,
Centre d’Etudes Nucléaires de Saclay, B. P., n° 2, 91, Gif-sur-Yvette

(Reçu le 4 novembre 1970, révisé le 15février 1971)

Résumé. 2014 On peut classer les transitions de phase displacives qui ne changent pas la maille
élémentaire en deux catégories suivant leur paramètre d’ordre ; celui-ci est représenté soit par
l’amplitude d’une déformation dans les transitions élastiques, soit par celle du mouvement relatif
des atomes dans les transitions optiques. Nous montrons dans ce dernier cas qu’il existe toujours
au moins tout un plan de phonons, inactifs en diffusion Raman à haute température, dont la fré-
quence s’annule à la température critique ; ces modes mous deviennent actifs en diffusion Raman
à basse température. Si ces phonons sont actifs en diffusion Raman à haute température, ils indui-
sent une transition élastique comme l’ont montré Miller et Axe : une constante élastique s’annule
avant la fréquence optique correspondante. Dans les transitions élastiques qui peuvent être du
deuxième ordre d’après la théorie de Landau, nous généralisons la notion de mode mou : il existe
au moins une vitesse du son qui s’annule à la température critique. Nous montrons aussi que les
modes mous optiques ou élastiques ne sont jamais accompagnés de champ électrique. Cependant,
la transition sera ferroélectrique avec une constante diélectrique infinie à la température de tran-
sition soit si la fréquence optique est active en absorption infrarouge, soit si la déformation élas-
tique est piézoélectrique. Nous négligeons complètement dans cet article les effets de temps de vie
des phonons mous, malgré leur importance évidente dans de telles transitions.

Abstract. 2014 Displacive phase transitions which do not change the size of the unit cell may be
classified under two types depending on their order parameter : in the elastic transitions, this
is the amplitude of an elastic strain ; it is the amplitude of a relative displacement of the atoms in
an optic transition. In this last case, we prove that there always exists at least a whole plane of
optical phonons, which are Raman inactive in the high temperature phase, and the frequency of
which goes to zero at the transition temperature. These soft modes become Raman active in the
low temperature phase. Should these phonons be Raman active in the high temperature phase,
they would induce an elastic transition as shown by Miller and Axe : an elastic constant will pass
through zero for a still finite frequency of the optical phonon. In the case of an elastic transition,
if the Landau theory allows it to be second order, we show by group theory that there always
exists at least one sound velocity which passes through zero at the critical temperature. We also
prove that the optical or elastic soft mode never carries an electric field with it. Nevertheless the
dielectric constant becomes infinite at the transition temperature, and at low temperature is polar,
either if the optical soft mode is infrared active or if the elastic mode induces a piezoelectric strain. 
The damping effect associated with such transitions is not taken into account in this paper.
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1. Introduction. - Within the framework of the

quasi-harmonic theory of phonons, the existence of a
relationship between the frequency of optical pho-
nons at the center of the Brillouin zone, on the one

hand, and a phase transition on the other has been
noticed by various authors [1]. They remarked that
the ratio of the low frequency dielectric constant 80
to the high frequency dielectric constant e,,,, is given
in two atoms per cell cubic crystals by the Lyddane-
Sachs-Teller relation [2]. This relation reads :

where COL is the longitudinal optical phonon frequency
at the center of the Brillouin zone and roT that of
transverse optical phonons in the same conditions.

If the crystal undergoes a second order phase tran-
sition so that Co becomes infinite at a temperature Tc,
(I.1) implies that at the same temperature COT would be
equal to zero.
More generally, let Tc be the temperature at which

the crystal undergoes a second order phase transition ;
let this transition be such that the low temperature
equilibrium positions of the atoms can be described as
a displacement of the atoms from their high tempera-
ture equilibrium position. In particular, the displace-
ment at T = T,, is proportional to some vector L.
If one can, for every temperature, take the amplitude
of the projection on L of the displacement of the atoms
as an order parameter, this phase transition is said to
be displacive. In the above mentioned case, the displa-
cement associated with roT could be taken as such a
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vector L. Equation (I.1) then shows that a phonon
exists whose eigenvector may be used as an order para-
meter and whose eigenvalue goes to zero at the cri-
tical temperature, while the other phonons frequencies
remain finite. Following Cochran [lc], we shall say
that such a transition is accompanied by a soft

mode, and, throughout this paper we shall use this
expression only for a phonon the eigenvalue of is

equal to zero at the critical temperature.
The aim of this paper is to generalize such a result

to crystals with an arbitrary number of atoms per cell
whatever be its symmetry. We shall maintain ourselves
within the framework of the quasi-harmonic theory
of phonons i. e. we shall consider an harmonic theory
in which the force constants are allowed to vary with

temperature in such a way that a displacive second
order phase transition takes place at a temperature
T,,. We shall prove that when, in such a displacive,
transition, the vector L is the same for each cell,
there always exists at least one phonon (with a pro-
pagating vector q such as |q| 1 ~ 0 while remaining
parallel to some vector a) the eigenvalue of which goes
to zero at the critical temperature. At the same time,
we shall show that all the other phonon frequencies
remain finite at this temperature. Such a result may
be thought tô be self evident and has been verified in
many particular cases. Nevertheless, its general proof
has not been given up to now and is the purpose of
this paper.
We shall start by recalling the principal results of

the Landau [3] theory of phase transitions, as well
as that the phonon theory in insulators. We shall also
obtain from the free energy of the crystal the two types
of displacive transitions, we wish to study here : in the
first one, the order parameter is represented by a
relative displacement of the atoms within the cell ;
in the second one, it is represented by a deformation
of the lattice.

In the second part, we shall briefly study the tran-
sitions of the first type and prove that, in such a case,
an optical phonon frequency always goes to zero at
the critical temperature. We shall also discuss under
which conditions will the low temperature phase be
polar.
The third and fourth parts will be devoted to the

displacive phase transitions of the second type. In the
third part, we shall giye the acoustical phonon equation,
the expression.of the static dielectric tensor, and we
shall discuss the problems which have to be solved in
order to prove the existence of a soft mode. Finally, in
the last part, we shall show that, if the phase transition
is second Qrder, there falways exists a sound velocity
which goes to zero at the critical temperature. This
sound wave will be’the soft mode associated with the
phase transition.

Let us finally remark that this paper is phenome-
nological in nature. We shall always admit that a
displacive phase transition exists at a certain tempera-

ture, but we shall not discuss the microscopic origin
of this transition. 

II. Survey of the Landau theory and of ,the phonon
equation. - A. THE LANDAU THEORY OF PHASE TRAN-
SITIONS. - Let us recall here the results of the Lan-
dau [3] theory of phase transition which we will need
later on.

In as second order phase transition, the order para-
meter 11 can be taken as the amplitude of a physical
quantity L. Landau [3] has shown that :

1) L must transform, under the symmetry opera-
tions of the crystal, as an irreducible representation of
the symmetry group.

2) This representation cannot be the identity repre-
sentation.

3) Because the transition is second order, the sym-
metrized cube of this representation must not contain
the identity representation.
Troughout this paper L will be an atomic displace-

ment, and we shall see in parts IV and V that one
needs to use the preceeding results in order to prove
the existence of soft modes in some displacive transi-
tions.

B. SURVEY OF THE PHENOMENOLOGICAL EQUATIONS
OF PHONONS. - We shall briefly recall here the results
of the phenomenological theory of phonons.
The phonon spectrum may be obtained by writing

that the energy of the system harmonically depends on
the position of the atoms and on the mean electric
field inside a cell [4], [5], [6]. This energy reads :

In this expression, U s is the displacement, with respectL
to its equilibrium position, of the atom s which belongs
to the cell L in the a direction and EL is the deviation
of the mean electric field in the a direction in the cell
L. Expression (II. 1) must be used when one deals with
an insulator ; it remains valid for the case of a metal
when one equates to zero two last terms.

By a space Fourier transformation, we can rewrite
(II.2) under the from

where
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N is the number of cells of the crystal ; RL is the
equilibrium position of the atom s in the cell L ;
RL is the position of the origin of the cell L.
The equations of motion of the atomic displace-

ments simply follow from (II.2) and read :

where

On the other hand, one obtains the electric induction
by deriving (11.2) with respect to the electrical field.
This yields :

From (11. 5) and (II.6) one obtains the phonon equa-
tion of the system as well as the generalized dielec-
tric tensor E(q, (0).

If one uses the Maxwell equations in an insulator
to relate D(q) to 6(q), one may eliminate both quanti-
ties between (11.5) and (11.6) [6], [7], which leads to
the phonon equation

where

and tâ represents the transpose of some column vector
â.

The phonons which propagate with a vector q
are the solutions of (II.7) and the electric field asso-
ciated with the atomic displacement is given by

On the other hand, the elimination of q-Y(_L) between
(II. 5) and (II.6) yields :

In order to obtain a simple expression for (II.12),
it is convenient [5-7] to use a diagonal representation
of the matrix $(q). Let us point out that the eigenva-
lues of $(q), mco .U 2(q), represent the frequencies of the
phonons of a crystal in which the mean electric field
would be zero in every cell. This crystal is called the
fictive or shorted crystal, in contradistinction with the
free crystal. For the shorted crystal, (II.7) becomes

and the eigenvector ’l1j( q) of (II .13) is associated

with the eigenvalue MCO 9(q).
The dielectric tensor can then be written as

with

where n is the number of atoms per cell. In this paper,
we shall be interested in the case where q will be very
small and we shall give to y the values 1,2 and 3 for
the acoustical solutions of (II.13), the remaining values
being used for its optical solutions.
We shall now study the stability conditions of the

crystal and show what relationship exists between
a displacive transition and the eigenvalues of the
matrix j’3(q).

C. DISPLACIVE TRANSITION AT q = O. - In section B,
we found convenient to derive the phonon equation
from the internai energy 0 of the crystal. On the other
hand, in the Landau [3] theory one must use the free
energy of the crystal. As we restrict ourselves to sys-
tems in which the only explicited variables are nuclear
displacements and a macroscopic electric field this

free energy is given by :

where the electric induction is the partial deriva-
tive of - 0 with respect to the electric field, and its
Fourier transform has been given in (II.6).
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F must be minimum when the atoms are at their

equilibrium position. If we minimize F with respect
to 9), the minimizing condition can be written as :

This yields

so that (11. 18) must be a positive definite form.

Let us now suppose that, when the temperature
varies, 9 has an eigenvalue which passes through
zero at T, and is negative below Tc. Then the crystal
undergoes a phase transition at Tc. If Uo is the displa-
cement of the atoms corresponding to that eigenvalue,
we can take the amplitude of the projection on flLo
of the displacements of the atoms with respect to
their equilibrium position as and order parameter.

Let us now restrict ourselves to the case where
the relative atomic displacements inside their cell
are the same, whatever is the cell. We can write

where UL is the displacement of the origin of the cell
and Xf is the relative displacement of the s-atom in
the a-direction.

Injecting (II .19) in (11. 18), we obtain by a classical
calculation [4]

In this expression

[e] =- e"’I is a strain tensor, which is symmetrical
with respect to its two indices.

[g] - g0152."I,PlJ has the symmetry of an elastic tensor,
i. e. it is symmetric in a, y and in (ay), (Pô).

=a = :"I,P has the symmetry of a Raman tensor i. e.
it is invariant in the interchange of a with y.

[g] and 7 are linear combinations of, respectively,
second and first derivatives of Gf/ (q) for q = 0, and
their expressions can be found e. g. in [4].

Let us write :

If we express the strain tensor 1] as a six component
vector ei, and project the vector t on the eigenvectors
of the matrix %(0), (11.20) takes the form :

where

(In (II. 23) the tensors [g] and 3 are now written as two
index tensors for which we use the same letters).
A displacive phase transition will take place when

one of the eigenvalues of (II.23) will be equal to zero.
An elementary calculation shows that the determi-
nant of (II.23) may be written as :

where

[b] is the elastic matrix of the crystal, as one may
obtain it by minimizing (11.20) with respect to X.

In (11.25) appear two causes of annulation of A,
and thus of phase transitions. First, an eigenvalue of
the elastic matrix [g] may go to zero. The order para-
meter is the corresponding strain. These transitions
are called elastic ones and, in studying them in part IV
and V, we shall show that the corresponding soft
mode is an acoustical phonon, the speed of which

goes to zero at the critical temperature.
Secondly an roll may go to zero. If the corresponding

’â=e is equal to zero by symmetry, Li also goes to zero
at this temperature. In this case the order parameter
is the amplitude of a relative atomic displacement.
Those are optical transitions, and, in part III, we shall
prove that some optical phonons are the correspon-
ding soft modes.

Finally if an roll goes to zero but the corresponding
’â=4 is not zero, some bü will tend to minus infinity
at the same temperature. Thus, an eigenvalue of [b]
will be equal to zero at an higher temperature, for a
still finite value of wu : the transition will again be
elastic. As ail has the same symmetry as a Raman

tensor, this shows that only Raman inactive frequencies
induce optical transitions. As was pointed out by
Miller and Axe [8], if a Raman active one tends to
zero, an elastic transition will take place, and if this
transition is a second order one, the corresponding
soft mode will be an acoustical phonon.

III. - Optical soft mode transitions. - A. INTRO-
DUCTION. - In this third part, we shall show that,
when q - 0, all the optical phonons of the free crystal
which are some solution of (II.7), have frequencies
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higher than or equal to the smallest optical frequency
of the shorted crystal (II.13). The equality condition
is always obtained when q tends to zero while being
parallel to a given plane of the reciprocal space ;
sometimes that last condition can even be relaxed.

This result guarantees that if a Raman inactive

optical eigenvalue mm§ (q = 0) of (II.13) tends to
zero when T tends to Tc, there always exist some
phonons of the free crystal which may be taken as
soft modes. We shall finally show that the phase
transition will lead to a polar low temperature phase
if the frequency wp is infrared active, and to a non
polar phase otherwise.

B. EXISTENCE OF A SOFT MODE. - Let ff(q, (O 2)
be the limit of W(q, (O 2) when q goes to zero, q being
parallel to a unit vector q. We can write equation (II. 7)
in the space where %(0) is diagonal. This yields :

where we have written a)’ Y’@« e"16 and V’ respecti-
vely for WIL(O), y , (0), aff and VP(q). An elementary
calculation leads to :

From (III.2) we can easily show than we can always
find a direction of q such that w2u is a solution of

equation. Three different cases must be considered.

1) Due to the symmetry of the crystal , Ye," is iden-
tical to zero, whatever is a, for a certain mode jM.

Then Co . 2 is a solution of (III.2) whatever is q.

2) Ye," differs from zero, and Co .. appears only once
in the product in (III.2). It is then sufficient that q
is orthogonal to Ye, taken as a vector with cartesian
coordinates Ye,«, to insure that mi is still a solution
of (III . 2).

3) Yu’" differs from zero and Co 2 appears more than
once in the product in (III.2). As (wu2 - w2) is a

simple pole of the last term of (III.2), Co 1. will always
be a solution [9a] of (111.2).

This prove our first statement.

Let us now label the frequencies col, so that

wu , co4, 1, and let us do the same for the solutions

t- = .

cvp(q) of (111. 1). As q e. q is always positive, (III.2)
implies that, for an arbitrary q,

This shows that all the solutions of (III.2) are larger
than or equal to the smallest non zero co ,, and it fol-
lows from the preceding proof that the equality
always holds for some direction qo : if co"" --&#x3E; 0
when T - Tc, there exists at least a whole plane of

directions q such that the phonon propagating with
this wave vector is a soft mode.

C. NATURE OF THE TRANSITION. DETECTION BY

OPTICAL TECHNIQUES. - One could think that those
transitions always lead to a non polar low temperature
phase because the soft mode are never accompanied
by an electric field. Indeed, if V(q0) is an eigenvector
of (III.1) and if qo is such that the corresponding eigen-
value is cou, its components V4(qo) satisfy the relation
(see 111.1)

3n 

y él yJl,0152 VJl(%) = 0 (III.4)
a u=4

As the amplitude of the electric field associated with
a phonon is proportional to the left handside of (III.4)
see (II.11), this field is equal to zero. Nevertheless,
the low temperature phase may be polar as can be
seen from the expression of the response of the sys-
tem to an electromagnetic field of frequency m. One
obtains it by taking the q = 0 limit of (II.12), co

remaining finite, and this limit is [9].

The poles of (III. 5) correspond to an infrared absorp-
tion, and this one exists when the corresponding
yp,0153 are different from zero.

Thus, if an infrared active frequency goes to zero,
at the critical temperature e:P (0) will become infinite,
which means that the low temperature phase will be
polar. This could be the case e. g. in baryum tita-
nate [10] (1). On the contrary if this frequency is
infrared inactive, as in the a quartz, fi quartz transi-
tion [11], [12](1), Éfl (0) has no singularity at the critical
temperature and the low temperature phase is not

polar.
All the preceeding results have been obtained by

considering the high temperature phase. Another
result may be obtained by looking at the transition
from the low temperature side. By continuity roll
also tends to zero, and the eigenvector CO’(%) which

corresponds to the eigenvalue M(o 1. of (111.1) trans-

(1) See also section V.
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froms, under the symmetry operations of the low
temperature phase, as the identity representation.
This representation is Raman active in any point
group so that the optical soft mode can always be
detected by Raman scattering experiments in that

phase.
In summary, in optical second order displacive

transitions, there always exists some phonon the fre-
quency of which goes to zero at the critical tempera-
ture. Those phonons can always be detected by Raman
scattering experiments in the low temperature phase,
but never in the high temperature one ; if they can also
be detected by infrared absorption, the low tempera-
ture phase will be polar. Finally, in this last case, if
the frequency of the soft mode is a non degenerate
eigenvalue of (II.13), only phonons the wave vectors
of which are orthogonal to a given vector are soft
modes. Table 1 contains the list of such cases, the
direction of this vector as well as the symmetry of the
low temperature phase. In all the other cases, there
will always exist a soft mode whatever is the direc-
tion q.

TABLE 1

Second order optical displacive transitions with
a restricted number of soft modes

We give hère the list of the transitions for which the
wave vector q of the soft modes are not arbitrary in
direction. The following table indicates :

in column 1 : the point group of the high symmetry
phase ;

in column 2 : the point group of the low symmetry
phase ;

in column 3 : the representation of the soft mode ;
in column 4 : the vector Z, to which the wafe vector

q of the soft mode is orthogonal.

IV. Elastic phase transitions. - A. INTRODUCTION.
- In part III, we studied phase transitions which
could be characterized by a relative displacement of

the atoms inside the primitive cell. We showed that
they could always be characterized by the annulation
of some Raman inactive optical phonon frequency.
We wish to study now the same problem when the
order parameter is represented by a strain of the crys-
tal. As this problem is complex, we shall simply
expose here its principal features. The proof of the
existence of acoustical soft modes will be delayed to
the last part.

Let bv be the eigenvalue of the elastic matrix [b]
(Eq. (Il.26)) and Le] ’1 a corresponding eigenvector

It follows from Section II. A that a phase transition
characterized by [e]" will take place at Tc if [e]" does
not transform as the identity representation of the
symmetry group and if bv, positive for T &#x3E; 7c?
changes its sign at T,.
Those elastic transitions have been studied by

Boccara [13] from the point of view of the Landau
theory. He has given a list of those which can be second
order transitions ; the others are always first order
because the symmetrized cube of the representation
of [e]’ contains the identity representation. We shall
need his results in part V but before we can use them,
we must recall the form of the equation giving the
sound velocity in a crystal.

B. ACOUSTICAL PHONON EQUATION. - The equa-
tion giving the speed of sound waves in a free crystal
are easily obtained from (II. 7) ; in strict analogy
with that expression, they read [14]

where

expression in which the elastic tensor hay,PlJ is given
by (II.26).

where 110 = ygy,p is a linear combination of piezo-
electric coefficients which is symmetrical in the inter-
change of a and y.

Similarly, the electric field associated with the sound

wave with eigenvector "() o(q) is given by [15]
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C. SOFT MODE AND ELASTIC PHASE TRANSITION. -

The problem we have to solve may now be defined very
precisely and is, in every respect, similar to the one
we discussed in part III. Let bv be an eigenvalue of

(IV. 1) such that its eigenvector [e]" does not transform
as the identity representation of the symmetry group
of the crystal. Does there always exists a direction q
such that a sound wave propagating with that wave
vector in the free crystal will have a speed of sound
related to by by

1) We shall prove, in the last part that this property
is true if a second order phase transition can effectively
take place i. e., if the symmetrized cube of é’ does
not contain the identity representation.

2) We shall also prove that, if by is the smallest

eigenvalue of b, the speed of sound has its minimal
value when the equality (IV. 7) is satisfied.

This sound wave will then represent the soft mode
associated with the phase transition due to the annula-
tion of b"" ; as in the second part, we shall see that
this soft mode does not carry an electric field with
it.
In order to perform these proofs we shall make

use, as an intermediate step, of the fact that the two
above mentioned properties are always true for the
shorted crystal ; for this crystal the acoustical phonon
equation simply reads :

This last expression is obtained by the same techni-
que as the one which leads to (IV. 2) if one starts by
imposing the macroscopic electrical field to be zero
in every cell.

D. ELASTIC DIELECTRIC TENSOR. - As in the third

part, we wish also to know which transitions lead to a
polar low temperature phase. In order to find it, let
us consider the internal energy of the crystal in the
presence of a pure strain and of an electric field.
This internal energy reads :

In (IV. 9) 10 is the spontaneous electric induction of
the crystal, which differs from zero if the phase is polar.
If one uses, as in part II, the two equations

one obtains the expression of the static dielectric tensor

where

e; and b, being defined by (IV. 1).
The transition characterized by the annulation of

bv will lead to a divergence of est and then to a low
temperature polar phase if Yô’s is not identical to

zero by symmetry. As Yo«"O is symmetrical with respect
to a and y, the eigenvector must simultaneously
transform, under the symmetry operations of the group,
as a vector and as a symmetric second rank tensor.
In other words, Yô’a will differ from zero only if e’
belongs to a representation which can simultaneously
be infrared and Raman active. We shall say that
such representations are piezoelectric, and only
those strainswhich transform as piezoelectric repre-
sentations lead to low temperature ferroelectric phases.

Remark. - From the Miller and Axe [8] result

quoted at the end of Section II. C and the preceding
remark, it follows that an optical Raman active pho-
non induces an elastic transition which has the same
nature as that which would have been induced by the
optical transition : the low temperature phase is

polar if the optical phonon is also infrared active,
and non polar in otherwise.

V. Existence of soft modes in an elastic transition.
- A. INTRODUCTION. - In this last part, we shall
show that a second order elastic transition always
carries with it an acoustical phonon with wave vector

qo the speed of which is equal to zero.
We have shown in Section IV. C that this result

will be the consequence of two more general properties
we need now to prove. We shall start by giving the
demonstration for the shorted crystal and we shall
extend it afterwards to the free crystal.

B. SOFT MODE IN A SHORTED CRYSTAL. - Let

CUj(q) be a solution of (IV. 8) and vj(q) the corres-
ponding sound velocity.

Eq. (IV. 8) may be rewritten as :

It follows from (IV. 2) and from the symmetry pro-
perties of the elastic matrix b",O’ that one can write

(V.l) as :
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where

e’ is then a special strain tensor, the symmetrized
product of two vectors ; we shall say that such a defor-
mation is a propagative one.

As ef’ is a linear combination of the eigenvectors
of b, (V. 2) shows that

where bmin is the smallest eigenvalue of b. We shall
now prove that if the eigenvectors associated with
b m ,n may be used to define an order parameter, there
exist at least two mutually perpendicular directions qo
which are such that the equality sign is effectively
obtained in (V. 4). This will be enough to show that
the phonon ,u, qo is a soft mode associated with the
elastic transition.

Let then bv be an eigenvalue of the 6 x 6 matrix b.
Let us show that, if the corresponding eigenvectors
are not invariant under the operations of the symmetry
group of the crystal, we can always find in the space
spanned by those eigenvectors, a propagative deforma-
tion ev. This means that, in developed notations, eV
can be written as

Now, ev,ap may be considered as a symmetrical matrix
and there exists an orthonormal cartesian system of
coordinates for which that matrix is diagonal. In
those new axes, the solution of equation (V. 5) is
trivial and leads to a unique solution for the couple
ul, u2 but requires two compatibility conditions :

Also, ev is orthogonal to all the other eigenspaces of
b and particularly to any linear combination of
deformations, which transform as the identity repre-
sentation. êv is thus orthogonal to an isotropic dila-
tation which is such a deformation. In any system of
coordinates, that dilatation is represented by the
deformation vector (1, 1, 1, 0, 0, 0). Then :

(V . 7) implies, on the one hand, that;1 and Û2 are
mutually perpendicular, on the other, that (V . ba)
is fulfilled as soon as (V. 6b) holds.

In order to prove that one can always find an eigen-
vector ê’ corresponding to b,, such that the matrix
eV’a.P have a zero eigenvalue, one must make use of
group theory. This proof is given in Appendix A.

As the matrix b may have degenerate eigenvalues,
one sees that to any eigenvalue b,, the eigenvectors of
which are not in the identity representation, corres-
ponds at least two mutually perpendicular directions

qo(qo = ul or qo = u2) such that the equality sign is
effectively obtained in (V. 4) : there exist at least two
soft modes associated with the phase transition charac-
terized by év.

If the crystal is not piezoelectric either by symmetry
(as it is the case for the eleven centered point groups
and for the group 0), or because it is metallic, the short
and real crystals are one and the same. Then what
preceeds is enough to ascertain that in an elastic
second order transition, there always exist some sound
wave with a velocity equal to zero. Furthermore,
from (IV. 10) it follows that the low temperature
phase will not be polar.

If the crystal is piezoelectric, one must still show
that such a sound wave exists also in the free crystal ;
this will be done in the following section.

C. SOFT MODE IN A PIEZOELECTRIC CRYSTAL. -

Among the two vectors ûl and U2 obtained in the pre-
ceding section, one is the wave vector qo of the sound
wave, the other a corresponding eigenvector of the
shorted crystal. This wave is transverse as the two

vectors are perpendicular one to the other. If one

uses the same technique which leads from (IV. 8)
to (V. 2) as well as the symmetry properties of Y"1,0
one sees that one can rewrite (IV. 2) as :

where

In (V . 9) ’ü o(q) is an eigenvector of (IV. 2) and v(q)
is the corresponding eigenvalue. If one compares
now (V. 8) with (V.2), one sees that a propagative
deformation will lead to the same sound velocity in
the free and shorted crystals and that one can identify

lÉ with é f if and only if

For this equality to be satisfied in a not fortuitous

manner, it is necessary and sufficient that q has no
projection on the vector which transform under the

operations of the symmetry group as ego It is thus

sufficient to show that one of the two vectors ul or

u2 does not belong to the same representation as

eo.
It is shown in Appendix B that this property is

always true if êv transforms itself as a one dimensio-
nal representation (different, of course, of the identity
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representation). But this property is no longer
always true if éy is in a two or three dimension repre-
sentation. Nevertheless, the only physically interesting
cases are those when the transition can be second order
i. e. when the symmetrized cube of the representation
have no projection on the identity representation. With
the help of the Boccara tables mentioned in part IV,
where those cases are enumerated, we have checked
that, whenever the transition could be a second order

one, at least one of the two vectors û was indeed not
in the same representation as the strain was. In Table II
we have given, for the 32 point groups, the vector
decomposition of the propagative strains, the repre-
sentations of both the strain and the corresponding
vectors, as well as the order of the transition.

Furthermore, by using the same technique as the
one which allowed us to pass from (111.1) to (III.2)
one can write

As in part III, this equation shows that the sound velo-
cities in the free crystals, which are the solutions of
(V. 11), are higher than or equal to those of the shor-
ted crystal, v f(q) for the same q, the equality sign being
obtained when (V. 10) is fulfilled.

Finally (IV. 6) shows that no electric field is asso-
ciated with the acoustic soft mode of the free crystal
as it fulfills (V. 10).
That does not bear any relationship with the polar

character of the low temperature phase. As has been
seen in (IV. 11), that phase will be ferroelectric when
the strain év associated with br:in is in a ferroelectric
representation, as is the case for K. D. P. [16] (2)
for instance.
We have now made clear the perfect parallelism

which exists between the two types of displacive tran-
sitions at q = 0. The only (and of practical impor-
tance) difference is the number of soft modes which
are related to a non ferroelectric transition. While all

vectors q are possible in an optical transition, only

two (in general) exist in the elastic ones. This number
will generally be reduced when one considers ferro-
electric transitions : one plane at least remains for
optical transitions, while in the elastic case, there

sometimes exists only one such q.

VI. Conclusion and final remarks. - In this paper
we have shown that a second order displacive phase
transition which does not change the number of
atoms per cell always carries with it some phonon soft
modes. Those modes may be some Raman inactive

optical phonons the frequency of which goes to zero
at the critical temperature. They can as well be some
acoustical wave the velocity of which goes to zero
at this temperature. No electrical field propagates
with those soft modes even if the low temperature
phase is polar.

Let us point out again that we have obtained those
results within the framework of a phenomenological
theory of the phonons : we did not try to elucidate the
physical origin of the softening. Boccara ans Sarma [ 17]
have shown how the temperature dependent quasi-
harmonic theory of phonons could lead to such an
effect ; Gillis [18] and Conte [19] computations show
that such a mechanism indeed leads to such phase
transitions. But other mechanisms need to be invoked
e. g. for K. D. P. Nevertheless as has been verified by
Brody and Cummins [20] a sound velocity goes to
zero at the critical temperature in a direction which
is consistent with our analysis of the possible accoustical
soft modes in a system with the D2d symmetry.

Let us finally point out that the very existence of
second order displacive transitions at q = 0 is nowa-
days a very controversial subject. For instance, the
anharmonic terms in the phonon equation cannot be
neglected and they give rise to finite lifetime effects :
it is true that no optical soft mode (in the sense we
used this concept throughout this paper) has even
been detected with a line width which was not large
compared to its frequency. Another example is given
by the quartz transition which turns out to be a first
order one [21] due to mechanisms which have nothing
to do with the quasi-harmonic theory of phonons.
In this sense it is likely that the examples given in this
paper may be questionnable. We have just taken them
as cases which would illustrate the points we wanted
to make in this paper i. e. what are the consequences of

a displacive transition from the point of view of the
harmonic lattice dynamics.(2) See also section V.

APPENDIX A

If bv is an eigenvalue of the 6 x 6 elastic matrix b,
there corresponds to bv a certain eigenspace M,
of strain vectors which transforms as a given represen-
tation of the symmetry group of the crystal. We shall
here prove that, if this representation is not the iden-

tity representation, one can always find in this space
some strain such that, when written as a 3 x 3 matrix,
one of the three eigenvalues is equal to zero.
We study first the case where Mv is a one dimensio-

nal space. Let e’ be a vector of M,. There exists
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TABLE II

Second order displacive transitions with acoustic soft modes

We give here a complete table for all the elastic
transitions. They are classified according to the group
of their high symmetry phase. The symmetry groups
are gathered following the form of their elastic tensor
and, for each of them we give the forms of the eigen-
strains which induce an elastic transition. For every

form, we indicate in the first line :
a) the number of times, this form appears in the

elastic matrix ;
b) the order of the transition generated by this

strain ;
c) when the representation of the strain e is two

or three dimensional, the strain is given as a linear
combination (with coefficients oc, fi, y) of some eigen-
strains. In this case, when all the combinations give a
propagative strain, we put the symbol A. If, on the

contrary, only some of them are propagative, we put
the symbol N. A.

The first line is followed by a table in which we
indicate :

- in the first column : the group of the high sym-
metry phase ;
- in the second column : the representation of the

strain e ;
- in the third column : the representation of the

wave vector q of the soft mode ;
- in the fourth column : the representation of the

elongation Y of the same soft mode ;
- in the fifth column : the representation of the

group(s) of the low symmetry phase.
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3) Tetragonal (First group) : S4, C4, C4h

b) (a-a 0 0 0 b)

4) Tetragonal (Second group) : D2d, D4, C4,, D4h
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5) Trigonal (First group) C3 S6

6) Trigonal (Second group) D3 C3v D3d
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7) Hexagonal

8) Cubic
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at least one operation of the symmetry group which

changes ;’ in - ëv. Let g be this operation and
the 3 x 3 matrix which describes how is transformed

by g the cartesian coordinates. If e’ is now written
as a 3 + 3 matrix we have

Taking the determinant of (A.l) yields

As 1 Q(g) | = ± 1, it follows from (A. 2) that

Then the matrix eV /I.P has at least one eigenvalue equal
to zero and, from (V. 7), the trace of the matrix e’ is

equal to zero. Thus éy has one or all its eigenvalues
equal to zero : as the last case is impossible because
ev,0153fJ is not identical to zero, one and only one eigen-
value of ev is equal to zero.

Let us now study the case where Mv is a two or
three dimensional space. Let us pick up in this space
two linearly independent strains ei and ei. If

the proof given below (A. 3) immediately holds.
If (A. 4) is not fullfilled

is a third degree equation in Â which always has at
least, one real solution Ào. For this value Ào, the proof
given below (A. 3) is again valid.

APPENDIX B

Let e’ be a strain, eigenvector of the elastic matrix

b, which transforms as a one dimensional represen-
tation different from the identity. As has been shown
in Appendix A, the 3 x 3 matrix ey’"a may be written
in a particular system of coordinate (0 x.y.z) as :

From (V. 2) e’ is the symmetrized product of two
vectors ui and u2 and from (B.l) those vectors are
the two bisectors of Ox and Oy. All the operations g
of the symmetry group are such that g(;V) = ± év.
Thus both Oz and the z0y plane are invariant under
the operations of the group : they form two represen-
tations of the group.

If the x0y plane is an irreducible representation,
ui and U2 which are in this representation, belong to a
two dimensional representation while e’ belongs to a

one dimensional one. év and ui are in different

representations.
If the x0y plane is a reducible representation, let a

and b be the two vectors defining the two one dimen-
sional representations. As there exists an operation g
such that g(ev) = - ;v, one easily verifies that its

existence implies that a and b are respectively ul

and u2. Finally, ul and u2 are not in the same repre-
sentation because that would imply for ëv to be in the
identity representation which is contracdictorÿ to the

hypothesis. Thus éy is certainly in a representation
different of at least one of the two vectors u.
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