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HYDRODYNAMIC INSTABILITIES OF NEMATIC LIQUID CRYSTALS UNDER
A. C. ELECTRIC FIELDS (*)

E. DUBOIS-VIOLETTE, P. G. de GENNES and O. PARODI

Laboratoire de Physique des Solides (**)
Faculté des Sciences, 91, Orsay, France

(Reçu le 24 novembre 1970)

Résumé. 2014 Nous présentons une extension au cas de champs électriques alternatifs de la théorie
des instabilités hydrodynamiques due à Helfrich. Les effets électrohydrodynamiques sont décrits
par deux équations couplées pour la densité de charge (q) et la courbure locale de l’alignement
moléculaire (03C8). Le temps de relaxation pour q est le temps de relaxation diélectrique 03C4 (~ 10-2 s
dans les échantillons typiques). Pourvu que l’épaisseur de l’échantillon soit supérieure à une
certaine limite dc, nous trouvons deux domaines de fréquence où la nature de l’instabilité est très
différente ; ces domaines sont caractérisés par le rapport de la fréquence du champ électrique,
03C9, à une fréquence critique, 03C9c. Si 03C9  03C9c, au seuil d’instabilité, la charge q oscille à la fréquence
03C9, tandis que la courbure 03C8 ne dépend pas du temps. Si 03C9 &#x3E; 03C9c, au seuil d’instabilité, q reste
indépendant du temps et 03C8 oscille. Ces prédictions, et les courbes théoriques de tension-seuil en
fonction de 03C9 et d, sont en accord raisonnable avec nombre d’expériences récentes.

Abstract. 2014 We present an extension of the Helfrich theory of hydrodynamic instabilities to
the case of alternating electric fields. The electrohydrodynamic effects are described by two coupled
equations for the charge density (q) and the local curvature of the molecular alignment (03C8). The
relaxation time for q is the dielectric relaxation time 03C4 (~ 10-2 s in typical samples). The relaxa-
tion time T for 03C8 is strongly dependent on the field magnitude. Provided that the sample thickness
d is above a certain limit dc, the nature of the instability is very different, depending on the ratio
of the field frequency 03C9 to a critical frequency 03C9c. For 03C9  03C9c the onset of instability corresponds
to a charge q which oscillates at the frequency 03C9, while the curvature 03C8 is essentially time inde-
pendent. For 03C9 &#x3E; 03C9c the situation at threshold corresponds to a constant q and an oscillating 03C8.
These predictions, together with the calculated curves of threshold voltage vs 03C9 and d, are in
reasonable agreement with a number of recent experiments.

LE JOURNAL DE PHYSIQUE TOME 32, AVRIL 1971,

Classification :

Physics Abstracts
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1. Introduction. - The effects of electric fields on
nematic liquid crystals are spectacular : when a nema-
tic sample with negative dielectric anisotropy

B Il - B.l = Ba  0
is placed between semi-transparent electrodes and a
voltage V is applied, one observes the following
sequence of events (1 - 4) (in increasing V:) :

a) At a certain threshold Vc a cellular type of

hydrodynamic motion appears : this is revealed by
small concomitant deflexions of the molecular align-
ment, or by the motion of dust particles floating in
the liquid.

b) At a higher threshold Yt the flow becomes tur-

(*) Cette publication recouvre en partie la thèse de Doctorat
ès Sciences Physiques de Madame Elisabeth Dubois-Violette
qui sera soutenue prochainement à la Faculté des Sciences

d’Orsay. Cette thèse est enregistrée au C. N. R. S. sous le numéro
A. 0. 4952.

(**) Laboratoire associé au C. N. R. S.

bulent ; the molecular alignment is then strongly
perturbed, and the scattering of visible light becomes
very large : this type of effect has been called « dyna-
mic scattering » by it’s discoverers.

In the present paper, we describe some theoretical
calculations of the first threshold Vc : this threshold
is not the most interesting quantity from the point
of view of optoelectronic applications, but it is the
best probe available for fundamental studies. Many
effects contribute to Vc. A very lucid description of
the state of affairs in given in the work of Ronde-
lez [5]. Following his discussion, we must carefully
distinguish the cases of Dc and Ac excitation :

1. FOR DC EXCITATION. - The injection of char-

ges via the electrodes plays an important role.
This was already apparent in the work of the RCA
group on Yt. More recently, Koelmans and Van
Boxtel [6] have shown that there remains a threshold
Vci (very similar in magnitude to Vc) in the isotropic
phase of the nematic : in this phase we are probably
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dealing with the « Felici instability » of all liquid
insulators under unipolar charge injection [7]. However,
in the nematic phase, we must have some other pro-
cesses superimposed to charge injection, since dyna-
mic scattering is observed only for materials with
Ga  0. The present interpretation of these processes
is based on an idea of Carr [8] which has been worked
out in great detail by Helfrich [9] ; the principle is

explained on figure 1. A qualitative discussion incor-

FIG. 1. - A nematic liquid crystal is, at zero electric field,
aligned along X-direction. A magnetic field H and an Ac extemal
electric field E(t) are respectively applied along Y and Z-direction.
d is the sample thickness and V the fluctuation angle of the

director (preferred direction) around X-direction.

porating simultaneously the Felici effect and the
Carr-Helfrich effect has been given recently [10].

2. AC VOLTAGES. - At first sight this situation

might appear more complex : in actual fact it is

simpler, for the following reason : as soon as the fre-
quency w/2 rc exceeds a few cycles, charge injection
becomes negligible [5]. Thus, by going to AC volta-
ges, we eliminate all the complications related to

the nature of the electrodes and the chemical reactions
at their contact.

The present paper does not take into account any
injection effects : it is thus restricted to the Ac regimes.
The only new contribution which we bring in, as

compared to the work of Helfrich [9], is to intro-
duce time dependent equations, where the time lags
associated with the charge response and with the
orientational response of the liquid crystal are taken
into account. Just as in ref. [9] our description
contains certain oversimplifications : if the sample is
parallel to the xy plane, with the molecules along x
in the unperturbed state and the electric field along z
(see Fig. 1), we assume that all physical quantities
depend only of x, not of y or z : the only type of
deformation which is taken into account is a pure
bending mode. This is qualitatively correct, as shown
by a number of récent experiments. However, near the
walls, the « director » n must also dépend on z to
satisfy the correct boundary conditions. In our appro-
ximate treatment, this is not taken into account ;
we simply say, as in ref. [9], that the wavelength of
the fluctuating mode along x cannot be much larger

than the sample thickness (1). A more detailed three
dimensional analysis could be attempted, but the

present, rough approach allows for much more

physical insight.
In section II, we rederive the fundamental dynamic

equations describing the charge flow and the changes
in molecular orientation, based on the hydrodyna-
mic theories of Ericksen [11] and Leslie [12], [13]. (We
consider only materials where the anisotropy of the
electrical conductivity a. = ul, 

- O’.L is positive -
as it has always been found up to now.) In section III,
we apply these equations to the low frequency regime,
where the charges are modulated at the frequency co
of the electric field. We call this the « conducting
regime ». In section IV, we discuss the high frequency
regime where the charge distribution becomes essen-
tially static (« non conducting regime »). In section V
we discuss some extension of our results to systems
where the dielectric anisotropy would be slightly
positive, rather than negative, but where the unper-
turbed molecular alignment is still in the plane of the
slab (because of the walls or because of a magnetic
field H applied along x). The case where the applied
electric field, instead of being a sine wave, is a suc-

cession of rectangular pulses, will be the object of a
second paper : it leads to a very different diagram of
threshold versus frequency, and could be of some
experimental interest.

II. Electrohydrodynamic équations. - As explai-
ned in the introduction, we consider a nematic slab

of thickness d, lying in the xy plane (Fig. 1) and sub-
mitted to an electric field E = EM cos wt along z.

We assume that in the unperturbed state the mole-
cules are aligned along the x direction, and we also
allow for a stabilising magnetic field H applied along x.
We consider pure bending fluctuations (2) where the
director n is in the (x, z) plane, making a small angle
ç with the x direction. Finally we assume that ç is
only a function of x.

Associated with such an orientational fluctuation,
we have a space charge q(x) and a hydrodynamic
flow velocity : in our approximation where every-

thing depends only on x, this velocity has only one
non-zero component vz(x) (3).
For the internal rotation, we can neglect the iner-

tial terms. Let us define as in ref. [14] the viscous

torque as the frictional torque exerted by the mole-
cules on the over-all hydrodynamic motion. This

viscous torque must be equal to the sum of the elastic,

(1) For some cases, we will find that the wavelength is in
fact much smaller than the thickness : then our analysis is

probably quite correct.
(2) Helfrich has shown that, for this orientation of the electric

field, these pure bending fluctuations are the only ones to induce
shear flows.

(3) For the slow motions of interest, the nematic may be
considered as incompressible : here this imposes ÕVx/Õx’= 0 and
finally Ux = 0 when there is no general drift along x.



307

magnetic and dielectric torques exerted on the mole-
cules :

The dielectric torque is induced by the total electric
field, i. e. the sum of the external field and the field
due to space charges q.

II.1 CONTRIBUTIONS TO THE TORQUE. - The elec-

tric, dielectric and magnetic torques can be derived
from the free-energy

where K;i are the elastic coefficients in Franck’s [15]
notation, xa and Ea the anisotropic parts of the magne-
tic susceptibility and dielectric constants

It will be assumed that the fluctuation angle, ç, is

small : only first order terms in ç will be kept. This
fluctuation induces a space charge q which in turn
induces the x-component Ex of the total electric field
[9]. As shown by Helfrich, Ex and q are first-order
terms in (p. For the sake of simplicity, we will omit
the part of the z-component of the electric field
induced by the space-charge q : it can be easily shown
that this component occurs only in second-order
terms in (p. Hence Ez = E(t).

In our frame of reference the torques are given by
the functional derivative

Assuming a periodic fluctuation

one finds, for the elastic, magnetic and dielectric

torques : 

Using the notations of reference [14], the viscous

torque is 

with

where the director n(r) is a unit vector along the
preferred orientation of the molecule ; n is the angular
velocity of the director and v is the fluid velocity.
Recalling that the only non-zero component of v
is vz(x, t) the only non-zero components of tensor A
are

Hence

We will use further the following notations

The minus sign in the definition of Eo2 will be useful
in sections III and IV where we assume a negative
dielectric anisotropy, which is the case for the expe-
rimental data. In section V, we will allow Ba to be
positive, and use only DQ.

Inserting eqs. (II, 2-4) into eq. (II, 1), one finds

II.2 CHARGE-BALANCE. - The conservation equa-
tion for charges is

where q is the excess charge per unit volume and J
the electric current. It is shown in Appendix A that
the diffusion currents can be neglected. Then

Keeping only first-order terms in ç and Ex,

From the relation

one obtains

where = oq&#x3E;/ox is the local curvature. Inserting
eqs. (11, 8) and (II, 10) into eq. (II, 6), one has the
charge-balance equation
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with

Here T is the dielectric relaxation time for charges.
Eq. (II, 11) relates the charge q to the curvature t/J.

Il. 3 ACCELERATION EQUATION. - The equation of
motion is (4)

where 1f and û are the elastic and viscous stress tensor
[11], [15]

We use for Ù’ the notation of ref. [16] : this takes
into account the effect of the Onsager reciprocal
relations on the expression of the viscous stress

tensor. N and A are defined in section (II, 1).
The x-component of eq. (II, 13) defines the pres-

sure p. We are interested only in the z-component of
this equation. Since vx = 0 and nl,z = 0,

Hence

Keeping only first-order terms in eq. (II,14), axZ is

given by

(4) We use the following notations [11], [16]
- ab is a dyadic with the components (ab)ii = ai hi
- a. T is a vector :

- f,j is the functional derivative df/dXj 
- (Div T) is a vector with components (Div T)i = E Tji,j.

i

where

From thermodynamical relations [16], rI’ is positive
definite. Inserting (II, 16) in (II, 15), we find, for the
acceleration equation :

In this equation the left h. s. may be neglected (a)
in the « conduction » regime where this term vanishes
(b) in the « dielectric » régime where pvz is of order
0WVz and can be neglected with respect to

which is of order il’ k2 vZ (Typical experimental condi-
tions are w ~ 102 _10’ H, ; k N 2 x 104 cm-’ ;
q’ = 10 -1 poise).

II.4 EQUATION FOR THE CURVATURE. - Using eqs.
(II, 2), (II, 3), (II, 10) and (II, 18), the x-derivatives
of the torques can now be expressed as functions of
the charge q and the curvature .p. Let us introduce the
following notations :

Using eqs. (II, 3) and (II, 18) one finds

Using eqs. (II, 2), (II, 4) and (II, 10), one has

Hence, from eq. (II,1) one finds the curvature equa-
tion
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where il defined by : :

is an effective viscosity. From theoretical considera-
tions on flow-alignment of nematic liquid crystals,
one can deduce the following inequalities [13]

Hence 2 y,/(y, - 72) is of order unity. For small

values of e.(8, « 1) 811

On the contrary, for materials having a strong posi-
tive dielectric anisotropy, il can be negative. l/q
vanishes for

1. e.

We shall see in section V the consequences of this

point.
Eq. (II, 24) can now be rewritten as :

where the time-dependent quantity

appears as a relaxation rate for the curvature.

11.5 FORMAL MATHEMATICAL PROPERTIES. - Eq.
(II, 11) and (II, 27) are two coupled equations for the
charge density q and the curvature 1/1. They are linear
in q and 1/1 ; from a mathematical point of view, they
have some similarities with the spinor equations des-
cribing the motion of a quantum mechanical spin
S = 1 in a radiofrequency field. However, one further
complication is present : the relaxation rate 1/T for the
curvature is not a constant, because E is modulated
in time. Let assume a sinusoidal field E = EM cos wt
and rewrite our two equations for this case

We shall also find the following notations useful

The system (II, 29), (II, 30) accepts solutions of the
form

where a(t) and b(t) are periodic functions of time with
period 2 n/w, and s is a number which may in princi-
ple, be real or complex. The proof of eq. (II, 31) is
similar to the proof of the Bloch-Floquet theorem for
electron propagation in one dimensional solids and is
given in appendix B. For each value of EM, there are
two independent solutions of the form (II, 32) with
different parameters sl(EM) and S2(Em) - (We choose
to call si the parameter with the largest real part).
We are interested here in the onset of instability. This
occurs when

eq. (II, 33) (where Re means : real part of) is an impli-
cit equation for the threshold field EM.
We shall now proceed to a more quantitative (and

less formal) discussion of the threshold in some sim-
ple regimes. For these regimes we find that, at thres-
hold, the imaginary part of sl is equal to zero : the
onset of instability is associated with very slow hydro-
dynamic motions. This property seems to be in agree-
ment with the experimental observations [5], but we
have not been able to prove it for all regimes.

III. Low frequencies and low fields : « conduction

regime ». - III.1 DEPENDENCE OF THE CURVATURE

tfr(t) ON TIME. - In the present section we shall be
concerned with frequencies w comparable to the
dielectric relaxation rate 1/T. It will turn out that, for
such frequencies, the electric field threshold is rather
small ; then the relaxation time T f for the molecular
orientation (as defined by II, 31) is long

We shall now prove that when the inequalities (III, 1)
are satisfied, the curvature (at threshold) is essen-
tially independent of time. Our starting point is

eq. (II, 30) which may be rewritten as

This may be transformed into the integral form
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the lower limit of the integral ensures I/J( t) to be a
periodic function of t. In the low-field limit (cotf &#x3E; 1),
we can make two approximations :1 1

is of order

jno . .

We can then take

-- -j

in eq. (III, 3).
ii) The term exp(l + 2 p2) tlTf can be taken as a

constant over one period. This means that q(t) cos colt
can be replaced in the integral by its average value
over one period.

Let us expand q(t) as a Fourier series :

Hence

After integration one obtains

Thus, in this regime, the curvature fi is not time-
dependent : the molecular alignment has a long res-
ponse time T f and does not follow the time variation
of the field E(t).

111.2 MODULATION OF THE SPACE CHARGE AND

THRESHOLD CONDITION. - Knowing that qf is indepen-
dent of t, eq. (II, 29) is easily integrated and gives

The space charge q oscillates at the frequency co,
but the local force density qE has a DC component
qi EM/2. The onset of instability is thus caracterized

by a charge oscillation. This regime is then legiti-
mately called a « conduction regime ».
The instability threshold is obtained from eqs. (III, 6)

and (III, 5). From eq. (III, 6),

eq. (III, 5) then gives the threshold condition :

where

Inserting eq. (II, 31) into eq. (III, 7), one finds for
the threshold field

III.3 DISCUSSION. - The threshold field depends
only on two parameters which caracterize the nematic
material. The first one is the relaxation time for charges,
’te The second one is the dimensionless coefficient ,2.

(For M B B A (0’11/0’1. = 1,5 ; 811 = 4,7 ; 81. = 5,4 ;
il,o/y, L-- 0,4) one finds ’ - 3,2.) The role of the para-
meter

has been pointed out by Helfrich [9] for the Dc regime.
For this reason we shall refer to OH as the Helfrich
parameter. It will play a special role in the discussion
on the instabilities for negative or positive Ba which
is given in section V.

It is interesting to note that (in spite of the under-
lying approximation wTf &#x3E; 1) eq. (III, 9) gives the
exact threshold in the limit w - 0. This DC threshold
can be directly obtained from eq, (II, 29-30) :

For increasing w, eq. (III, 9) leads to a « cut-off fre-
quency »

For w increasing toward Wc, the threshold field tends
to become very large : in fact eq. (III, 9) becomes
incorrect when EM reaches a value EMc such as 1/Tf
becomes comparable to w. On figure 2 is shown the
range of validity of eq. (III, 9). The approximation
will be valid up to m = w’c. w’c will be close to Wc if
ÂEo2/w,r , « 1. Let us discuss this quantitatively for
H = 0 and assuming values of (,2 - 1) of order

unity. Then, if d is the sample thickness, replacing
(tentatively) the wave-vector k by nid as in reference [9],
we have

where
A .1 4
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FIG. 2. - The full line gives the threshold-field of instability
versus m2 in reducted coordinates. The dashed line is the para-
bola u = (’2 - 1) (d./d)4 v2 corresponding to the condition

o7/ = 1. The two lines intersect at points (uo, vo) and (ué, vc).
The assumption cotf &#x3E; 1 is valid in the corresponding frequency

range (cvo, w’c).

Thus one condition for the existence of the low

frequency, conducting regime is

where dc = n(K33 1:/r")’h. Typically, K33 ~ 10-6 dynes,
1 /1 = 2 x 102 S -1, r" = 10-1 poise ; this gives
dc 7 J.l...

It must be noted that, as can be seen on figure 2,
this condition ensures the validity of eq. (III, 9) not
only up to frequency W = Wc but also in the low fre-
quency range. For d/dc « 1 , one finds for the limiting
frequencies

Taking ,2 = 3 ; 1/T = 20ûs-l; d = 100 Jl; de = 7 y,
one finds w0/2 je = 0,1 Hz ; we/2 7c = 50 Hz ;

Thus, for materials having a negative dielectric

anisotropy, the « conduction regime » occurs in the

frequency range (0, wc). (For very low frequencies
further complications might be caused by carrier

injection, but we do not consider this here.)

We shall find in section IV that, for frequencies
et) &#x3E; Wc, another regime occurs, the so-called « dielec-
tric » or « fast turn-off » regime. Wc thus appears as
a limiting frequency between two regimes rather
than a real cut-off frequency.
We shall now discuss brkfly the dependence of the

threshold on thickness and on magnetic field. The

equivalent field Eo is given by eq. (II, 4)

where k = kx is the wave-vector along x-axis. Both

experimental conditions and qualitative physical argu-
ments suggest that k ~ n/d where d is the sample
thickness. Hence

or, introducing the magnetic coherence length

a) For low magnetic fields (e » d). - From eqs.
(III, 9) and (111, 14), one finds, for the rms threshold
voltage Vthr ;

where

Eq. (III, 15) shows that, for low magnetic fields, the

experiments will give a voltage threshold indepen-
dent of sample thickness. This is well confirmed by
the experimental results [1], [2].

b) For higher magnetic fields. - One has

or

where

(with d = 100 Jl, Ho = 103 G).
For H » Ho, Vthr(W, H) will be proportional to d ;

one will observe, for fixed co, a field threshold propor-
tional to H. These results are in reasonable agreement
with the experiments ma,de at Orsay [5]. , ,
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IV. « Dielectrie régime » (wt » 1). - When wi is

large, the charges accumulated by the Carr-Helfrich

process do not have enough time to flow during one
cycle : the charge density q (at threshold) becomes
time independent. This may be proved explicitely on
an integral version of eq. (II, 29) :

In the limit cor » 1, exp(t’/i) can be taken as a
constant over one period. Thus we can replace in the
integral .p(t’) cos mt’ by its average value over a

period. Expanding f(t) as a Fourier series

n = 0

one has 

and

,, .

The space-charge is time independent. This regime
is a « non conducting » regime. Using eq. (IV, 2),
eq. (II, 30) is easily integrated :

where

Eq. (IV, 3) and (IV, 4) lead to the compatibility equa-
tion

where

In eq. (IV, 5), ( is a caracteristic of the material. E5 and
y depend on the wavevector k. For fixed w, the thres-
hold will be obtained for the minimal value of X

(i. e. E2) satisfying eq. (IV, 5).

g(X, Y) is a continuous function of X and Y. Let us
rewrite eq. (II, 30) and (IV, 4) as :

where u = wt and 1/1’(u) = o1/1/ou.
From these last equations it can be easily shown that
(i) When X --&#x3E; 0, the condition for 1/1 to be periodic

is

Thus, for X --. 0, g(X, Y) --&#x3E; 0.
(ii) When X -. oo, from eq. (IV, 9), for finite Y,

tf(u) --&#x3E; f ’(’/2 cos u and from eq. (IV, 10)

(iii) If X or Y is negative, the integral in eq. (IV, 3)
diverges.
Hence for any value of (2 «(2 &#x3E; 1) (5) one can find

solutions of the equation

and the curve defined by this equation is located in
the first quadrant (X, Y &#x3E; 0).

Let Xm and Y. be the values of X and Y that give
the absolute minimum of X on this curve. Xm and
Y. correspond to the threshold conditions and depend
only on ,2. This leads to two requirements, listed
below under (oc) and (p) :

oc) Threshold field.

From eq. (IV, 12), E2(t) appears to be proportional
to w. This is an asymptotic result for high m. At slightly
lower frequencies, the correct result is E2 = cons-
tant + wXm/À. We shall now discuss briefly an

improved approximation leading to this form.
We must take into account the fact that Xm depends

not only on (2 but also on WT. For WT &#x3E; 1, we can
expand Xm on powers of 1/wr :

(5) It appears, from computer calculations, that, eq. (IV, 11)
has no solution for ’2  1. We have not been able to give a
mathematical demonstration of this point. It implies that there
is no « dielectric » instability for (Ç2 - 1)  0.
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Then we have

and we find a straight line for the plot of E2 versus m.
This is in good agreement with the experimental
result [5], [17], [18]. Finally, inserting eq. (II, 19)
in eq. (IV, 13) one obtains

It must be noted that, from eq. (IV, 14), the field
threshold does not depend on the wave vector k :
thus it is independent of sample thickness [5], [17],
[18]. This is very different from the conduction regime
(w  wc) where the voltage threshold was independent
of thickness. The existence of a field threshold for
w &#x3E; Wc is well confirmed by the experiments [17].

fl) Spatial periodicity of the molecular pattern at

threshold. - At threshold we have

This is an implicit equation for the wave vector k
defining the spatial periodicity. Expanding, as pre-

viously, Ym«(2, wt) on powers of 1/cor, one finds, for
mI » 1,

Inserting eq. (II, 4) and (II, 19), one obtains :

Eq. (IV, 16) shows that, at threshold,

(i) for fixed H,k2 is a linear function of w
(ii) for fixed w, the quantity (Xa H2 + K33 k2)

remains constant.

These two points have been confirmed by recent

experiments on M B B A at Orsay [17].
In order to reach more quantitative comparisons

between theory and experiment, we have numerically
computed the function g(X, Y) for various values

of Ç2 (1  (2  20). On figures (3-4), 1/g(X, Y) is

plotted versus 1/X in the range X &#x3E; 5, Y  2.5.

A more accurate calculation of Y.0 and Xm has also
been carried on a computer for values of (2 corres-
ponding to the experimental conditions.
One finds Xm = 1.04, Y0m = 0.31 for (2 = 3.05

and X0m = 0.58, Y0m = 0.37 for ,2 = 4.5.
A crude estimation of (2 gives 3.2. The slope of the

FIG. 3. - (2 is plotted versus 1/X for différent values of the
parameter Y.

FIG. 4. - Enlarged detail of figure 3. One can see how the
curves are intercrossing for different values of Y.

experimental curve E2(w) is in a good agreement
with the one that can be deduced from the first set

(X0m, Yji) [17]. The agreement between theory and

experiment is less good for the slope of E 0 2(CO) . The
slope of this curve depends on the conductivity of the
material, and does not remain constant when w increa-
ses. It appears [17] that the agreement between the
theoretical and experimental slopes is reasonable

only for small values of k2. The discrepancy that
occurs for high values of k2 could be due to the effects
of the diffusion currents (see Appendix A).
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It must be emphasized that, in this regime, the space
charge is time independent, but the curvature (and
the molecular preferred orientation) has a rather

complicated oscillation with period 2 n/w. (tf(t))2
is shown on figure 5. The local dielectric tensor oscil-
lates with the same period. We can then legitimately
call this regime a « dielectric regime ».

FiG. 5. - ig2(U) is plotted versus u for : u(0, n), ’2 = 3.05 and
y = Y.’ = 0.31 .

V. The case ell &#x3E; B1.. - By mixing suitable nema-
tric components one can vary continuously the
dielectric anisotropy --a and even change its sign :
in the present section, we shall discuss the instability
threshold as a function of Ba, allowing e. to be either
positive or negative. We make two restrictions however

a) even when Ea &#x3E; 0, we consider only the case
where the unperturbed optical axis is parallel to the
walls (along x, in the notation of this paper), the
alignment being due either to a magnetic field H or to
suitable boundary conditions at the walls

b) we restrict our attention to nematics with 6a &#x3E; 0
(no system with 6a  0 being known at present).

In spite of these two restrictions, we shall find a
great variety of possible behaviors. The results are
summarised in figure 6.
Our investigation will be mainly concerned with

the « conduction regime », which will turn out to
be often dominant here. The fundamental equation is
still eq. (III, 9), which applies for both signs of Ea.
We may rewrite (III, 9) in a form where the role of
the dielectric anisotropy is more apparent.

where Do is defined by eq. (II, 4), and the Helfrich
parameter OH is given explicitely by :

ô is a dimensionless ratio involving the friction coef-
ficients

FIG. 6. - Instability mean square threshold field versus w2 for
different values of a.. The dielectric regime (D. R.) occurs only
in the range 8ao  a  0. For 8a = 8a1’ 8a2’ C2 = 0 and the

Carr-Helfrich process disappear. D5/8a is the threshold for the
Fredericks transition.

From thermodynamic inequalities [16] y,, ’10’ and

71 - 72 are positive. From the experimental data on
alignment by flow in nematics Leslie [13] has concluded
that - y2 &#x3E; yi. These remarks lead to the inequalities
0  ô  1. For P A A we expect b N 0.7 (and this
order of magnitude also applies probably to M B B A).
Note that ,2 (in eq. V, 2) may now be positive or
negative. Some special values of (2 play a crucial
role in the discussion

a) ,2 = 1. This is obtained when 8a = 8aO’ where

For e.  a.0 the nematic is absolutely stable under
fields of arbitrary strength and frequency (6)

(6) The value Eao defined by (V, 4) is acceptable only if it

corresponds to values of 811 and 8.L which are both positive :
this requires O’a/O’.L  (1 - b)/s.
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b) ,2 = 0. This may occur for two distinct values
of Ea (’)

For (2 = 0 the torques due to the Carr Helfrich effect
vanish exactly (8) ; eq. (V, 1) gives a threshold inde-
pendent of frequency E2 = Do/8a. This could have
been derived from the standard discussion of the

competition between the field H - plus the effect
of the walls - (favoring an alignment along x) and
a static field .J E2 (favoring an alignment along z).

In the cases which have been studied experimentally
we have 8a1  8a2. We shall restrict our attention to
this case in what follows.

Finally, returning to eq. (V, 1), we find the following
types of behavior upon increasing Ea :

1) Ba 1 Eao = complete stability

2 Eao  ’6.  0 f 
conduction regime co  Wc

dielectric dielectric regime  ..
(this is the case discussed in the previous sections).

3) 8a &#x3E; 0 conduction regime at all frequencies (9).
Here we have three sub-classes

a) 0  Ea  Ea 1 E increasing function of co
b) Bal  Ea  ga2 E decreasing function of co
c) 8a2  8a É increasing function of (J)

These results are summarised on fig. (6). On this
figure we have also delineated the région in which
the approximation cotf » 1 is valid, since this appro-
ximation underlies eq. (V, 1). It is clear from the figure
that, in case 3), the conduction regime may indeed
extend to arbitrarily high frequencies (9). Some

preliminary results on this case have been obtained
recently at Freiburg [19].

VI. Limitations of this model. - In this model,
we have considered the Helfrich-Carr instabilities for
an Ac electric field in an infinite médium ; the boun-
dary conditions at the surface of the sample have
been included in a very approximate manner. This
limits the validity of the model and may explain some
discrepancies with the experimental results. Some

other discrepancies may be due to the existence of
diffusion currents that we have neglected. Nether-
theless it appears that this model is able to explain
most of the experimental results for materials having
a negative dielectric anisotropy and to give some
predictions for the case of a positive dielectric aniso-
tropy.

(7) To derive eq. (V, 5) it is convenient to write Ç2 = aH 1:/11/
(eq. III, 8). The two roots correspond to the zeros of crn and
of 1/n.

(g) This is shown in appendix C.
(9) Of course, at some frequency mi 1 the dispersion of the

dielectric constant would become important : typically we will
be in the range of 105 cycles.

Provided d/dc &#x3E; 1, this model is valid for the whole
frequency range of interest (0 - 105 Hz) except in
two small frequency intervals.

a) for very low frequencies (w  cvo) where the

assumption wTf &#x3E; 1 does not hold. However, for

very low frequencies, the instabilities may be due to
carrier injection (such as in « Felici instabilities) »
and not to the Carr-Helfrich process ;

b) for frequencies of the order of the « cut-off »

frequency WC’ In this range the instability regime is
neither a conduction regime nor a dielectric regime,
but can be considered as a mixing of both, in agree-
ment with observations made at Orsay.
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APPENDIX A : Contribution of the diffusion
currents. - We have neglected in section (II, 2) the
diffusion currents. We will now take into account
these currents and show that their contribution can
be neglected.

Let us call qi the contribution of ion i to the excess-

charge and D, its diffusion tensor

The total electric current is

when J is defined by eq. (11,7). The charge-balance
equation is now

Let us define the average diffusion constant as

and the Debye screening parameter

Eq. (A, 3) can be rewritten as

with

For M B B A, D ~ 10-7 cgs ; 1/r ~ 4 x 10’ s-’ ;
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qD2 ~ 4 x 109 cm-2. In the conduction regime,
k ~ x/d, and taking d = 100 u, k2 ~ 103 cm-2.k2/qE
can be neglected.

In the dielectric regime for frequencies of the
order of 400 Hz, one finds q2 in the range
2 - 4 x 101 cm-2.k2/q2D can still be neglected.
However it must be emphasized that, for higher
frequencies, leading to higher values of k2, one could
not neglect these terms. In section IV, 1/(2 must be
replaced by 1/(2 (1 + k 2lq 2 Therefore the results
of section IV are no longer valid : E2 (co) and E2(w)
are not straight lines, and, for m fixed, (xa H2 + K33 k2)
is not constant in the range k2 ~ q2D.

APPENDIX B : Extension of the Bloch-Floquet
theorem. - The proof of eq. (II, 32) can be set on the
following lines :

(i) The system of equations

can be written as

where w(t) is a spinor with components (y(t), z(t))
and (M(t)) a square matrix

The general solution is

where ;fr 1 (t) and ;fr 2(t) are linearly independent solu-
tions (and al and a2 are time-independent) :

Using the Feynman conventions for the ordering of
non commuting operators, one can write the evolution
operator A(t) as

(ii) Let (M(t)) have period T. If w(t) is a solution
of eq. (B, 2), à(t + T) is also a solution of this equa-
tion. We can thus write

where the a’s are time-independent constants.

(iii) We can find two linearly independent spinors

where Â1, and Â2 are the roots of the secular equation

State

From eq. (B, 5), the spinor (Plt) is periodic with
period T. This proves eq. (II, 32).

APPENDIX C : Torque balance in the conduction
regime. - Let us rewrite eq. (II, 24) as

where

or

and

7p is the part of the torque (independent of the space-
charge) which is taken into account in the standard
discussion of Fredericks transition. rH is the contri-
bution of the Carr-Helfrich process to the torque.

In the « conduction regime », the relaxation time
T f for the molecular orientation is much longer than
the period of the electric field. Hence we may consider
only the average values (over one period) of the torque.
Then we have

From eq. (C, 6), TH vanishes if ,2 vanishes.
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