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QUASI-SPIN SYMMETRIZED ORBITAL OPERATORS
FOR dN CONFIGURATIONS

B. G. WYBOURNE

Physics Department, University of Canterbury, Christchurch, New Zealand

(Reçu le 3 décembre 1970)

Résumé. 2014 Deux opérateurs de particules en orbite, ayant les propriétés de transformation
des groupes quasi rotatifs et rotationnels R5, sont construits. Les effets d’ordre secondaire produits
par la corrélation électrostatique des inter-réactions orbitales d’une particule, sont écrites formel-
lement en termes d’opérateurs symétriques. Le calcul des éléments de matrice est discuté ainsi que
ses relations au problème du calcul des facteurs isoscalar.

L’application aux inter-réactions électriques quadripolaires infiniment fines est envisagée.

Abstract. 2014 Two particle orbital operators having well-defined transformation properties
under the quasi-spin group and the rotational group R5 are constructed. The second-order effects
produced by electrostatic correlation of one particle orbital interactions are formally written in
terms of the symmetrized operators. The calculation of the matrix elements is discussed together
with its relationship to the problem of calculating isoscalar factors. The possible application to
electric quadrupole hyperfine interactions is considered.

LE JOURNAL DE PHYSIQUE TOME 32, AVRIL 1971,

Classification :

Physics Abstracts
13.00, 13.20.

Introduction. - The symmetrization of the interac-
tions for many-electron systems into operators having
well-defined transformation properties under the

groups used to classify the many electron states is well
established [1]. Judd [2] has discussed in some detail
the analysis of the spin-spin and spin-other-orbit
interactions for the d-shell, making particular use of
quasi-spin methods [3]. Feneuille [4] has, in a similar
fashion, considered the symmetrization of effective
three-particle operators for the d-shell. These operators
arise in the perturbative treatment of the configuration
interaction produced by the Coulomb repulsion [5, 6].

In each of the above cases considered the Hamilto-
nian is rotationally invariant and thus there was no
preferred axis of quantization and hence only scalar
interactions arose. There are, however, a number of
situations where the Hamiltonian, real or effective, is
not rotationally invariant. This is indeed the case for
an ion in an external electric or magnetic field or in the
presence of a nuclear magnetic dipole or electric

quadrupole.
In this paper we first establish the form of the effec-

tive operators required to represent electrostatically
correlated single particle operators leading to the
need to consider the evaluation of the matrix elements
of effective two particle operators of the form

In the case of spin-independent interactions, such as

arise in crystal field and electric quadrupole hyperfine
interactions, we must consider the matrix elements of
the operators

The problem of representing these operators in terms of
symmetrized operators of pure quasi-spin for the

specific case of the dN configurations is then attacked.
Problems related to the calculation of the matrix
elements of the quasi-spin symmetrized operators and
their application to problems in electric quadrupole
hyperfine structure is considered.

I. Electrostatically Correlated Single Particle Inter-
actions. - Any single particle interaction may be

expressed in terms of double tensors [7],

Consider the state Aa &#x3E; of a configuration A to be
perturbed by the states Bfi &#x3E; of a configuration B,
then to second order we must replace each matrix
element

by
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where

where E is the positive excitation energy required to
transfer a single electron from A - B and Q designates
the Coulomb interaction between electrons. If we

identify the Aa &#x3E;’s with the states of a configuration
(nl)N (n’ 1’)4l’ + 2 then we may distinguish three possible
configurations B, namely

Case (1) has already been considered by Judd [7] who
obtains the result

1 1 - - - 1 1

where 
l ’ - 

-’..J

and

The above result shows that to second-order case (1)
leads to a simply linear scaling of the first-order matrix
elements. The values of L1 for cases (2) and (3) are of a
quite different nature and cannot be so readily accom-
modated. The relevant summations over the perturb-
ing states may be readily accomplished using the now
standard second-quantization methods of Judd [3] to
give for case (2) 

’

For the case of spin independent interactions K = 0 and eq. (7) becomes

In each case t + K is even.
Case (3) gives

where

and

The last two terms in eq. (9) give rise to a simple scal-
ing of the first order matrix elements. Here, our

principal interest will be in the study of the properties

of the terms d 2 which produce overt effects that cannot
be accommodated by any simple scaling of the first
order matrix elements.
The application of the above results to practical

calculations requires that the single particle interac-
tions be first represented in terms of tensor operators as,
for example, outlined by Judd [8]. In the cases of the
spin-orbit interaction and the spin part of the magnetic
hyperfine structure it is necessary to consider the

double tensor operators W(11) and W(12) respectively.
For the electric quadrupole hyperfine interaction, the
orbital part of the magnetic hyperfine interaction,
and crystal field interactions the purely orbital opera-
tors V(2), V(1) and V(k) (k = 2, 4, ..., 2 l) are required.
The calculation of the electrostatic correlation of these

purely orbital interactions necessitates the evaluation
of the matrix elements of the two-particle orbital

operators
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where k is necessarily even and t and K have the same
parity.

In making practical calculations of the matrix
elements of T(tk)K it is useful to be able to represent the
operators in terms of operators of well-defined quasi-
spin. The advantages gained include not only a simpli-
fication of the matrix element calculations but more

mportantly, a sharper and more descriptive analysis of
the effects of the electrostatically correlated perturba-
tions.
For the particular case of the d-shell we are interested

in the matrix elements of the operators T (22)K , T(42)K
and T (44)K where K = 2 or 4. The operators T(kk)0 ail
have matrix elements that are simply proportional to
those of the Coulomb interaction and need not be
considered here.

II. RS Symmetrization of the Orbital Operators. -
The states of the d-shell may be profitably classified by
their transformation properties under the chain of
groups

The operators V(2) and V(4) transform together as
the [20] representation of Rs and hence suitable linear
combinations of the operators T (2 2)K , T(42)K and
T(44)K must transform according to the representations
of Rs contained in the plethysm [1],

Under restriction to the R3 subgroup we find .that
only the [20], [22] and [40] representations yield the
representations D(K) (K = 2 or 4). Thus we wish to
construct six R5 symmetrized operators E[20](K),
E[22] (K) E[40](K) (K = 2 or 4) as linear combinations
of the T(tk)K (t, k = 2, 4) operators. The linear combi-
nations may be readily determined by writing

The isoscalar factors may be readily determined [1]
from the known matrix elements of V(k) tabulated by
Nielson and Koster [9] to give the results of Table 1.
For later calculations it is also useful to construct the

Rs symmetrized operators 0[20] K, 0[22] K (K = 2,4)
from linear combinations of the operators T(tk)K
where t, k = 1, 3. The appropriate isoscalar factors are
given in Table II. The complete set of RS symmetrized
operators appears in Table III. These results may
then be readily inverted by either solving the linear
equations or more simply by inversion of eq. (13) to
give the operators T(tk)K as linear combinations of the
RS symmetrized operators as given in Table IV. Thus
we have a set of Rs symmetrized two particle operators
and must now study their properties with respect to
the other groups appearing in eq. (12).

TABLE I

Table of Normalized Isoscalar Factors for dN Configurations

TABLE Il

Table of Normalized Isoscalar Factors for dN Configurations
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TABLE III

R5 Symmetrized Operators for dN

III. Symplectic Symmetry. - The operators Wu
and W(lk+ 1) (k = 2, 4) transform together as the

 12 &#x3E; representation of Sp 10 [10, 11 and hence the
two particle operators constructed from these opera-
tors must transform according to the representations
of Sp 1 o contained in the plethysm

Under the reduction Sp10 --&#x3E; Rs x Rs we find [1] that
the 1 [40] representation occurs only with  22 &#x3E;
and thus the operators E[40] (K) have pure symplectic
symmetry. The 1 [22] representation occurs in the
reduction of both  14 &#x3E; and  22 &#x3E; while the 1 [20]
representation occurs in the reduction of  12 &#x3E;,
 14 &#x3E; and  22 &#x3E; and hence the operators E[22] (K)
and E[20] (K) are not symmetrized with respect to Spio.
The operators W(0k+ 1) and W(1k) (k = 0, 2, 4)

transform together as the  2 &#x3E; representation of Sp 10
and hence two particle operators constructed from
them must transform according to representations of
Sp 1 o contained in the plethysm

Operators transforming as  4 &#x3E; will have vanishing
matrix elements when evaluated between electron
states and need not be considered further. The 1 [22]
representation occurs only in the reduction of the
 22 &#x3E; representation and thus the operator O[22](K)
has symplectic symmetry  22 &#x3E;. The operator
o [20](K) has mixed symplectic symmetry since 1 [20]
occurs in the reduction of both  12 &#x3E; and  22 &#x3E;.
The symplectic symmetries of the E and 0 operators
are collected together in Table V. While we could in
principle form linear combinations of the E and 0
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TABLE V

Symplectic Symmetries of the R5 Symmetrized Operators

operators, together with certain additional operators,
to give operators of well-defined symplectic symmetry
it proves to be more useful to proceed directly to the
construction of operators having pure quasi-spin.

IV. Quasi-spin Symmetrization. - If our operators
are symmetrized with respect to the quasi-spin group
RQ then the dependence of their matrix elements upon
the number of electrons N and the seniority v is simply
proportional to a 3-j symbol involving N, v and 1.
Judd [12] has shown that for r-particle operators we
may restrict our attention to representations [12x]
of RSI+4 where 0  x  r. Thus in the case of the
d-shell we may restrict our attention to the quasi-spin
states arising in the reduction R ---&#x3E; RQ x Spio.

where we write the quasi-spin multiplicity 2 Q + 1 as

a left superscript. Inspection of the above decomposi-
tions shows that operators transforming as  22 &#x3E;
under SP10 have quasi-spin Q = 0 and thus E[40](K)
and O[22](K) are pure quasi-spin Q = 0 operators.
The operators E[20](K), E[22](K) and o [20](K) are

clearly of mixed quasi-spin. We may however form
operators of pure quasi-spin by construction of sui-
table linear combinations. It appears at first that the

operator O[20](K) will involve Q = 0, 1 and 2. However,
O[20](K) is constructed from operators T(tk)K (te
k = 1, 3) and we may write

mnce r ana K are oaa wniie &#x26; is even we nna tnat tne

operators T(tk)K can only couple states with dv = 0,
± 2 and hence O[20](K) cannot contain a non-vanish-
ing part with quasi-spin Q = 2.
The operators E[22] (K) and O[22](K) may be combined

to form an operator

with pure quasi-spin Q = 2 where a is independent of

K. The value of a may be readily fixed by demanding
that the reduced matrix element

This matrix element may be readily determined by use
of eq. (15) and the table of Nielson and Koster [9].
We then find that a = - /3-/3.
The results of Tables 1 and II may be used to obtain

the quasi-spin Q = 2 operator

This operator is simply proportional to Judd’s [8J
e2 + Q’ operator, in fact

The operator O[20](K) is of mixed quasi-spin 0 and 1.
The single operators V(K) (K even) are pure quasi-
spin 1 operators. The operators O[20](K) and V(K) may
be combined to form a pure quasi-spin zero operator

where b is independent of K. The constant b may be
readily determined by demanding that the reduced
matrix element

to yield b = - V3/4. Finally we may construct a pure
quasi-spin 2 operator by forming the linear combina-
tion

The constants d and e are readily fixed by demanding
that the reduced matrix elements

and

to give d = V 5/3 and e = 2 Vl5/15. Thus we have the
quasi-spin symmetrized operators of Table VI.

TABLE VI

Quasi-spin symmetrized orbital operators for the d-shell
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V. Matrix Eléments. - The reduced matrix ele-

ments of the operators T(tk)K may be readily evaluated
for a l’ configuration using the result [13]

Linear combinations were then formed to give the
reduced matrix elements of the R5 symmetrized opera-
tors (for K = 2) for the d2 configuration shown in
Table VII. The results of Table VI were then used to

give the reduced matrix elements of the quasi-spin
symmetrized operators given in Table VIII.

TABLE VII

Matrix elements

of the RS symmetrized orbital

operators for d2

TABLE VII (Contd)

The reduced matrix elements given in Table VIII
form the basis for calculating the matrix elements for
all dN matrix elements since if T(K) is an arbitrary two
particle operator we have the well known results [13,
14]
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TABLE VIII

Reduced Matrix Elements

of X[22](2), Y[20] (2) and Z[20](2) for d2

where in (22a) the sum is over the two-particle coefh-
cients of fractional parentage (c. f. p.) and in (22b)
over the one-particle c. f. p. Tables of both types of
c. f. p. are available for the dN configurations [9, 13,
15].
Equations (22a) and (22b) are strictly valid only for

two particle operators whereas some of the operators in
Table VI include one particle operators. These cases
may be readily handled by assuming eq. (22a) and
(22b) are valid for one- and two-particle operators and
then subtracting from the result the matrix elements of
the one particle operators.

Equation (22b) may be readily used to evaluate the
matrix elements for the states of maximum multiplicity
to give, for example, the results of Table IX. The

matrix elements all vanish for the 6S state of d5 while
for the ’D state of d4 the only non-zero two-particle
quasi-spin symmetrized matrix element with K = 2 is

TABLE IX

Reduced matrix elements for d 3

There is, in principle, no difhculty in calculating the
matrix elements of the quasi-spin symmetrized orbital
operators for all the states of the d-shell. Such a
calculation would provide a rich source of isoscalar
factors [16].
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VI. Isoscalar Factors. - The Wigner-Eckart theo-
rem leads to substantial simplifications in the calcula-
tion of the reduced matrix elements of the quasi-spin
symmetrized operators. Application of the Wigner-
Eckart theorem gives

where A0152 is independent of K, L and L’ and a distin-
guishes those cases where [À] occurs more than once in
the Kronecker product [Â"] x [À’]. Thus the entire

dependence upon L, L’ and K of the reduced matrix
elements is contained in the RS isoscalar factor

Judd [8, 12] has discussed a number of applications
of isoscalar factors in atomic shell theory. For example,
since the Kronecker product [11] ] x [11] contained [20]
and [22] just once we conclude immediately that the
reduced matrix elements of Y[20](K), V(K), Z[20](K),
and of O[22](K) and X[22] (K), among the states of maxi-
mum multiplicity of d2 and d3 differ by at most a
proportionality constant. In a similar fashion the
matrix elements for d2 of the operators with K = 4
can be obtained from those found for K = 2 by use of
the isoscalar factors of Tables 1 and II.

While the matrix elements of the tensor operators
V(K) provide a rich source of isoscalar factors their
range is limited by the fact that the operators all
transform under R5 as [11 ] (K odd) or [20] (K even).
Furthermore, since we only have one species of opera-
tor of a given symmetry type we do not have a natural
means of distinguishing those isoscalar factors where
there is a multiplicity problem. Calculations of Kro-
necker products [1] of Rs for those representations
describing the transformation properties of dN electron
states never involve multiplicities of &#x3E; 3, the multi-
plicity 3 occurring only for the [21] and [31] ] represen-
tations that arise in the Kronecker product [21 ] x [21 ].
Clearly the calculation of the matrix elements of the
quasi-spin symmetrized operators E[40] (K) @ O[22](K)
and X[22] (K) could greatly extend our knowledge of R.
isoscalar factors while calculations of the matrix
elements of Y[20] (K) and Z[20](K) would overcome the
multiplicity problem in computing many isoscalar
factors.
We would suggest that the calculation of symmetrized

two-particle operators constitutes a useful approach
to the extension of our knowledge of isoscalar factors.
Clearly there is scope for the construction of other

symmetrized orbital and indeed spin-orbital operators
to allow the investigation of other isoscalar factors.

VII. Electrostatically Correlated Electric Quadrupole
Hyperfine Interactions. - In the case of the electric

quadrupole hyperfine interaction we have in eq. (1)
K = 0 and K = 2 and hence in describing the effects

of electrostatic correlation eq. (8) is required and the
matrix elements of the operator

need to be considered. Since k is necessarily even we
must also have only even values of t. The term with
t = 0 simplifies to just

Thus this term has the effect of simply screening the
normal first order electric quadrupole effect without
changing its angular momentum dependence. The
terms with t &#x3E; 0 clearly introduce overt effects that
cannot be accommodated by a simple modification
of  r-3 &#x3E;.
The values of t and k are limited by the usual trian-

gular conditions for 6-j symbols and thus the terms
arising in eq. (24) depend on the value of l’. For the dN
shell we are limited to one-electron excitations where
l’ = s, d or g. The relevant operators, to within an
obvious proportionality constant, are listed in Table X
together with their expansion into R5 symmetrized
operators. The corresponding expansion into quasi-
spin symmetrized operators follows directly from
Table VI.

Contributions from single electron excitations of the
type dN --&#x3E; dN -1 s and dN -&#x3E; dN + 1 s -1 are likely to be
dominant through out the transition elements. For
states of maximum multiplicity the matrix elements
of E [40] must vanish leaving just those of E[20] .
But the representation [20] occurs at most once in the
relevant Kronecker product and hence the matrix

elements of E[20] (2) must be simply proportional to

TABLE X

Electrostatically Correlated Operators
for Electric Quadrupole Hyperfine Structure
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those of V(2) which arises in the calculation of the
unperturbed electric quadrupole hyperfine struc-

ture [17]. Thus if the d ~ s excitations are dominant it
should still be possible to fit the electric quadrupole
hyperfine structure associated with the states of maxi-
mum multiplicity with a single value of  r - 3 &#x3E;.
However, detailed calculations must await the compu-
tation of the relevant energy denominators and radial

integrals.

VIII. Conclusion. - Quasi-spin symmetrized orbi-
tal operators have been constructed to aid the calcula-
tion of electrostatically correlated orbital interactions
and their matrix elements computed for the d2 configu-
ration and the states of maximum multiplicity for d3
and d4. The calculation of the matrix elements of the
symmetrized operators for the d-shell will provide a
new source of isoscalar-factors which in turn could

give more light on the subject of atomic shell theory.
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