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LE JOURNAL DE PHYSIQUE

THE STATISTICS OF LONG CHAINS
WITH NON-MARKOVIAN REPULSIVE INTERACTIONS
AND THE MINIMAL GAUSSIAN APPROXIMATION

By Jacques des CLOIZEAUX

Service de Physique Théorique, Centre d’Etudes Nucléaires de Saclay
B. P. n° 2, 91, Gif-sur-Yvette, France

(Reçu le 5 mai 1970)

Résumé. 2014 Dans un espace à s dimensions, nous étudions le comportement de longues chaînes
dont tous les points se repoussent (N étant le nombre de maillons) ; la méthode consiste à introduire
des probabilités d’essai qui sont déterminées par minimisation de l’énergie libre FN ; ces probabilités
définissent les dimensions moyennes des chaines. Des théories classiques sont examinées et leurs
défauts mis en évidence. L’approximation gaussienne minimale qui semble l’approche self consis-
tante la plus simple, est décrite en détail pour un anneau de N points de vecteurs rj ( j = 1, ..., N
(un maillon joint deux points successifs).
Le calcul montre que la distance moyenne quadratique entre deux tels points rj et rj+n (n ~ 1,

n/N ~ 1) est de la forme  (rj+n - rj)2 &#x3E; = bn203B1(log n)03B2 avec les valeurs suivantes : 03B1 = 1,
03B2=20141 pour s =2; 03B1=2/3, 03B2= 0 pour s = 3 ; 03B1 = 1/2, 03B2= 1/2 pour s = 4 ; 03B1 = 1/2, 03B2 = 0
pour s &#x3E; 4.
La structure d’un grand anneau est étudiée et le terme 0394FN= FN 2014 N lim (FN’/N’) est calculé

N’~ ~ 

pour s = 3 et N ~ 1 (0394FN ~ log N).
On montre également qu’une classe étendue de probabilités d’essai conduit qualitativement aux

mêmes résultats que l’approximation gaussienne.

Abstract. 2014 We study long chains (or rings) which occupy a space of s dimensions and which
have repulsive interactions between all the points of the chain (N being the number of links) ; the
method consists in introducing trial probabilities which are determined by minimization of the free
energy FN ; these probabilities definite the mean size of the chain. Current theories are examined
critically and their inconsistencies are revealed. The Minimal Gaussian approximation, which seems
the simplest consistent approach, is described in detail for a ring of N links whose end points are
assigned coordinates rj (j = 1, ..., N). The calculation shows that the mean square distance between
two such points rj and rj+n (n ~ 1, n/N ~ 1) is of the form :  (rj+n 2014 rj)2 &#x3E; = bn203B1(log n)03B2 with
the following values : 03B1=1,03B2=20141 for s = 2;03B1 = 2/3, 03B2 = 0 for s = 3 ; 03B1 =1/2, 03B2 = 1/2 for
s = 4 ; 03B1= 1/2, 03B2 = 0 for s &#x3E; 4.
The structure of a large ring is investigated and the term 0394FN = FN2014NlimN’~~ (FN’/N’) is calculated

for s = 3 and N ~ 1 (0394FN oc log N). It is also shown that a large class of trial probabilities leads to
the same qualitative results as the Gaussian approximation.

Tome 31 N° 8-9 AOUT-SEPTEMBRE

1. Introduction. - The statistics of long chains has
been studied for three main reasons :

1. - These chains are a good mathematical represen-
tation of long molecules and biopolymers.

2. - It is generally recognized that the problem of
the behaviour of long chains is closely related to the
theory of phase transitions [1].

3. - This study leads to the formulation of well
defined and interesting mathematical questions.

The central problem is the determination of the

average dimensions of a chain in terms of the number
of links. The answer depends very much on the
nature of the interactions and especially on

their sign. Actually, in long molecules, the interaction
often has short range repulsive components and long
range attractive ones ; in this case, the behaviour of the
chain depends strongly on temperature and phase
transitions may occur [2]. Thus, the situation may be
very complex. For this reason, we deal here only with
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the case where the interactions are short range and

repulsive.
A large number of articles, over a period of twenty

years have been devoted to this question. Many theore-
tical papers have been written and numerous machine

experiments have given valuable information on the
subject. However, very few exact results are available
[3, 4] and very little is known with certainty concer-
ning the asymptotic behaviour of these chains. In

particular, many theories seem quite inconsistent,
and, in the first part of this paper, we study specially
important examples.
However, a very interesting Gaussian model has

been presented a few years ago by M. Fixman [5]. More
recently S. F. Edwards and the author [6] have propo-
sed a new Gaussian approximation which differs from
the approach of Fixman but seems more natural and
simple. A full account of this method which will be
called Minimal Gaussian approximation is given in the
second part of this paper. This approximation des-
cribes in the simplest mathematical way, the process
of swelling of a chain, a notion introduced by Flory [7]
many years ago. However, for peculiar reasons, the
results of the Minimal Gaussian approximation differ
significantly from those of Flory and Fixman, a fact
which seems rather strange. They seem also disagree
with the results of machine experiments [8] and therefore
the Gaussian method may not describe correctly the
asymptotic properties of a repulsive chain. However,
we think that :

1. - the Minimal Gaussian approximation is both
very simple and completely consistent from
a mathematical point of view ;

2. - it gives a fairly reasonable description of the
physical reality ;

3. - the model has interesting features and its study
leads to new and non trivial conclusions which
must have a larger range of application than
the model itself ;

4. - on the other hand, the machine calculations
give very valuable informations but neverthe-
less there is no complete guarantee that they
converge rapidly to the asymptotic limit.

For all these reasons, it seems worthwhile to give here
a complete study of this approximation.

In section II, the problem is formulated precisely
and notations are introduced. Section III which is

independent of the other sections contains a critical
review of other approaches. Section IV is devoted to
the Gaussian approximation. In section V which is
independent of subsections IV F, G, H, I, we examine
the properties of more general models.

II. The chains and their thermodynamic proper-
ties. - A. DEFINITIONS AND GENERAL ASSUMPTIONS. -

We consider a chain of N points, in a space of s dimen-
sions. The position of the point of order j on the
chain is denoted by a vector rj (with j = 1, ..., N).
The probability which is associated with a configu-
ration of the chain can be written :

with

The function Uo(rl, ..., rN) defines the chain struc-
ture :

We may set for instance :

or if we prefer rigid links :

Here, 1 defines the length of a link :

The interaction is represented by

where V(r) is a short range repulsive potential.
The probability law is normalized : -.

and, accordingly, the partition function Z is given
by :

The mean value  A &#x3E; of a function A(rl, ..., rN) of
the chain configuration is :

In particular, the average size of the chain can be
determined by  (rN - ri)2 &#x3E; and for large values of
N, we expect an asymptotic behaviour of the follo-
wing form :

(but logarithmic factors cannot be excluded a priori).
It is generally believed that a depends only on the
dimension of space and not on the microstructure of

the chain. In particular, the formula must apply to
random walks with excluded volume on a lattice, and
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indeed, the results of machine calculations agree
with these views. In the same way, for

we must obtain :

(but we may have b # a).

Instead of chains, we may study rings ; in this case,
the end effects are eliminated but the formalism does
not change; we have only to replace UO(rl’ ..., rN)
and U1 (r l’ ..., rN) by the following quantities :

(In the following, for the sake of simplicity, the primes
are dropped.)

For a ring, when N &#x3E; 1 j - 11 » 1, eq. (II.12)
remains valid. We can also define the correlation

function :

and, in agreement with Eq. (II.11), we think that in the
limit N - oo, the asymptotic expression of J n(r)
for n &#x3E; 1 should be of the form :

with

In particular, when the interaction U1(r1, ..., rN)
vanishes, the chain is Brownian. In this case, a = 1/2
and q(r) is Gaussian

This type of law remains unchanged if Uo(rl, ..., rN)
contains interaction terms between neighbours of

order 2, 3 ... p (provided that p is finite) and not only
between nearest neighbours as in eq. (II. 3).

But, the asymptotic form of J n(r) and the value of a
change if all the points of the chain interact with one
another. This modification in the behaviour of the
chain (ring) is related to the appearance of long range
correlations between the links of the chain [9]. We may
give an example. Let us set

With this notation, we may write :

We see immediately that the existence of link corre-
lations of the form [10] :

for 1 p - q 1 &#x3E; 1 with 0  y  1 implies immediately
that

with

and the converse is also true. (Note that in the Brownian
case  ap. aq &#x3E; would decrease exponentially.)
Machine calculations [10] and simple considerations

[6] suggest that a may be given by :

and indeed one can show directly that a = 1 for s = 1

and that a = 2 for s = 4 in agreement with eq. (II . 24).
Several authors tried to derive eq. (II.24) for s = 2
and s = 3 but objections can be raised to their deriva-
tions. Moreover, in section III, we shall see that the
Gaussian approximation leads to different results.

B. THE MINIMIZATION OF THE FREE ENERGY : TRIAL
PROBABILITY LAWS. - At a given temperature, the free
energy of a chain is given by :

with

where S is the chain entropy [11]. Thus, the free energy
can be considered as a functional of the probability
P(rl, ..., rN) which is regarded presently as arbitrary.
However, the minimization of F with respect to

P(rl, ..., rN) implies precisely that P(rl, ..., rN) is given
by eq. (11.1). Unfortunately, the exact expression of
P(rl, ..., rN) is very complicated and, in the limit
N - oo, we must try to determine a simpler but

asymptotically exact law. More precisely, we would like
to determine the following partial probabilities

which define the asymptotic properties of the chain.

For this purpose, we shall use trial probabilities
PT(rl, ..., rN) depending on unknown parameters.
These parameters are to be determined by minimiza-
tion of the approximate free energy F obtained by
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replacing P(rl, ..., rN) by P T(r 1, ..., rN) in eqs. (11. 26)
and (II.27). The corresponding partial probabilities
will be only approximate but, if PT(r 1, ..., rN) is realistic
enough, they should describe properly the macroscopic
properties of the chain ; in particular, the value of a
obtained in this way should be exact.

III. Early approaches. - A. PERTURBATION TREAT-
MENT. - Let us assume that Uo is quadratic and given
by eqs. (II. 3) and (II.4). In this case, as was shown by
several authors [12], the free energy F and the mean
value  (rN - rl)’ &#x3E; can be expanded in terms of :

For instance, in three dimensions, the expansion of
 (rN - r1)2 &#x3E; obtained by retaining, for each order
in X, the leading term in N, has the form :

with z = (3 rcI2/2)3/2 XN1/2.

This expansion suggests that the asymptotic value of
 (rN - r1)2 &#x3E; is of the form :

though it has not been proved in general that the term
of order n in the preceding expansion (III. 2) should be
proportional to z". Unfortunately, the behaviour of
f (z) for z &#x3E; 1, cannot be found without evaluating the
value of the coefficient of z" in the expression of
 (rN - r 1)2 &#x3E; for large values of n, and this is a very
difficult task because the coefficients of this expression
are given by complicated multiple integrals.

The same parameter z also appears in the expression
of F. Each term in the expansion of F with respect to
N is given by the sum of an infinite series in z, and only
the first terms of these series are known. Thus, it is

practically impossible to reach any interesting conclu-
sion concerning the variations of F with respect to N.

In summary, the perturbation method does not bring
any definite information concerning the size of long
repulsive chains.

B. FLORY’S THEORY OF SWELLING. - The theory of
Flory [7] is more realistic and can be summarized as
follows. For a free chain, the mean density of points
°p(r), counted from the middle of the chain (which
coincides approximately with the center of gravity) is
given by :

The presence of a repulsive interaction (excluded
volume) produces a swelling of the chain and P. Flory
assumes that the general structure of the chain remains

unchanged. Accordingly the new densities f (r) can be
written :

where 6 is the swelling coefficient. The aim of the theo-
ry is the determination of J by minimization of the
free energy F. For the sake of simplicity, it is assumed
that the repulsive potential is smooth and we set :

The energy A U is given approximately by :

In the same way, for a free chain, the probability
distribution °J (r) of the distance between the ends is
given by :

and it is assumed that for the swollen chain, we have
also :

The constraints due to the interaction produce a
decrease of the internal free energy Fo of the system.
According to Flory, it can be estimated in the following
way :

Consequently :

and the minimization condition

leads to the well known equation :

Finally, in the limit of large N, we find :

with

(s = space dimension) . (111. 16)
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The agreement with the results of machine calcula-
tions seems good, but this theory has two serious
defects :

1° The swelling of the chain is not described preci-
sely. In other words, the theory of Flory does not
correspond to any specific model. For this reason,
several authors have tried to make the theory more
consistent by using mean field methods.

20 The theory of Flory is mathematically unsound
for the following reason. Let us consider the magnitude
of the terms which Flory calculates ; by using
eq. (III.15), we find that the order of thèse « Flory
terms » is :

(Eq. (II.8) says also that 2 - as = 2 a - 1 but

presently we may forget this condition).
These terms are small with respect to the main terms

which must be proportional to N. Indeed, we should
really write

When minimizing F, one has to minimize the sum
(AI + A2) N of the large terms and not the sum of the
small Flory terms which for large values of N are
completely negligible. Thus, the derivation of Flory
which ignores the main terms is incorrect.
One might object that the Flory terms, though they

are small, are the most important ones because they
characterize the swelling, whereas the main terms

which are proportional to N exist also for a Brownian
chain and can probably be taken into account inde-
pendently by using some kind of renormalization.

However, we think that such a point of view is not
valid ; we think that the really important terms of AF
are the largest ones, that the swelling can and must be
determined by minimizing what we may call the
« long range components » [13] of the large terms and
that the « Flory terms » are only a by-product of the
swelling. The study of the Gaussian approximation
illustrates this view, as will be shown in section IV.
In fact, the swelling for this Gaussian model is really
determined by minimization of the main terms (the
swelling is even larger than in Flory’s theory) ; in this
case, « Flory terms » exist also in AFo and AU and
their asymptotic behaviour is given by eqs. (III.17)
and (III.18) ; however since the Gaussian approxi-
mation does not give the result of eq. (III.8), the two
Flory terms are not of the same order of magnitude
(2 a - 1 &#x3E; 2 - as).

30 For s = 2 or s = 3, the free energy term calcu-
lated by using Flory’s theory has the wrong sign. In
order to establish this fact, let us assume for the mo-
ment that Flory’s result is right, at least qualitatively.

We see immediately that, for N &#x3E; 1, the term AF

given by eqs. (III.12) and (III.13) is positive. Thus,
for s = 2 or s = 3, according to Flory’s theory, the
asymptotic expression of the free energy must be of
the form :

Consequently, the partition function should be

approximately equal to :

Since the swelling of a chain is a long range pheno-
menon, we expect this result to be valid also for a
chain with excluded volume on a lattice. For such kind
of chain, ZN is just the number of chains of N links
which can be built by starting from a given point of
the lattice. But, in this case, we have always :

since two chains with excluded volume which start
from the same point, have a finite probability of
overlapping. This inequality is incompatible with

eq. (111.22) and therefore, if F has an approximate
value of the form (III.21), the sign of B must be
negative in contradiction with Flory’s theory. Such a
result may seem very surprising but it can be understood
if one considers that the « Flory terms » are only
corrections to the main term and that they are produ-
ced by the appearance of a cut off at distances of the
order of Nl. Actually, by using the Gaussian approxi-
mation for a ring, these Flory terms can be calculated
explicitly, but in this case they vanish for very interes-
ting reasons (see section IV.I) and they are replaced
by a term proportional to log N, in contradiction with
Flory’s assumptions.

Finally, for all these reasons, we may conclude that
Flory’s theory which it does not describe precisely the
swelling process, is also unreliable because it is mathe-
matically inconsistent.

C. THE SELF-CONSISTENT FIELD METHOD. - In order
to détermine thé macroscopic properties of a repulsive
chain in a more detailed way, several author have
tried to take the interaction into account by using a
self consistent field. Thus, Edwards [14] has assumed
that for a chain starting from a point 0 and going to
infinity, the interactions between the points of the
chain can be replaced by a self-consistent potential
V(r) centered in 0. This potential is spherically sym-
metrical and acts on all the points of the chain. Let rn
be the vector which defines the position of the nth point
on the chain (ro = 0). In three dimensions, for large
values of n, the calculation of Edwards gives :

(in agreement with Flory’s equation (111.8)).
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Edwards’ method amounts to choosing a trial

probabilityP(rl’ ..., rN) of the form :

This is precisely the assumption made by Reiss [15]
and Yamakawa [16] who determined V(r) by minimi-
zing the free energy F. The calculation gives the same
answer (eq. III. 24) as the method of Edwards.

However, in spite of this agreement, the method is
far from being satisfactory for a reason which, as we
shall see now, is related to the behaviour of a chain in a

potential V(r). The asymptotic properties of the chain
depend on the properties of V(r) for large values of r,
at which it varies in a smooth way, and where its
influence can be treated by semiclassical methods. More
precisely, let us consider an infinite chain interacting
with a smooth potential V(r) which need not be spheri-
cal. The smoothness conditions are written :

(1 is defined by eq. (11.6)).

and the (discontinuous) function r(L) where L is the
length of the chain counted from the origin (L = nl)
defines the chain. Let a(L) be the vector associated
with the link of order n.

The probability law for a can be written approxi-
mately

and we get immediately :

Now, we can use an adiabatic approximation. In
intervals OL which are large with respect to 1 but small
with respect to 1 V V(r(L))1-1, the function r(L) can be
considered as a random function with independent
increments. Thus, by passing to the limit 1 --&#x3E; 0

(L remaining fixed), we may consider r(L) as a conti-
nuous function of L, which satisfies the following
equation :

where teL) is a Wiener-Levy stochastic vector. The
following properties define this function :

1 ° we have :

2° the mean value of the product of an odd number
of components 8j(L) vanishes ; for instance :

3° the mean value of the product of an even number
of components 8j(L) is given by Wick’s theorem ; for
instance

These results can be used to study the self-consistent
field methods. In particular, we note that passing to
the limit 1 --&#x3E; 0 is legitimate since according to our
assumptions, when L increases, the point r(L) arrives
in regions where V(r) becomes smoother and smoother.
We see immediately that the first term in the right hand
side of eq. (III.32) describes the stretching of the
chain whereas the second one is purely Brownian.
From this remark, we deduce the behaviour of the
chains in regions where V(r) is smooth ; indeed
without solving exactly eq. (III.32), we may conclude
that in those regions, the chain progresses along a line
of force of V(r) (see Fig. 1). If, for instance, V(r) is
spherical and for large values of r, decreases in the
following way :

we find by solving eq. (III. 32) (or more precisely the
non-Brownian part of it) that :

In this case, the chain stretches out radially since the
influence of E(L) is negligible in the mean.
On the other hand, the fluctuations of the chain which

are perpendicular to the line of force remain Brownian

(they come from £(L)) and they are of order L/2 (see
Fig. 1) as can be seen easily by looking at eq. (III. 32).

FIG. 1. - Random chain in a smooth potential. The dotted
lines represent lines of force. The chain follows Lo. The mean
distance of the points of the chain to Lo gives a measure of the

chain width d.
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Therefore, for large values of L, the chain takes the
shape of a spindle. For instance, if V(r) is given by
eq. (III.36) the ratio (width/length) of this spindle is
of order L(¥2)-rz and goes to zero if L - 00.

Therefore, when V(r) is spherical and given by
eq. (III. 36) the concept of mean field becomes meaning-
less, and the replacement of the interactions between
the points of the chain by a smooth field becomes
absurd since the influence of the spherical potential
V(r), destroys completely the symmetry which should
exist between the beginning and the end of the chain
[17]. Thus, the self-consistent field method loses all

validity and the whole approach (for chains with

repulsive interactions) has to be rejected.

IV. The minimal Gaussian approximation. - A.
RINGS AND THE FUNCTION g(k). - In the following,
we study rings instead of chains, for reasons of mathe-
matical convenience : their cyclic invariance enables
us to simplify the equations. But, we note that there
is no real difference between an infinite chain and an
infinite ring, as far as finite parts of them are concer-
ned [18] (i. e. as far as the partial probabilities

defined by eq. (II.28) are concerned).
With a ring of N points (rl, ..., rN with rN+ 1 = rl),

we associate a probability of the form (we set fl = 1) :

We assume that the potential V(r) is weak, that it

decreases exponentially with r, and that its range Iv is
large with respect to the length of the link (Iv &#x3E; 1 = 1).

It is convenient to introduce the cyclic variables p.

In particular, the mean value of the products

pq(j) pq 1 of components of p. and pq, are important
quantities, and for reasons of cyclic invariance we
may write :

Here, gN(k) is a positive and discontinuous function
of k with :

It is even and periodic with period 2 7r.

When N increases the number of points k becomes
dense in the interval 2 n. Accordingly, it is reasonable

to assume that the function gN(k) has a continuous
limit g(k) when N - oo, and the following discussions
and calculations justify completely this assertion.
The function g(k) satisfies the requirements :

We want to show that the behaviour cf g(k) for
small values of k is directly related to the mean size
of the chain. In fact, we have :

and by passing to the limit N --&#x3E; oo, we can define b(n)
as follows :

and

The asymptotic properties of b(n) for n &#x3E; 1 depend
essentially on the analytic properties of g-’(k). We
remark that b(n) must go to infinity if n - oo and
such a behaviour is a direct consequence of eq. (IV. 10)
provided that g(k) - 0 when 1 k [-- 0. More precisely,
let us assume that, for small values of k, g(k) has the
form :

(Incidentally,[we remark that this is true if the chain
is Brownian : in this case a = 1/2.) The singularity of
g-1(k) at the origin completely determines the asymp-
totic behaviour of b(n) and from eq. (IV. 10), we
deduce (see Appendix A)

if

with

which is exactly what we wanted (compare eqs. (II .12)
and (IV.9) (IV .12)). Note also that eqs. (IV. 12)
and (IV. 13) are no,t valid for oc = 1.

In a similar way, we can estimate the size of large
but finite rings containing an even number, N, of
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points by calculating the mean square distance bet-
ween opposite points

If we replace gN(k) by g(k) in eq. (IV. .15), we get :

with

«(n) = Riemann’s function)
in agreement with our expectations (compare with
eq. (II.11) for a chain). However, the replacement of
gN(2 nqlN) by g(2 7rqlN) in eq. (IV.15) is questiona-
ble for small values of q ; as will be seen later in the
framework of the Gaussian approximation (section
IV. E), this replacement is not completely valid :
it gives the right order of magnitude but the value
of C has to be corrected. (Eq. (IV. 17) is not right :
see section IV.-G).

B. THE GAUSSIAN TRIAL FUNCTION. - The Gaussian

approximation consists in replacing the true proba-
bility P(ri, ..., rN) by a trial probability PT(rl’ ..., rN)
which is proportional to the exponential of a quadratic
form of the coordinates ri :

W is given by :

and ZT is a normalization constant determined by
the condition :

The coefficients G(n) are even and periodic by
definition :

They are to be determined by minimization of the
free energy F corresponding to the trial probability.
The quadratic form W can be diagonalized by using
the cyclic variables p.. Since we want eq. (IV. 4) to be
valid, we must have :

The identification of eq. (IV. 19) with eq. (IV. 22)
gives with the help of definition (IV. 2) :

and by setting :

we may write also :

Two remarks can be made concerning this formula.
Firstly, in the Brownian case where G(n) = 0 for

In 1 &#x3E; p, we verify that for small values of k, g(k) is
of order k2 in agreement with eq. (IV.11) (with
a = 1/2). Secondly when all the points of the chain
interact with each other, the coefficient a must be

larger than 1/2, since owing to the swelling of the
chain : therefore the terms of order k2 which appear
in eq. (IV. 25) for 1 k 1 « 1 must vanish ; thus :

( aj = rj +1 1 -r,): .

This additional condition shows that W can ,be
written in a more restricted form :

which is equivalent to eqs. (IV 17) and (IV. 24) as
can be easily verified. Incidentally, we note that in
this case the non negative form W vanishes when ’all
the links are equal in length and direction

the interpretation of this fact remains obscure.

Thus, in this approximation, the second cumulants
of products of ai are taken into account but the other
ones are neglected for reasons of simplicity. But this is
the only reason ; the fourth cumulant may actually
give contributions of the same order as the second one.

C. CORRELATION FUNCTIONS. - All the correla-
tion functions of points of the chain are Gaussian
since integration on some variables does not change
the Gaussian character of the probability law. For
instance, for an infinite ring, the correlation function
Tn(r) can be written immediately :

where b(n) is given by eqs. (IV. 9) and (IV. 10).
Moreover, the product of any number of components
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of p. and consequently of vectors of the form (rj - ri)
can be calculated immediately in terms of the function
g(k) by applying Wick’s theorem and by using eq.

(IV. 4).

D. CALCULATION OF THE FREE ENERGY FOR AN INFINITE
RING AND MINIMIZATION WITH RESPECT TO g(k). -
The function g(k) is the only parameter of the approxi-
mation and we want to determine it by minimization
of F. For this purpose, we shall express the free energy
F, in the limit N - oo, in terms of g(k) or b(n) which
is equivalent.

First, let us calculate the mean energy  Uo &#x3E; of
the ring :

AT

On the other hand,

where Tn(r) is given by eq. (IV. 28). As V(r) is small
the terms corresponding to small values of n in the
right hand side of eq. (IV.30) are also small. The

important terms are those which correspond to large
values of n, since the asymptotic properties of the
chain depend on their existence. On the other hand,
the range of J n(r) increases with n and for n » 1,
it is much larger than the range of V(r) ; thus we may
write approximately :

In order to simplify the expressions, we set :

and by using this notation and eq. (IV. 28), we may
write :

We have now to calculate the entropy associated
with the probability law. (See eq. (11.27) and

(IV.18)) :

By using eqs. (IV. 22) and (IV. 4) we see immediately
that :

On the other hand, the value of Z can be deduced
immediately from the normalization condition of

P(ri, ..., rN) : .

LE JOURNAL DE PHYSIQUE. 2013 T. 31, N° 8-9, AOUT-SEPTEMBRE 1970.

The volume element dQ(p) which appears in this

expression is defined as follows. For 0  q  N/2,
we get :

and we have :

The transformation (IV. 37) diagonalizes completely
W(rl, ..., rN) and from eq. (IV.36) we get immedia-
tely :

The entropy S/N is found by using eqs. (IV. 34),
(IV. 35), (IV. 40) and by passing to the limit Nu oo.
Thus, we get :

Finally, from eqs. (IV. 29), (IV. 33) and (IV. 41),
we deduce the following expression of F :

The minimization of F gives the equation :

From eq. (IV. 10), we get (when taking the relation
g(k) = g( - k) into account)
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and with the help of this formula eq. (IV. 43) can be
written :

According to eq. (IV .12) :

and we see immediately that, for a &#x3E;, 1 the series

converges. Thus eq. (IV. 45) gives the Fourier series
which determines g(k).

E. DETERMINATION OF ex AND GENERAL PROPERTIES

OF g(k). - The function g(k) and the coefficient b(n)
are given by the coupled equations : (eqs. (IV. 45)
and (IV. 10))

Let us discuss the behaviour o f g(k) for small values
of k. This function is non-négative, since the quadratic
form W(rl, ..., rN) is non-negative ; and eq. (IV.47)
leads immediately to the inequality :

Therefore, g(k) vanishes at the origin and k-2 g(k)
remains bounded (- 7r  k  + n) as expected. On
the other hand, we find that the series

must converge ; otherwise, for small values of k,
g(k) would become negative, which is absurd (actually
J  w - 1). We see also that these requirements are
compatible with our assumption (eq. (IV.11)) that,
for small values of k, g(k) is of order k Il + 20152 (a &#x3E; 1/2)
with perhaps additional logarithmic factors.

If s &#x3E; 4, we can find a solution for which a = t
(Brownian ring). In fact, we may write in this case :

since the corresponding asymptotic expression of

b(n) (see eq. (IV.13))

insures the convergence of the series which appears on
the right hand side of eq. (IV. 50).

On the contrary, if s  4, b(n) must increase faster
than n2 ; otherwise, the sum

would diverge. Consequently, the coefficient of k2
in g(k) must vanish.

The convergence of this series implies the condition :

or, if we have additional logarithmic factors, the
weaker condition :

If condition (IV. 52) holds, we can write :

by using the results of Appendix B, after replacing the
quantities v, d and dn which appear in this Appendix
by :

We now identify eq. (IV. il) with (IV. 55) and in
this way, we can express a, g and b in terms of s and w.

Thus, we obtain the important result :

which we proceed to discuss.

In three dimensions, we find a = 2/3 a value which
has already been proposed by Kurata, Stockmaier
and Roig [19]. We see that our conditions (IV. 13)
and (IV. 52) are verified. Consequently, we may write :

The coefficients g and b are easily determined. The
identification of eq. (IV. .11 ) with (IV. 55) yields

and, eq. (IV. 14) becomes in this case :

The solutions of these equations are :

In two dimensions, we find a = 1. Condition (IV. 52)
is verified but condition (IV. 13) is not strictly satis-
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fied, and owing to logarithmic divergences, our appro-
ximation breaks down. This indicates that logarithmic
factors must occur in the expressions of g(k) and b(n),
a fact which is verified in Appendix C. Accordingly,
in two dimensions, we have (Appendix C) :

In four dimensions, we find a = 1/2. Condition

(IV. 13) is verified but condition (IV. 52) is not strictly
satisfied and again owing to logarithmic divergences
our approximation breaks down. In this case also,
logarithmic factors occur in the expressions of g(k)
and b(n) as we show in Appendix D. Accordingly,
we have (see Appendix D) :

Thus, in four dimensions, the chains are not really
Brownian.

F. COMPARISON WITH FIXMAN’S GAUSSIAN MODEL. -
In an ingenious article, M. Fixman [5] also used
a Gaussian approximation and he found the result
a = 3/5 (Flory’s value). Fixman’s approach is diffe-
rent from ours and very clever but it seems also more
artificial and complicated (at least theoretically).
Thus, instead of using the principle of minimization
of the free energy which is the only basis of our cal-
culations, he uses more subtle consistency arguments
to determine the swelling. We may note also another
difference. In our model, in the limit N - oo, the
mean square distance between two points of the chain

rj+n and rj increases as n2" (n &#x3E; 1) whereas in Fixman’s
model this distance increases as n which seems rather

strange. In particular, this is in contradiction with
our interpretation of the swelling in terms of long
range correlationsb etween distant links (see the end
of section II. A).

G. THE CONTINUOUS RING LIMIT. - When the
interaction w is very small (w  1) eqs. (IV.47) and
(IV. 48) which give g(k) and b(n) can be simplified.
This is the continuous ring limit (Edwards’ limit).
The number n is assumed to be large and continuous
while k 1 is assumed to be small. In this case, it is

legitimate to transform eqs. (IV. 47) and (IV. 48) into :

a = 3/5

These equations have nice homogeneity properties
which lead to further simplifications. It is not difficult
to show that for s = 2 and s = 3, the solutions of these
equations can be written in the form

where is given by :

Here, A(x) and B(y) are universal functions which
are given by the following equations :

and the sum-rule : (eq. (IV.52))

Since w is small, small sections of the chain must
look Brownian. Indeed, the form of g(k) and b(n) in
the ranges wfl « k « 1 and 1  n  wP respectively
reveal this property. Since A(+ oo) = 1 and B(O) = 1,
we can write approximately

and these equations are characteristic of a Brownian
motion.

On the contrary, the ranges 1 k 1  wo, n » w - 0
correspond to the asymptotic limit. For instance, in
three dimensions (s = 3, p = 2), we find without

difhculty that : 
-

in agreement with eqs. (IV. 62) and (IV. 63).

H. PROPERTIES OF A LARGE BUT FINITE RING. -

In this section, we try to give a complete picture of
the structure of a large but finite ring. For this purposer
we show how to calculate gN(2 nq/N) for finite values
of q, and b,,(N) for finite values of the ratio (non),
The results of this section will also be used, in the
next section to study the dependence of the free
energy FN, with respect to N for N &#x3E; 1.

When the number N of links is finite, the minimi-
zation of FN gives the following equations which are
very similar to eqs. (IV. 47) and (IV. 48) :
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The difference [gN(2 rcqlN) - g(2 rcq/N)] is always
small ; however it cannot be treated as a perturbation
because it is of the same order as g(2 rcq/N) when q
is small. We want to show that in first approximation,
we have :

where y(q) is a coefficient which is independent of N.

In the same way, bN(n) can be related to b(n). We
define bN(n) by :

It is a periodic function of n :

We want to show that, in first approximation,
bN(n) can be written in the form :

where m(0) is a periodic function of 0, independent
of N ;

In order to justify our assumptions, we shall write
equations which determine y(q) and m(0). The self-
consistent equations must be deduced from eqs.

:(IV . 79) and (IV. 80). For the sake of simplicity, and
in order to avoid the appearance of logarithmic
factors, we shall restrict ourselves to the case s = 3
and a = 2/3. But similar results can be obtained for
s = 2 and s = 4. Thus, in the following, we assume
the validity of the equations :

Accordingly, we write :

where fl(0) is a function related to s(0) by :

This relation is easily derived from eqs. (IV. 85),
(IV. 89) and (IV. 83) by remarking that the terms
which are important for 1  n  N, in the right hand
side of eq. (IV. 83) are those for which q is small.

By taking eq. (IV. 14) into account, eq. (IV. 90) can
also be written (with s = 3, a = 2/3) :

where S(8) is the function :

(The derivation of this expansion is given in Appen-
dix E.)

Thus, since 8(0) = 1, we have, for small values of 0 :

A relation between P(O) and y(q) can be obtained
from eq. (IV. 80) by remarking that the terms which
are important for 1  n  N in the right hand side
of this equation are those for which q is small ; there-
fore, for 1  n  N, we may replace in this equation
bN(n) and g(2 nqlN) by their approximate expressions
(IV. 88) and (IV. 90)

By taking eq. (IV. 14) into account, we obtain :

which is the first equation relating P(O) to y(q). This
result is of course compatible with eq. (IV.93) as

expected.

Let us now derive another equation relating y(q)
to P(O). Eqs. (IV. 79) and (IV. 47) give :
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The différence is appreciable when q is small and
only in this case. When q is small gN(2 7rqIN),
g(2 7rqIN), bN(n) and b(n) can be replaced by their
asymptotic values (see eqs. (IV.88), (IV.90)) and
the sum by an integral.
We set :

and with this notation, we may write :

On the other hand, eq. (IV. 60) shows that g and
b- 5’2 are proportional to each other ; by using this
property we obtain :

Thus, for s = 3, a = 2/3, the existence of the coupled
equations (IV. 95) and (IV. 99) which determine

completely y(q) and P(O) proves implicitly the validity
of our assumptions (IV. 81) and (IV. 85) concerning
gN(2 nq/N) and bN(n).
The end of this section is devoted to the discussion

of these coupled equations, and, in particular to the
derivation of an interesting sum-rule. We remark that
the behaviour of [y(q) - 1] for large values of q
and the behaviour of P(O) for small values of 0 are
related to each other. Let us assume for a while that
the series

converges. If this is true, for small values of 0, we
have : see ea. (IV. 94)

The value of A can be calculated easily. For small
values of 0, we see that S(9) is given by :

where ((v) is the Riemann function which for
0  v  1 can be defined by the equations [13]

By comparing eqs. (IV. 95) and (IV. 92) and by using
eq. (IV. 100), we find immediately the value of A :

The behaviour of [y(q) - 1] for large values of q is
found by replacing p(O) in eq. (IV. 99) by the expansion
(IV.100) (provided that A does not vanish !). For

q &#x3E; 1, we obtain (q-1 e « 1) :

where r is a well defined positive constant. For

A &#x3E; 0, this equation gives the result

for A  0 it gives the result

both results are inconsistent with the definition of A,
but they indicate clearly how the problem must be
solved. The series

must converge and the constant A must vanish. Thus,
we find the following sum-rule :

(the relation between ,en) and ’(1 - n) is given in
Ref. [13]).

Additional informations concerning the behaviour
of y(q) for large values of q cannot be obtained easily ;
however, we note that the series

must also converge. Indeed, by using simultaneously
eqs. (IV. 94), (IV. 99) and (IV. 107), it is not difficult
to establish the identity :
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We remark that from small values of 0, the expansion
of b(B) is of the form :

By using this property and the definitions of ç 10/3(0)
and S(8), it is easy to show that, in eq. (IV. 108),
the integrand vanishes when 1 0 1 - 0. Consequently,
the integral exists and the sum

must be finite.

1. CALCULATION OF THE FREE ENERGY OF A FINITE
RING. - The calculation of the free energy of a large
but finite ring gives valuable information concerning
the values of the small « Flory terms ». We define
the free energy difference dN F by :

and we want to calculate this expression by using the
results of the preceding section. The quantities
dN  Uo &#x3E;, dN  U1 &#x3E; and dN S are defined in a
similar way and dN  Uo &#x3E; and dN  Ut &#x3E; give the
« Flory terms ». However, it will be shown in the

following that in three dimensions the contributions
of these terms are negligible and that we have

AN F --- ’AN S-

First, we calculate dN  Uo &#x3E; :

In Appendix F, this difference is calculated in

terms of y(q) (defined by eq. (IV. 81)) under the assump-
tion that :

and the calculation gives :

dN  Uo &#x3E; = C(x) (sl2 g) (N/2 7r)2a-1 , (IV.111)
where C(a) is a constant. In this way, we obtain the
first Flory term (see eq. (III.19)). Note however that,
in the Gaussian approximation, we have as = 2

and not a = 31s + 2 (Flory’s value).

The preceding calculation is strictly valid for

s = 3, but for s = 2 or s = 4 the assumption (IV 110)
does not hold exactly (there are logarithmic factors) ;
therefore for s = 2 or s = 4, eq. (IV. 111) gives
only the order of magnitude of the first « Flory term »).

In three dimensions, the coefficient C(a) is given by
(see eq. (F. 6) with a = 2/3) :

By using eq. (IV.102), we may write also :

Finally, by applying the sum-rule (IV 105), we find :

Thus, in three dimensions, the first Flory term
disappears completely. On the other hand, the terms
of higher order in dN  Uo &#x3E; must be fairly small
since

converges as was shown at the end of Section F.

In the same way, we have :

For large values of N, bN(n) and b(n) may be replaced
in this equation by their asymptotic values (eqs.
(IV. 89) and (IV 12)) and the sum becomes an integral.
When the asymptotic form of b(n) is : b(n) = bn2a
(n &#x3E; 1) the terms which appear in the sum are pro-
portional to N-"S. Thus, we obtain the second « Flory
term » (see eq. (III.19))

We see immediately that, in the Gaussian approxi-
mation AN  Uni &#x3E; is also a constant and therefore
rather uninteresting. For s = 2 and s = 4 the pre-
ceding expression is, of course, only approximate
(the logarithmic factors have been omitted) but it

is exact for s = 3 and in this case D(2 j3) is given by :

(See eqs. (IV .115), (IV. 89) and (IV. 97). )
Let us now calculate d N S. According to eqs. (IV. 34),

(IV. 35), (IV.40) and (IV. 41), we have :
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It is not difficult to show that :

(the terms which are constant with respect to N are
dropped).

Thus, by using eq. (IV.11), we obtain :

Therefore, in three dimensions, we find that, in

first approximation, ON F is given by :

This kind of dependence agrees with the assumptions
of Sykes and his collaborators [6].

V. More general approximations. - It is not difh-
cult to improve the Gaussian approximation by choo-
sing more general trial functions. However, a very
large class of trial probabilities lead to the same
relation as = 2 as the Gaussian approximation. Our
aim in this section is to establish this fact and to show
its origin. The derivation relies mainly on assumptions
concerning the correlation function J n(r) (which
theoretically can be immediately deduced from the
trial probability). We assume that, for large values
of n, Tn(r) is approximately of the form :

and that the corresponding function q(r) is regular
at the origin :

with

As previously, we consider a ring of N points. In
order to characterize P(ri, ..., rN), we introduce new
parameters. We set :

and we assume that the logarithm of rp(À1, ..., IN-1)
can be expanded in terms of the components ÀO")
of the vectors Àq.

By definition, the coefficients

are the cumulants of the mean values

Of course, these cumulants must satisfy symmetry
requirements but otherwise, they are completely
independent of each other and they determine

P(rl, ..., rN). In particular, the first non vanishing
cumulants are of order two :

Incidentally, we remark that the Gaussian appro-
ximation consists in assuming that all the other

cumulants vanish.
In general, we can minimize F by using all these

cumulants as independent parameters. In this way,
it is in principle possible to determine exactly all the
asymptotic properties of the chain. However, for our
purpose, it is sufhcient to examine the implications
of the simplest minimization condition :

Eq. (IV. 4) defines gN(2 7rqIN) and eq. (IV. 8)
remains valid. We assume the existence of a limiting
function g(k) and we admit that the behaviour of
this function at the origin is of the form :

If the condition (V. 4) is valid, we have a’ = a,
and for k 1  1, we may write (compare with eq.

(IV .11)) :

With the help of these assumptions, we want to
show that, for small values of 1 k 1, , the derivatives of
 Ul &#x3E;,  U2 ) and S with respect to  Pq.p-q &#x3E;c
(i. e.  Pq.p-q &#x3E; which is proportional to g-l(k))
have the following expansions :

The discussion of eq. (V. 9) is the same as in the
Gaussian case. The implications of eqs. (V .12),
(V.13) and (V .14) are the following. The k2 terms
coming from the derivatives of  Uo &#x3E; and  U 1 &#x3E;
must cancel each other (therefore ô, = s/2) ; on

the other hand, the term b2 B k Ba(s+2)-1 coming from
the derivative of  U, &#x3E; and the term Ô3 1 k 11+2a
coming from £5, must be of the same order and must
cancel each other. In this way, we get the result :

which we wanted to derive.
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We have now to establish the validity of the expan-
sions (V .12), (V .13), (V.14) (of course this validity
is only approximate for s = 2 and s = 4 since the
logarithmic factors which appear in this case have
been omitted). First, we calculate  Uo &#x3E; (see eqs.
(IV .1 ) and (IV. 3)) :

and therefore eq. (V .12) is proved.

Now, let us calculate  Ut &#x3E; :

DIT-(r)lê Pq.p-q &#x3E; is given by the following expres-
sion (see Appendix G) :

Let us bring this value in eq. (V. 17). We obtain :

with

For small values of k, the series which appears in
the right hand side of eq. (V. 20) can be expanded
in powers of k. The expansion contains a term of
order k2 and terms of higher order. These other terms
depend critically on the behaviour of d(n) for large
values of n (see Appendix B). The value of d(n) for
n &#x3E; 1 can be related to the asymptotic form of Tn(r)
(see eq. (V.l)). In agreement with our assumptions,
we may write :

Therefore, for n &#x3E; 1, we have :

Finally, by using the results of Appendix B,
(ce &#x3E; 3/(s + 2)), we may write :

Thus, eq. (V.13) is established. Incidentally, we

remark that the term proportional to k2 which appear
in eq. (V. 25) must be negative in order to compen-
sate the term sk2/2 of eq. (V .12). This observation
leads to postulate the validity of the inequalities :

Finally, let us calculate oSlo  Pq.p-q &#x3E;. In

Appendix H, we show that :

Here x(k) is a random variable which is defined

by the index k. Its probability law is obviously a
smooth function of k and in particular, we have :

(see eqs. (IV. 4), (IV.11)) :

Consequently, it is reasonable to admit that F(x, k)
is regular with respect to x and k for small values of k.
On the other hand, by using the preceding notations,
we may write eq. (V. 25) in the form :

Since F(k, x) is expected to be regular (in k) at
the origin the following limit :

must exist. Thus, in the limitez 0, the preceding
equations give eq. (V .14).

VI. Summary and conclusions. - The main lines
of this study can be summarized as follows. A gene-
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ral method for solving chain problems is presented
in Section Il ; it consists in minimizing the free energy
by means of a trial probability which introduces
correlations between the links of the chain (Sections
II. A and II.B).
A critical study of current theories is given in Sec-

tion III. Perturbation theory presents very serious
difficulties and gives very few useful results (Section
III. A). On the other hand, the approach of Flory
is mathematically and physically inconsistent (Sec-
tion III. B). The free energy terms which are calculated
and minimized by Flory appear to be negligible in
the limit of large chains. Moreover, general consi-
derations show that the sum of these terms should
be non negative and not positive as in Flory’s treatment.
Finally, it is demonstrated that the mean field methods
are also unreliable (Section III. C).
The Minimal Gaussian approximation is studied

in Section IV, for a ring containing N links (nez oo)
in a space of dimension s. The trial probability
P(r 1, ..., rN) is Gaussian (Sections IV. A and IV. B)
and consequently the correlation probability Tn(r)
is also Gaussian (Section IV. C). The minimization
of the free energy FN in the limit N - oo (Sections
IV . D and IV. E), shows that the mean distance bet-
ween two points of an infinite chain (ring) is of the
form :

with the following values : a = 1, P = - 1 for

s = 2 ; ex = 2/3, /3 = 0 for s = 3 ; ex = 1/2, P = 1/2
for s = 4 ; a = 1/2, P = 0 for s &#x3E; 4 (Brownian chains).
The coefficient b is calculated exactly in our model
for s = 2, 3, 4. The continuous ring limit is studied
(Section IV. F). The properties of large but finite

rings are also investigated (Section IV. G).

The free energy difference

is calculated for s = 3 (Section IV . H). In the Gaussian
approximation the contributions to dN F which are
of the same nature as the terms calculated by Flory
are proportional to N’ 3 (i. e. N2a.-l) and a constant
(i. e. N2-as) respectively. But owing to a sum-rule,
the term proportional to N vanishes, and in first

approximation, we find that ’AN F is proportional to
log N.

The above results do not depend critically on the
nature of the Gaussian approximation and this fact
is emphasized in Section V, where we study the pro-
perties of more general approximations. We consider
trial probabilities for which the correlation function

(disregarding possible logarithmic factors).

We assume that q(r) satisfies the conditions :

and we show that the swelling of the chain calculated
with these trial probabilities is the same (as = 2)
as in the Gaussian case. However, this result depends
crucially on the validity of conditions (VI. 3) and
(VI.4). Condition (VI. 3) is natural and our discus-
sion shows that the curvature of Tn(r) must be negative
at the origin ; but the case q"(0) = 0 cannot be exclu-
ded a priori since we ignore whether it is possible or
not to build effectively a trial function satisfying this
condition.

Thus, the Gaussian approximation appears as a

very natural and consistent method which leads to

plausible conjectures. Whether it is realistic or not

remains, however, an open question. A priori, the
results of our calculations do not seem to agree very
well with machine experiments [20], but the interpre-
tation of these machine calculations might be more
delicate than it seems a priori. More complete and
careful investigations are certainly needed in order
to get definite answers concerning the behaviour
of long chains with repulsive interactions.
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Appendix A. - We consider the coefficient b(n)
(where n is an integer) defined by :

where g(k) is an even, positive (forez 0) and periodic
function of k of period 2 n. For 1 kl - 1, we assume
that :

and we want to show that the asymptotic behaviour of
b(n) for n » 1 is

In any domain s K k K z (where B is an arbitrarily
small positive quantity) g-1(k) remains bounded.

Consequently, for n &#x3E; 1, the main contribution to b(n)
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comes from values of k belonging to a very small region
around the origin ; thus, we may write :

Therefore, the result (A. 3) is established and b is given
by :

Appendix B. - Let I(k) be the sum of the following
series :

where d(n) is a coefficient which, for n &#x3E; 1, is equal
to :

with

We want to evaluate the first two terms of the expan-
sion of I(k) with respect to k( 1 k 1  1), when the main
term is of order two ; this condition implies :

In this case :

In order to calculate the next term, we differentiate

1(k) three times with respect to k :

The series of term n4 d(n) N dn4 - v diverges. Therefore,
the important terms are those for which n is large.
Accordingly, the sum can replaced by an integral :

By integrating this equation and by using the result
(B.4), we finally get :

Appendix C. - In two dimensions, the equations
giving g(k) and b(n) are :

We found in Section IV. D that the corresponding
value of a is a = 1 and we predicted the presence of
logarithmic factors. Accordingly we set :

The condition fl &#x3E; 1 insures the convergence of the

integral which gives b(n) (eq. (C.2)) and we want to
determine fl and g.

By using eq. (C.2), we must find the asymptotic
behaviour of b(n) when g(k) is given by (C. 3) ; we
have :

where 8 is a very small positive constant 0  e « 1.

We consider values of n such that e /n » 1. In the

preceding integral, we divide the interval of integration
into three parts which give the contributions Il, 12, 13
(Il is the dominant term). We set :
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We see immediately that, (12/h) -+ 0 and (/3//1) --+- 0
when n - oo. Therefore :

In order to determine g(k) in a self consistent way,
ove differentiate eq. (C.1), we get for 1 k 1  1 :

Since we deal with large values of n, we replace b(n) by
ts asymptotic value (C. 8) and the sum by an integral :

Finally we get :

On the other hand, eq. (C. 3) gives :

The identification of eq. (C. .11 ) with eq. (C. .12) leads
to the value f3 = 2 and to the determination of the
asymptotic behaviours of g(k) and b(n). Finally, we
obtain the results :

Appendix D. - In four dimensions, the equations
giving g(k) and b(n) are :

We find in Section IV. D that the corresponding value
of a is a = 1/2 and we predicted the existence of
logarithmic factors. Accordingly, we set :

The logarithmic term insures the convergence of the
00

sum Y n2[b(n)]-3 for y &#x3E; 1/3 and in this way the
1

condition

can be satisfied as required.

We want to calculate b and y in a self-consistent way.
By using eqs. (D .1) and (D. 3), we can determine the
behaviour of g(k) for small values of k [ . By differen-
tiation of (C.1), we obtain for 1 k 1  1

Since the important terms are those for which n is

large, we may replace the sum by an integral and b(n)
by its asymptotic value (D. 3) :

(tl is a positive constant which is arbitrary).

The integral

can be calculated easily. In the right hand side of (D. 7),
we change the path of integration of each integral in
the complex plane of n. It is legitimate to write :

For small values of k, we have :

and consequently

By integration, we obtain :
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In order to determine b(n) in a self consistent way,
we may replace g(k) in eq. (D. 2) by its approximate
value (D. 9). We have :

(e is an arbitrary constant)

In this way, we obtain for n &#x3E; 1

The identification of eq. (D .11) with eq. (D. 3) leads
to the values y = 1 /2 and to the determination of the
asymptotic behaviour of b(n) and g(k). Finally, we get
the results :

Appendix E. - We want to show that in the domain
- 2 7r  0  2 7r, we have :

Let us consider the functions qJn(O) (n &#x3E; 1)

If n --+- 00 these functions have a limit :

and this limit is a periodic function of 0

Let us determine the Fourier series :

We see immediately that :

Consequently :

Thus :

Now we may define

From eqs. (E. 2) and (E. 10) we get :

In the same way, we have :

and therefore we finally obtain the expected result : -.

It is easy to verify that the last expression is periodic
with the period 2 n.
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Appendix F. - For n &#x3E; 1, we want to calculate :

with the assumption that for small values of k

The behaviour of I, for large values of N depends only
on the singularity of g(k) at the origin. Consequently,
we may write :

Thus :

where C(a) is a constant which is independent of N

Appendix G. - We want to prove the relation

on(r)fa  p« p-« &#x3E; = 2 [1 - cos (2 7rnqIN)] A ’Tn(r)-

The correlation function J n(r) is defined by :

By using the definition (V. 5), we may write :

where J1q is given by :

On the other hand, we deduce immediately from
eq. (V. 7) :

By differentiating eq. (G. 3) with respect to  pq P -q &#x3E; c
and by using (G. 5) we obtain :

The product y. y - . is calculated easily (see eq. (G.4))
and by direct application of the definition (V. 5), we
obtain the result (G. .1).

Appendix H. - Let us prove the relation

The probability P(rl, ..., rN) can be considered either
as a function of the variables Pq or as a functional of p9
and of the other cumulants. Before proving (H. 1), let
us show that :

The probability P(rl, ..., rN) is completely determi-
ned by the characteristic function 0(ll, ..., IN-1)
(see eq. (V.5)). Let us now introduce a new characte-
ristic function q)e(Âl, ..., ÂN-l) which depends on a set
of small parameters Bq

By expanding rJ&#x3E;£(lvl, ..., ’%N- 1) in terms of these
parameters, we get :

on the other hand :

where dQ(p), the element of integration in p-space, has
been defined by eqs. (IV. 38) and (IV. 39). Conversely

In the same way, we can associate with qJe(Âl, ..., kN - 1),
a new probability law Pe(r1, ..., rN). As the relation
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between these two quantities is linear, eq. (H. 4) can be
transformed into :

On the other hand, PE(r1, ..., rN) can be written expli-
citly in terms of OE(À1, ..., lN)

By differentiation of eq. (H. 6) with respect to Pq and
P-q, we find

and by comparison with eqs. (H. 7) and (H. 8), we
obtain the expected result (H. 2).

The entropy S is given in terms of P(rl, ..., rN) by :
S = -  log P(rl, ..., rN) &#x3E;  (H. 10)

By differentiating this expression with respect to

 PqP-q&#x3E;c and by taking eq. (H.2) into account,
we find immediately eq. (H. .1).
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