
HAL Id: jpa-00206970
https://hal.science/jpa-00206970

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theory of magnetic suspensions in liquid crystals
F. Brochard, P.-G. de Gennes

To cite this version:
F. Brochard, P.-G. de Gennes. Theory of magnetic suspensions in liquid crystals. Journal de Physique,
1970, 31 (7), pp.691-708. �10.1051/jphys:01970003107069100�. �jpa-00206970�

https://hal.science/jpa-00206970
https://hal.archives-ouvertes.fr


691

THEORY OF MAGNETIC SUSPENSIONS IN LIQUID CRYSTALS

F. BROCHARD and P. G. de GENNES

Physique des Solides (*), Faculté des Sciences, 91-Orsay

(Reçu le 20 mars 1970, révisé le I S avril 1970)

Résumé. 2014 On discute certaines propriétés de particules petites et allongées, en suspension dans
un cristal liquide, à basse concentration (fraction en volume f ~ 10-3). On montre que dans la
plupart des cas, la direction des particules ne peut pratiquement pas s’écarter de l’axe nématique
local n(r). Si l’on parvenait à préparer de telles suspensions avec des grains magnétiques, on
pourrait réaliser des suspensions « ferronématiques » ou « ferrocholestériques» dans lesquelles,
localement, tous les grains sont aimantés dans une même direction (parallèle à n) et aussi des
matériaux « compensés» sans aimantation spontanée. De telles suspensions devraient montrer
des distorsions et des changements de phase remarquables en présence de faibles champs exté-
rieurs H. On attend aussi des phénomènes de ségrégation : les grains tendent à se déplacer vers
les régions du spécimen où n est parallèle à H. Des effets analogues, sous champ électrique, pour-
raient en principe être obtenus avec des suspensions colloidales de macromolécules polaires en
bâtonnets, par exemple avec des hélices de polypeptides.

Abstract. 2014 The present paper discusses some properties of small, elongated particles suspended
in a nematic or cholesteric phase, with low concentrations (typical volume fraction occupied by the
particle f ~ 10-3). We find that in most cases the particle axis should be locked and parallel to
the local nematic axis n(r). If such colloidal suspensions could be made successfully with magnetic
grains, it should be possible to prepare « ferronematics » or « ferrocholesterics », where locally
all particles are magnetized in one direction (colinear to n), and also « compensated » materials
with no spontaneous magnetization. These three types of samples should all show remarkable
distorsions and phase changes in low external fields H. Similar effects are expected under electric
fields with colloidal suspensions of polar rod molecules such as helical polypeptides.

LE JOURNAL DE PHYSIQUE TOME 31, JUILLET 1970,

1. Introduction. - To observe magnetic effects
in liquid crystals, we usually require rather large
fields H (- 104 Oe) because the anisotropic part of
the diamagnetic susceptibility xa is small ( N 10-’) [1].
We could try and increase X. by introducing parama-
gnetic ions with an anisotropic g factor. For strong
spin orbit coupling, gll - g, may be of the order of 0.3.
Assuming complete alignment of the magnetic solute,
the anisotropic part of the paramagnetic suscepti-
bility is given by

The number n of paramagnetic ions per CM3 cannot
be very large, if we want to maintain the mesomorphic
properties of the substrate. Typically we could reach
n = 102°, giving XII - xi - 10-7 . Thus the parama-
gnetic susceptibility is not efhcient. We may increase
the coupling by going to larger magnetic objects,
such as ferromagnetic grains. It is not easy to make
a colloid with such grains. But, if this turns out to

be feasible in a liquid crystal matrix, the resulting

( *) Laboratoire associé au C. N. R. S.
(1) This effect was pointed out to us by J. P. Burger.

materials should have remarkable properties, which
we discuss in the present paper. How are the grains
aligned in the nematic ? We can think of two contri-
butions, one magnetic and one mechanical in origin.

ll) EFFECT OF THE GRAIN MAGNETIC FIELD. - Even
for a spherical grain, the distribution of the field
around the grain is anisotropic (Fig. 1). Therefore,
there will be a preferential direction for the magnetic
moment of the grain in a nematic phase (1). But this
effect is weak for small grains. Because of the rapid
decrease of the field in 1/r3, the nematic configuration

FIG. 1. - Effect of the grain magnetic field on the spatial
configuration of the nematic molecules.
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is only perturbed in the neighbourhood of the grain.
The free energy, in presence of the magnetic field
of the grain, is to first order

where no(r) is a unit vector describing the unperturbed
configuration [2]. F depends upon the angle between
the nematic axis no and the magnetic moment u.

The coupling term Fnp,/I - Fnp, 1., (the difference in
0 0

energy between the two nematic arrangements shown
1 u2

on Figure la and lb) is of order 1 ay ,where Vis theg 
2 xa V

grain volume. Typically X. - 10-6, V = 10-16 cm3,
2

IL = 10 13 uem and Xa JU v 10-4 eV « kB T.
b) MECHANICAL COUPLING, due to the shape of the

grains. We shall see in section II that for an elongated
grain with length L and diameter d(Lld - 10), the
distortion energy of a nematic liquid crystal is usually
minimal if the long axis of the grain coincides with
the optical axis. To put the grain in a perpendicular
direction requires an energy of the order of KL,
where Kis an average of the Frank elastic constants [2].

KL is of order of UL, where U is a typical mole-
a 

y

cular interaction and a is a molecular diameter.

Lla - 1 000, thus Emee» kB T. Therefore the coupling is
mainly of mechanical origin and is very strong in
the case of elongated particles.

In section II of the present paper, we analyse first
the long range distortions induced in a nematic
matrix by a single particle. Then we move on to the
case of a dilute suspension, and find the minimum
concentration cm;n above which the average nematic
orientation follows the orientation of the grains. This
is roughly Cmin N 1/LD2 where D is the sample dimen-
sion. The corresponding filling factor f nin = Cmin V
is thus of order [d/D]2 where d is the grain diameter :
thus fm;n is very small and in most experimental situa-
tions f» fmin, i. e. the molecular orientation and the
grain orientation are along the same direction. A dif-
ferent and more difficult problem occurs at higher
concentrations when the particles are magnetic ;
there is in fact a critical size above which different

grains will tend to cluster because of the magnetic
interaction. Let us ascertain what is the condition
for weak clustering.

Consider rodlike grains (L/d - 10). They will not
make chains if

where E is the decrease in the demagnetizing field
energy when two grains stick together. To estimate AE
let us replace the individual grains by ellipsoids of
axial ratio L/d, and the two-grain system by an ellip-
soid of axial ratio 2 Lld. This gives :

where M, is the magnetization inside the grains, and
N a demagnetization coefficient [3], (N (10) = 0. 24
and N (20) = 0. 08). Because of the exponential depen-
dence of the left hand side in (I.1) there are in fact
two sharply defined regimes :

(1) Small grains : the inequality (1.1) is satisfied
for all feasible values of f (i. e. up to f = 10-2).

(2) Large grains : the inequality (1.1) cannot be
satisfied at any physical value of f.

Typically, with M, = 103 and L/d = 10 the thresh-
old between (1) and (2) occurs at L = 2 000 A. In

the present paper we restrict our attention to lengths
L below threshold.

In section III we discuss the response of such magne-
tic suspensions to an external magnetic field H ;
there are two types of effects :

a) Distortions of the nematic (or cholesteric) pat-
tern. These distortions should occur in very low fields :
the average magnetization of the suspension, instead of
being Xa H (- 10-4 to 10-3) is now M = M,/= 0.1to 1. gauss ; the gain in coupling is thus of order 103.

b) Grain segregation : we have seen that the grains
have their moment locked along the local molecular
axis n(r). Thus they tend to move to regions where
n(r) is parallel to the field. These effects should give
rise to « depletion layers » of typical thickness 1 to

10 microns, which could be observed optically on
thin samples.

II. Floating objects in a nematic phase. -
II. 1 LONG RANGE DISTORTIONS INDUCED BY A SINGLE

OBJECT. - We consider a solid grain, of arbitrary
shape, floating in a nematic liquid (2). The surface of
the grain may be bare, or it may be coated by a suitable
detergent increasing the grain solubility. We assume
that the nematic molecules near the grain surface have
a well defined orientation : specific examples will

be discussed in section II.2. For the moment, we

shall not investigate the complicated distortions of the
nematic alignment which result in the vicinity of the
grain, but only the long range part of these distor-
tions : this turns out to be relatively simple, and also
to contain all the physical information which is

useful in practice. We restrict our attention to static

properties (which are relevant for free energy calcula-
tions) : the grain under consideration is fixed in

position (we put the origin of coordinates at the center
of gravity of the grain) and in orientation.
As is usual with nematic systems, we find a consi-

(2) To avoid sedimentation, we require V(pg -pn)gD  kB T
where p9 and pn are densities of the nematic and of the grain,
g = 981 cm. s-2 and D is the sample dimension.
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derable simplification if the three elastic constants of
Frank [2] are taken to be equal

in which case the distortion free energy of the nematic
takes the simple form

where n is the «director, i. e., the unit vector labelling
the preferred axis.

II .1. a Definition of a « distortion amplitude ». -
Far from the grain (r &#x3E; L) n becomes parallel to the
nematic axis no (We take the z axis along no). More
precisely we may put n(r) = no + ôn(r) where

is small. Eq. (II 1) leads to a free energy density

and to the equilibrium equations

It is convenient to put

where B12 Wx = ’BJ2Wy = 0. Since Wz is arbitrary we
may also impose Bj2wz = 0. Then the most general form
of co at large r is

where a and P are respectively a vector and a dyadic,
independent of r. We shall mainly focus our attention
on the leading term alr. We note first that, in a nematic,
the states n and (- n) are identical. For this reason
w and (x must be even functions of the unperturbed
director no.
We further restrict our attention to grains having

an axis of cylindrical symmetry (labelled by a unit
vector u). The grain shape may be a cigar (Fig. 2a),
a pancake (Fig. 2b), a tapered cylinder (Fig. 2c) or a
helical rod (e. g. a rigid polypeptide) with a definite
sign of rotation (Fig. 2d). The vector CI depends on
both u and no. We shall prove first that a is an even
function of u. The argument is indicated on figure 3,
where we keep only the term oc 1 /r in eq. (11. 3) :
w is then an even function of r. Consider a point (1)

FIG. 2. - Various type of uniaxial grains.

FIG. 3. - Comparison of the distortions corresponding to a
grain and the reversed grain.

in the (u, no) plane and its symmetric (2) with respect
to the origin. w.(I) =- wu(2). Now if we rotate both
the grain and the nematic by 1800 around an axis Oy
normal to the (u, no) plane, we see that w _ u(2) = wu( 1 ).
Thus wu(2) = ID-u(2) and o. = ID-u, Q. E. D.
The most general vector constructed from u and no,

and even in each of them, is of the form :

where 0 is the angle (no, u) and 1(x) is an odd function
of x. Inserting (II.4) into (II.3) and (II.2) we find for
the long range distortions

where ul = u - cos 0 no is the component of u in
the xy plane. Note that the coefficient of 1/r vanishes
when u is parallel to no and also when u is normal to
no (since 1(0) = 0). The function l(cos 0) has the
dimensions of a length, and we call it the distortion

amplitude. For many small motion problems the

quantity of main interest is the value 1(cos o = 1) = ll
(which may be positive or negative). We shall see

later that for a long rod Il is usually positive and
comparable to the length of the rod.

II .1. b Connection between distortion amplitude and
distortion energy. - Consider a surface Z surrounding
the grain, but very distant from it. When we impose
a fixed value of 0 the grain applies a torque l’ on the
nematic inside Z. Nematics transmit torques : the
molecules inside X exert on the molecules outside 1
the same torque r. It is possible to compute this tor-
que, since in the vicinity of E the distortion has a
known form (eq. II . 5), and thus to relate r and 1(cos 0).
The calculation proceeds as follows : we keep the

grain fixed in orientation (u fixed) and we rotate the
general nematic direction no by an angle b8 (around
an axis normal to u and no : see Fig. 4). The change in
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FIG. 4. - Distortion in a nematic induced by a rod : n is parallel
to Z at the grain surface.

distortion energy for the nematic inside 1 is to first
order

where (i) = x, y, z, ai == a/oXi and summations are

taken over repeated indices. Integrating by parts we
get a volume contribution, which vanishes automa-
tically from the equilibrium equations, and a surface
contribution ; the integral on the grain surface vanishes
and we are left with an integral on 1

Since Z is a distant surface, we may replace bn by
bno in eq. (II.7) and insert eq. (11.5) to compute

ai n j’ The result is

The integral is equal to - 4 n, and the change in
distortion energy reduces to

In vector notation, we may say that the torque r
applied by the grain to the nematic is

Thus, to know f (cos 0) is equivalent to knowing
the () dependent part of the distortion energy. For
instance, if l(cos 0) is positive for cos 0 &#x3E; 0, the
distortion energy is a minimum at f) = 0 and a

maximum at 0 = n/2.

II .2 APPROXIMATE CALCULATION OF THE DISTORTION
AMPLITUDE AND ENERGY. - We consider rodlike parti-

cles (Lld - 10) imposing a certain boundary condi-
tion on the director n at the grain surface. We shall
discuss the following simple cases of boundary condi-
tions :

a) The molecules want to be tangential to the sur-
face and along one preferred direction in this surface.
We shall consider the cases where this direction is

parallel or perpendicular to the grain axis.

b) Again the molecules are tangential, but there
is no preferred direction in the plane of contact ;
the boundary conditions are degenerate. The elastic
equations in the bulk have then more than one solution,
and the correct one must be obtained by minimizing
Felas with respect to the molecular orientations inside
the plane of contact.

c) The molecules must be perpendicular to the

grain surface.
In all three cases (a) (b) (c) we neglect end effects

whenever possible. The general argument for this is
as follows : the lateral surface of the cylindrical grain
is N Ld and the distortion energy (11.1) due to the
regions around it is of order

since 1 Vn 1 - 1 /d in a thickness - d near the surface.
On the other hand the ends of the cylinder have a
surface d2 and contribute an energy

Thus for d  L end effects are indeed small.

II. 2. a Molecules at the grain surface parallel to

the grain axis. - We use coordinates X, Y, Z with Z
parallel to the grain axis (Fig. 4) and try a variational
solution of the form

This gives :

and the optimum corresponds to V2 a = 0.
The boundary conditions are a = 0 on the cylinder

and a = 0 at infinity. We may write

where C is the capacitance of a conducting rod identi-
cal in shape to our grain. In practice we shall use for C
an approximate value, corresponding not to a rod
but to an elongated ellipsoid :
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Using (II.11) and (II.10) we arrive at

Eq. (II.13) is valid even for large 0 ; it violates,
however, the parity requirement F(e) --- F(rc - 0).
In fact, F(O) has two branches F1(O) and F2(O) corres-
ponding to two nematic arrangements (figure 5),
and F,(O) = Fl (n - 0). One may pass from confor-
mation (1) to conformation (2) by introducing a

disclination line. We will always stay on the branch
of lowest energy if the process is effective.

FIG. 5. - Two possible determinations for the energy of the
rod as a function of angle.

Note that eq. (II.13) leads to a distortion ampli-
tude 11 = C which is essentially proportional to L.

II.2. b n is tangential and perpendicular to Z. -

We restrict ourselves to the case 0 = n/2 and 0 = 0.
For 0 = n/2, the parameters are described in

figure 6a.

FIG. 6. - Distortion induced by a rod : n is tangential to the
surface and perpendicular to Z.

n may be written

F is given by

ôF = 0 leads to V2l/J = 0, i. e.

The solution of this equation is

where R = dl2 is the grain radius.
u,, and vn are determined by boundary conditions. For

u,, and vn are the Fourier coefficients of the function of
period 7r defined by (II.15) i. e.

W is then given by

This may be rewritten in the closed form

This configuration has two disclinations lines atta-
ched at the surface at the points

F is readily integrated to give

where a is the radius of the core of the disclination.
For 0 = 0, the geometry is shown on figure 7b. We

calculate F by a variational method, choosing as a
trial function n :
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FIG. 7. - Distortion induced by a rod : n is perpendicular to
the grain surface.

F is readily integrated to give

We note that FfI  Fl. We find that

is large and not very sensitive to the diameter of the
grain (e is the base of Neperian logarithms).

Il. 2. c n is perpendicular to the grain surface.-
We restrict ourselves to the cases 0 = n/2 and 0 = 0.
6 = rc/2 (see Fig. 8a). This case is identical to 1. b

except for a 900 rotation of the molecules. The confi-

guration has two lines attached at the surface at

the points

The energy F is still given by eq. (II.17). Note that
if the disclination line separates slightly from the
grain surface, this may release some strain (because
of image force effects). However we do not expect
this to alter very much Fi.

f) = 0 (see Fig. 7b). We calculate F by a variational
method, choosing as a trial function n :

.F is readily integrated to give

Again we find that Fil  FL and

Conclusions. - If the grain surface aligns the first
layer of nematic molecules surrounding it, we find
that FII  Fi for an elongated grain and that

where a is a numerical coefficient of the order of unity
and is not very sensitive to the diameter of the grains.

II . 3 FINITE CONCENTRATIONS OF GRAINS : TRANSITION
FROM INDIVIDUAL TO COLLECTIVE BEHAVIOUR. -

We now consider a dilute suspension of identical

grains, with position rp (distributed at random) and
orientation up, in a nematic of optical axis no. For
simplicity we shall assume that misalignments are

small (11 &#x3E; 0, upl  1). The distortion bn(r) is then

given by the following equation :

The presence of ôn(rp) in the bracket expresses the
fact that grain (p) creates no long range distortion if
it is aligned in the local nematic direction no + bn(rp).
Let us now go to a continuum approximation : if C
is the number of grains per cm’ we find, after acting
with the operator V2 on both sides of equation (11.21) :

The solution is

Thus the effect of each grain is screened out at
distances larger than 1(-1. Typically with C = 10"
and 11 = 103 A we expect ic-1 - 1 /-l.
Now let us assume that, in a certain region R of the

sample (with linear dimensions D) we impose a fixed
value of ul, while out this region we put ui = 0
(Fig. 8). Will the nematic molecule in R follow the
grain direction or not ? The answer is provided by eq.
(11.23). When D &#x3E; ic-1, Sn is indeed identical to ul

FIG. 8. - Coupling between the grains and the nematic. In a
region of size D the grains have an imposed orientation u.

Outside of D the grains are parallel to the nematic direction at
rest no. Case (a) KD &#x3E; 1 : all the inside follows the grains.

Case (b) xD  lA:: the inside is only weakly perturbed.
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in all the region R (except for a thin shell of thickness
x-1 near the surface) : the grains impose their orienta-
tion. In the opposite limit (D  ic-1), bn « ul, i. e.

the nematic response is small.

II.4 RIGHT HANDED AND LEFT HANDED GRAINS. -
The function l(cos 0) is the same for a grain and for
its mirror image : the terms of order 1 /r in the long
range distortion are not sensitive to chirality effects.
To display an interesting différence between right and
left handed grains we must include the terms of order
1/r2. These terms will be dominant only when ce = 0.
This can be achieved in two ways :

a) With a very small grain, the coupling energy
between u and no (of order 4 nKl 1) may become smal-
ler than kB T : then u points with equal probability in
all directions and the average of ce may be shown to

vanish, from eq. (11.4).
b) With a helical rod (polypeptide, virus, ...), equi-

librium will often correspond to u parallel to no, in
which case oc = 0.

Let us assume that we are in such a situation : then
the only distortion term compatible with rotational
invariance, and with the fact that w is even in no, is :

where fl is a pseudoscalar parameter (with the dimen-
sions of a square length), and thus non vanishing only
if the floating object differs from its mirror image. The
aspect of the corresponding distortion is shown on

figure 9.
Let us discuss now the case of a dilute solution of

such objects in a nematic, all grains having the same
chirality. On a macroscopic scale, we know that such

FIG. 9. - Distortion in a nematic induced by a chiral impurity
(i. e. an impurity different from its mirror image).

a system behaves as a cholesteric. We shall show that
there is a simple relation between the pitch Le of the
spiral structure, the concentration v and the parameter
fl defined above : for low v values the total rotation
vector at any point r is obtained by superposition :

Going to the continuum limit, this leads to

The form of the solution is

where z is an arbitrary axis. This corresponds to a
cholesteric structure of half pitch

inversely proportional to the concentration. This type
of law is indeed familiar for dilute solutions [4].

III. Magnetic grains. - III. 1 PROPERTIES OF A

SINGLE (MONODOMAIN) PARTICLE. - 111.1. a) Ferroma-
gnetism vs superparamagnetism. - We now give to
our particle (of length L, diameter d, volume V) a
magnetic moment Il = M, V. We assume for simplicity
that the moment p has two easy directions -parallel
and antiparallel to the grain axis, and that it cannot
jump from one direction to the other (ferromagnetic
grain). If AE is the energy barrier between these two
conformations, this requirement implies [5]

Possible sources for AE are : (oc) an uniaxial magne-
tocrystalline energy - (fi) the shape anisotropy

- (y) surface effects (3). In cases (a) and (P) AE is
proportional to the grain volume V, and the ine-
quality (III.1) gives a minimum value for V. In most
cases of interest here, V will be significantly larger
than this minimum.

III. l. b) Mechanical clamping. - As shown in
section II, the grain usually tends to be parallel to the
local nematic axis n(r). To rotate the grain materially
from + n to - n, we need an energy aKL. The grain
will be effectually clamped in one of the two positions
provided that

(3) We are indebted to the referee of the present paper for
pointing out the importance of (ce) and (y) in the cases of interest.
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where t is the duration of the experiment, and Dr is
the rotational diffusion constant of the grain (in an
isotropic liquid of viscosity similar to that of the

nematic). This condition for mechanical clamping
may be rewritten qualitatively as

and it should be satisfied in most practical situations.

III. l. c) Coercive fields of a single grain. - To
rotate u from, say, n to - n in direction, we must
apply a strong field H along - n. Two types of beha-
viour may be found : if u rotates without any mechani-
cal motion of the grain the threshold is [5]

while if the grain rotates materially, the threshold is

where h is the characteristic length defined in section II,
and is of order L. Taking the ratio of both coercive
fields we find

The critical diameter dc, is of order 50 to 100 Á.
For d &#x3E; de the dominant process is mechanical rota-
tion. The various types of behaviour of a single grain as
a function of L and d are summarized on Figure 10.
A typical value of Hmeeh (for d = 200 A, M, = 10’

and l i - L) would be 300 oersteds (4). Thus, with
moderate fields in the kilooersted range, it should

FIG. 10. - Domains of mechanical and magnetical clamping
of a single domain magnetic grain in a liquid crystal. L and d
are respectively the length and diameter of the grains. The only

meaningful regions correspond to L » d.

(4) If the grain (or the surrounding distortions) is large enough
to be observed optically, it might be possible to measure the
distortion amplitude f (9) from a study of 0(H) for a single
grain in a thin nematic slab.

be possible to align the grains completely. We shall
now proceed to discuss suspensions which have been
prepared in such a magnetized state : we shall see

in particular that when H « H mech, although indivi-
dual rotations are forbidden, cooperative rotations,
involving many grains, may still occur.

III . 2 FERRONEMATICS. - III. 2. a Free energies and
segregation effects. - We now consider a suspension
(with low volume fraction of grains/) and assume that
locally all grains, in each small volume element, have
parallel moments. As shown above, this common
direction is colinear to the director n(r) and, by a
suitable definition of n, we may take it to be of the
same sign as n. The average magnetization vector is
then

and the free energy density takes the form

The first term is the Frank elastic energy [2] and
the last one is the entropy contribution for a dilute
suspension of non interacting grains. If we minimize
(III. 7) first with respect to n, we find that the torque
on the nematic molecules contains the usual elastic
terms plus a magnetic term Mn A H. Minimization
with respect to f (keeping the number of grains fixed)
leads to :

The parameter fo is obtained as usual from the
total number of grains present N :

Eq. (III. 8) shows that f may vary strongly from
point to point, i. e., grain segregation may occur,

provided that the number

be larger than 1. We call p the segregation parameter.
Specific examples with p  1 and with p &#x3E; 1 will
be discussed later. To end the discussion of free ener-

gies we note that after minimization the total free

energy Y of the sample becomes simply

as can be seen from eqs. (III . 8) (III . 7). Here Fel is the
contribution of the Frank terms, integrated over the
sample volume. We shall now apply these formulas
to some selected experimental situations.
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III. 2. b Alignment near a wall. - Consider a ferro-
nematic occupying the half space z &#x3E; 0. Assume that
on the limiting wall (i. e. the plane z = 0) the mole-
cules must be directed along the x direction. The
sample has been prepared with a field H along x ;
later we rotate H and bring it along the y direction.
Far in the liquid, the magnetization will also rotate
by 90°. But near the wall there must be a transition
layer, the thickness and properties of which we want
to study (Fig. 11).

FIG. 11. - Distortion in a ferronematic near an oriented wall.

At all points r the director n(r) will be in the (xy)
plane and we may define it through the angle 9 bet-
ween n and the y axis. For z = 0, ç = n/2 ; for z - oo
9 --&#x3E; 0.
The free energy per unit area of the wall is

and the equilibrium equation for ç has the form

It is convenient to define a reduced concentration

Çl = f/f, where f is the average of f over the sample
volume, and a « cohérence length » Ç,2(H) by the
equation

Typically for H = 1 gauss, f = 10-3 , and MS =103,
S2 = 10 microns. For the present case, eq. (111.8)
leads to

and eq. (III.12) has the first integral

The choice of integration constant in eq. (III.15)
is such that dpjdz = 0 for z - oo (g/ - 1). Integra-
ting (III.15) we arrive at an implicit relation between
p and z :

We shall discuss first the simple limiting case

p « 1 (no segregation). Then eq. (III.16) simplifies
considerably, and the final result is :

The decrease of ç with z is nearly exponential,
and the thickness of the transition layer is equal to
the coherence length Ç2’

In the opposite limit p &#x3E; 1 segregation effects
become important ; the general aspect of g(z) and
of gl(z) is shown on figure 12. At very large distances z
from the wall, qJ(z) again decreases like

FIG. 12. - Structure of the depletion layer (p &#x3E; 1) for the

geometry of figure 12.

However, this law does not hold down to Z ~2
and the transition region is larger than Ç2’ Its thick-

ness may be estimated from the initial slope :

where we have used eq. (III.15, 14). In the high field
limit (p &#x3E; 1) this characteristic length becomes

where c = fl V is the average grain concentration in
the bulk. The thickness ô is independent of the magni-
tude of H, and is typically of order 10 microns. In
a depth b near the wall, the grain concentration is

strongly reduced (flf = e-P) : thus a homogeneous
field of suitable orientation will create a depletion
layer near the wall. The work required to expel the
grains from the layer is (per unit wall area) of order
ckBTb (ckBTô being the osmotic pressure), while the
torsion energy is of order K22blb2. Minimizing the
sum, one recovers eq. (III.19), except for numerical
coefficients. It would be of great interest to try and
observe these depletion layers by optical means.

III. 2. c Ferronematic slab in reversed fields : insta-

bility threshold. - We consider a thin slab (thickness
D ~ 10 microns) of our nematic suspension, enclosed
between two glass walls polished according to the
method of Chatelain [6]. Both walls are polished along
the same direction (x) : near them, the director n
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must be colinear to x. We call z the direction normal
to the walls (Fig. 13). We assume that the sample has
been prepared with a large field applied along the
negative x direction (giving full saturation and a

uniform grain concentration). Now we reverse the
field, and go to small positive values of H. The initial
configuration is metastable, and becomes completely
unstable at a certain threshold field H, which we
shall now derive.

FIG. 13. - Ferronematic slab in reversed field.

Consider a small deviation from the original arran-
gement, where the director n has the following struc-
ture :

Inserting this form into eq. (III.7) one gets, for the
free energy per unit wall area

(Note that this result is the same with or without

segregation effects.) We expand ny and nZ in Fourier
series matching the boundary conditions at both
walls :

In terms of the u’ s and v’ s the free energy becomes

Instability occurs when one the terms becomes nega-
tive ; this happens first for n = 1. There are two possi-
ble threshold fields

The physical threshold Hl is the smallest of the
two. Taking M = fMs = 1 gauss, D = 10 microns
and K ~ 10-6 we have Hl 1’-1 10 gauss. Thus, even
for rather small samples, a coupled rotation of many
grains is able to relax the magnetic moment much
more efhciently than individual rotations : let us

compare Hl to the coercive field for one grain Hmech
(eq. 111.3). Neglecting all numerical coefficients we
find

where K - 1 is the « screening » length introduced in
eq. (II.22). Eq. (III.23) shows that collective behavior
is observable provided that xD &#x3E; 1, in exact agree-
ment with our conclusions of section II.

III. 2. d Behavior above threshold. - This part of
the problem is more delicate, for various physical
reasons. Here we shall restrict our attention to one

typical case, defined by the following assumptions :
- Segregation effects are negligible (p  1).
- All elastic constants are equal : in this case it

is plausible to assume that there is no twist, i. e. that

the director n is always in the (x, z) plane. We shall
specify its orientation through the angle g(z) between
n and H.

- No disclination line is allowed (we come back
to this point in the next paragraph).
With these assumptions the equilibrium equation

retains the form (111.12) (with a constant f). Eq.
(III.15) is replaced by

where CPm is the deflexion angle at the middle of the
slab. The solution cp(z) may be expressed in terms of
elliptic functions. The boundary condition

leads to an implicit equation for qJm

Our definition of the elliptic integrals such as F
follows ref. [7].

Eq. (III.25) has a solution only for H &#x3E; Hl.
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The spatial configuration of the molecules for

various H values above Hl, are shown on figure 14.

As soon as H &#x3E; Hl the bulk of the nematic is magne-
tized parallel to H, and there are only two thin regions
of thickness ç near the walls where the magnetization
is mainly in the wrong direction. It is also of interest
to compute the average magnetization

A plot of Mav/ M versus H for this ideal case is

shown on figure 15.

FIG. 14. - Spatial configuration of the molecules for various
H values.

FIG. 15. - Magnetization curve of a ferronematic slab.

III . 2. e Possible effects of disclinations. - The con-
formations which we have described above, with a

magnetized nematic in a reversed field, are meta-

stable. They might be disrupted by the nucleation and
motion of disclination lines [8]. We shall discuss here
some specific features of these lines occurring when
magnetic grains are present.
As pointed out earlier, in most cases the average

magnetization M(r) is parallel to the local nematic

axis (i. e. parallel or antiparallel to the director n).
Consider now the disclination loop Lo shown on
figure 16. We assume that Lo is of rank 1, i. e., if we
follow a circuit such as C, starting from a director n
at point 1 we obtain a director - n at the same point
after one turn.

FIG. 16. - Disclination line Lo and mismatch surface Zo in a
ferronematic.

This shows that M cannot be constantly parallel to
and of the same sign as n : there must be at least one
discontinuous point D on C. The locus of these points
is a surface of discontinuity Zo, bounded by Lo. When
we cross £0, we find an abrupt 1800 rotation of the
vector M. An example is shown on figure 17 (5).

FIG. 17. - An example of mismatch surface Zo showing the
discontinuity of magnetization vectors. For this example, Z’o

carries magnetic poles (of negative sign).

Of course, the discontinuity is not infinitely sharp,
for various reasons :

a) If we had some direct (e. g. dipolar) interaction
between grains, strong enough to compete with the
local nematic alignment, they could build up something
reminiscent of a Bloch wall. But, in the present paper,
we are concerned with dilute colloids, for which such
interactions are negligible.

b) A more important effect is translational diffusion
of the grains : this implies widths of order .J Dt
where D is a grain diffusion coefhcient, and t the

(5) A similar discussion, linking walls and loops of rotation
disclinations, has already been carried out for solid state ferro-
magnets and helimagnets by M. Kleman (Phil. Mag., to be
published).
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duration of the experiment. il = 10-8 cm’/s and

t = 1 s would correspond to àDt = 1 micron, a very
sizeable thickness.

Let us assume for the moment that the surfaces of

discontinuity are sharp : The situation is then similar
to that of imperfect translation dislocations in ordered
alloys, as has been pointed out to us by J. Friedel.

(The surface of magnetic mismatch is equivalent to
a surface of stacking fault for translation dislocations.)
But in our case, there is essentially no « mismatch
energy associated with £,.
Thus we expect the disclination loops to be quite

mobile, just as in a conventional nematic.
When a loop L moves, it sweeps a surface r, as

shown on figure 18, and the surface of discontinuity
becomes 10 + h (6). Thus a moving loop leaves a
« trail » behind it.

FrG. 18. - Motion of a disclination loop in a ferronematic.

It is difficult to predict what could be the nucleation
and growth processes for such lines in a nematic slab
under reversed fields. Let us, for simplicity, restrict
our attention to cases where segregation is negligible
(p  1). As noted earlier, if H &#x3E; H,, the magnetic
coherence length ç(H) is small compared to the sam-
ple thickness, and the initial conformation near one
wall is that of figure 19a. Starting from this, one possi-

(6) Note however that, in the presence of an external field H
magnetic stresses may distort the surface of discontinuity.

FIG. 19. - Nematic conformation in reversed fields (a) without
disclination b) with a disclination loop L in a plane parallel to

the wall and normal to the sheet.

ble sequence of events would be the following : a

loop nucleates at the surface, moves towards the inside
of the sample up to a thickness of order ç, and simul-
taneously expands in the slab plane (Fig. 19b). If

all the wall surface is swept by such loops, we arrive
at a situation where the nematic alignment is uniform.
But the magnetization is still in the wrong direction
in a sheath of thickness j below each wall (Fig. 20).
These sheaths might either smear out by translational
diffusion, or show further instabilities due to the

magnetic stresses.

FIG. 20. - Smearing out of the magnetization profile by diffu-
sion for a ferronematic, in reversed fields, after sweeping by

disclination lines (limit p  1).

This scheme is highly conjectural (clearly direct

optical observations would be desirable). But it is

worth while to observe that with such a scheme, and
if the sheaths smear out by diffusion, the magnitude
of the sample moment in the final state is smaller than
the saturation moment, as is obvious on figure 20. To
restore the full saturation moment, one might require
IH 11"’&#x3E;.1 Hm,,,-h, i. e. fields large enough to rotate the
individual grains.

III. 3 FERROCHOLESTERICS. - III. 3. a Definition of
the model. - We call « ferrocholesteric » a cholesteric

suspension where the magnetization vector M spirals
in phase with the local optical axis. If we call z the
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spiral axis, this corresponds to the zero field configura-
tion

The mechanical periodicity corresponds to the half
pitch n/qo, while the magnetic periodicity corresponds
to the full pitch 2 n/qo. It must be emphasized that
the conformation (III.27) is perfectly compatible
with a strong translational brownian motion of the

grains. When one grain moves around, its mechani-
cal axis (and the moment p which is rigidly linked to it)
follows adiabatically the local axis of molecular

alignment n(r) : thus the inhomogeneous magnetiza-
tion distribution (III.27) is unaffected.

It is not at all obvious, however, that the conforma-
tion (III.27) can be prepared by a simple experimental
procedure : if we mixed the magnetic grains to the
cholesteric in zero fields we would get at each point
an equal number of grains pointing along + n or

along - n, and M = 0. We shall return to this pre-
paration problem later ; for the moment, we simply
assume the existence of a ferrocholesteric sample,
and study its response to a magnetic field H. We res-
trict our attention to the domain H  H mech, i. e.

to cooperative rotations.
The field H being taken in the x direction, we postu-

late that (1) the spiral axis stays along z ; (2) the
director n stays in the xy plane.

(This excludes « conical structures [9] : we discuss
those briefly in the appendix.) With these assumptions,
the free energy density has the form :

The equilibrium conditions are

The constant t/I 0 is fixed by the number of grains.
If we restrict our attention to periodic solutions

(cp(z + B) - cp(z) + 2 n) the equation defining t/lo may
be written as

We shall now construct the solutions of (III .29, 30).

III . 3 . b General formulas. - Eq. (111. 29) has the
first integral

where ô is defined by (III.19), and is independent of
H. a is an (unknown) integration constant. Integra-
ting once more we arrive at a relation between ç
and z :

This gives us a first equation for the pitch B :

Another équation relating B and t/1 0 is derived from
eq. (III.30)

Comparing (III.31) and (III.33) we reach the
condition

We determine a by minimization of the free energy
Y (eq. 111.10): after a slight manipulation using
eq. (111.31) we arrive at

where Q is the sample volume.
The condition of stationary Y leads to :

We obtain dg/o by a differentiation of eq.

Inserting this result into (III.37) we arrive at the
extremum condition

Eq. (III.33, 34, 39) are three equations for the
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unknowns a, B and glo. It is often convenient to
insert (111.39) into (111.35), obtaining

We shall now try to get some physical insight for
these results, by an investigation of various limiting
cases.

III . 3 . c Cholesteric-Nematic transition. - In ana-

logy with the familiar situation without grains [10]
we expect the transition to be reached when B - cc.

Eq. (III.35) then shows that a = 1. To get an infinite
B from eq. (111.33) one then requires g/o = e-P (to
ensure that the integrand diverges at ç = 0). Inserting
these results into eq. (III.40) we arrive at the condition

The parameter p, as defined in eq. (III. 9) is directly
proportional to the magnetic field. Thus eq. (III.41)
is an implicit equation for the critical field. A plot of

S(p) is shown in figure 21. For p « 1, Sep) -+ 2 .J2 p . .
03C0

We see on figure 21 that S(p) is always smaller than
unity. This means that, even with high fields, we can
induce the cholesteric-nematic transition only if qob  1.

FIG. 21. - Relation between imperturbed pitch 2 n/qo and
critical field Hc = pkB T/,u.

Numerically, it may be worthwhile to write down

the limiting form of (111. 4 1) for qo Ô « 1. Itcorresponds
to a critical field

Note that H, is proportional to qô2 : this is strikingly
different from the behaviour of conventional choleste-
rics (without magnetic colloids) where He is linear in
qo [10]. Taking n/qo = 80 microns (a large value, to
ensure that qo ô « 1) and M = 0.1 gauss we find from
(111.42) a critical field H,,, - 1 gauss.

In the same limit qoô « 1 we have also computed
the magnetization curve (Fig. 22) and the change of
pitch vs H ; both of them can be obtained simply
from eq. (III. 33, 34, 40) by manipulation of elliptic
integrals ; the detailed calculations are described in
appendix A.

FIG. 22. - Magnetization and change of pitch vs H in the
limit qo ô « 1.

We shall now proceed to the opposite limit qob &#x3E; 1,
which is somewhat less familiar.

III. 3. d Layered structures. - When qo à a 1 we

cannot untwist completely the cholesteric structure

by a field H. In fact, for high H, (high p) we then
expect to reach a remarkable field independent confor-
mation displayed in figure 23. This is made of succes-
sive strips, normal to the spiral axis z :

FIG. 23. - Ferrocholesteric conformation in a field H such that

p &#x3E; 1 but H  Hmech (Regime qo ô &#x3E; 1).

- empty strips (no magnetic grains) made of one
full pitch of the unperturbed cholesteric spiral, with
thickness e = 2 n/qo ;
- magnetic strips with an increased grain concen-

tration, all grains and molecules being aligned in the
field direction.
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The average free energy (per unit volume) for such
a layered system is simply

The first term in (III.43) is the gain of energy by
twist in the empty strip. The second term describes
the osmotic pressure effects (c is the bulk grain concen-
tration). The last term :F o/Q contains the magnetic
energy - MH and other contributions, all ofwhich are
independent of B. Minimizing F with respect to B we
find

The structure can exist only for qo ô &#x3E; 1. It can

be verified that (III. 44) agrees with the general formu-
las (III . 33, 35, 40), with the following choice of para-
meters :

III.4 COMPENSATED SUSPENSIONS. - We say that
a liquid crystal suspension is compensated when, at
each point, in zero field, there are just as many grains
with their moments pointing along - n or + n
(no macroscopic magnetization for H = 0). However,
if, starting from such a system, we switch on a magnetic
field H, we predict a non trivial magnetic response.
This will be shown below on some specific examples.

Consider first a nematic single crystal, with all
molecules aligned in the z direction, and a grain frac-

tion f, corresponding to f+ = f/2 grains polarised

along ( + z), and f- = fl2 grains polarized along ( - z).
We put a weak field H along z. The unperturbed confi-
guration becomes metastable. One configuration of
lower energy (which may well turn out to be realized in
practice) is displayed on figure 24. It contains a 180°
wall separating the sample into two halves. There
are still two families of grains (with respective distri-
butions f +(x) and f - (x), having their magnetic moments
respectively parallel or antiparallel to the local direc-
tor n. At low fields (H « H mech) a grain cannot com-
mute from one family to the other : for instance the
average of f + on the sample volume remains fixed
and equal to f/2. But f + will be large only in that half
of the sample (called A on Fig. 24) where n is parallel
to H. In the other half (B) f + will be small. More pre-
cisely, we have

FIG. 24. - Compensated nematic under a field : separation in
two phases.

In particular, for high p, the new configuration
corresponds to complete demixtion of the two types
of grains. 
The macroscopic free energy :F d’ associated with the

distribution (III.45) is given by

For comparison the free energy of the initial phase
was simply

where N is the total number of grains. Thus

and the initial phase is indeed metastable (’).
Of course, in practice, a number of physical pro-

blems would arise, which are not solved by the above
elementary considerations :

(1) other conformations may be more favourable
energetically than our « one wall structure » ;

(2) even if the one wall structure is indeed lowest
in free energy, the nucleation of the wall may require
comparatively high H. But in any case our result shows
that even compensated solutions may show remarkable
effects in the presence of a magnetic field.

(7) The structure of the wall separating regions A and B
can be derived simply from a generalization of eq. (111.11) to
two-component grain systems. When p &#x3E; 1 the thickness of the
wall is proportional to ô.
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This is also true for compensated cholesteric sus-
pensions. Consider for instance the regime qo ô &#x3E; 1
and p &#x3E; 1 for such a system. Here, instead of having
the layered structure of figure 23 we expect a split-
layer conformation (Fig. 25) with two 1800 walls

(containing no grains) and two nematic bands (con-
taining respectively the + and the - families) per
unit cell. The overall period B, however, is unchanged,
this can be understood as follows : the difference in
free energy between figure 25 and figure 23 is only due
to the entropy of mixing for the + and - families,
and is NkBT log 2 (independent of B). Thus minimi-
zation with respect to B will again lead to eq. (III . 44).

FIG. 25. - « Split layer » conformation for a compensated
cholesteric.

IV. Discussion. - Magnetic colloids could be an
efficient mean of coupling a liquid crystal to a weak
magnetic field. There are, however, certain difficulties
associated with this method, which we list below.

1) INCORPORATION OF THE GRAINS in the (non-polar)
liquid crystal : our hope is that this can be achieved
with small grains coated by a suitable detergent [11].
However, with the flexible detergent molecules cove-
ring the surface, it is not obvious the direction of
n is rigidly fixed at each point of this surface. If it is
not rigidly fixed, the distortion amplitude 1(0) will
become much smaller than the grain length L : the

coupling between grain axis and nematic axis is then
strongly decreased with respect to our estimates of
section II (8).

2) OPTICAL OBSERVATION OF THE CONFORMATIONS. -
This would be one of the best tools of investigation.
But, if (as usual) the grains are essentially opaque,

(8) A similar difficulty might occur if there are too many
disclination loops tied to each grain. However, this can probably
be avoided by cooling the samples from the isotropic phase,
under a strong field (see 4, below). 

such observations require very thin samples : the

optical free path A is of order 1 1 cu where c = f/Ld2
is the grain concentration and u = Ld is the lateral
surface of one grain. Thus A - dlf is of order
20 microns for f = 10-3 and d = 200 A.

3) EFFECTS OF INTERACTIONS BETWEEN GRAINS. -

a) When the grains are too large, it is impossible to
make a stable colloid. Even below the critical size,
they tend to line up in chains.

In some approximate sense, the chains will behave
as larger grains : they will still provide a strong cou-
pling between H and n. But the effective segregation
parameter p will be very large (increasing like the
number of grains in one chain).

b) On a different, more macroscopic, scale, we
have constantly ignored the effects of the dipolar
interactions between grains ; this will be valid only
when all external fields of interest are larger than

the demagnetizing fields (H &#x3E; M).

4) PREPARATION OF « FERRO » LIQUIDS AND « COMPEN-
SATED » LIQUIDS. - One of the major conclusions
of section III is the following : the properties of a
magnetic suspension in a liquid crystal are extremely
sensitive to the previous history of the sample. Thus
one must always use a careful preparation procedure
to obtain a meaningful result :

a) To generate a ferronematic one should use a

specimen oriented by the method of Chatelain [6]
between two polished plates, and start with a field
H &#x3E; Hmech applied along the easy axis. It may also

help to cool the isotropic phase down to nematic
temperatures under those conditions to avoid disclina-
tion loops in the local arrangement near each grain.

b) What do we get if we start from H &#x3E; Hmech with
a cholesteric substrate ? Let us discuss first the case
of large unperturbed pitches (qo b  1). Then the

high field state is nematic. When H is decreased we

may find either one of the following two transitions

(a) nematic conical structure

(fi) nematic cholesteric

The numerical conditions required to find (a) or
ffl) are discussed in appendix B. In case (a) the final
conformation is derived continuously from the high
field ferronematic : thus it is ferrocholesteric. In case

(,B), depending on the detailed conditions, the cholesteric
phase is known to nucleate either through disclination
loops [12] or through the growth of a wall which had
remained as a metastable object in the high field

phase [9]. The latter process is depicted on figure 26.
Disclinations of rank 1 should be avoided : as seen

in section III a loop L generates a surface of mismatch
E around which diffusion processes cancel out the

magnetization. On the other hand, the wall process
involves no discontinuity and appears to be acceptable.
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FIG. 26. - The Meyer type of nucleation center for the nematic
cholesteric transition (after ref. 9. transposed here to the case
of a ferrocholesteric). Above Hc the cylindrical wall is shrunk
but cannot disappear. Below He it increases its surface indefi-

nitely and fills all the sample volume.

c) If we start from H &#x3E; Hmech in a cholesteric of
small pitch (qo ô &#x3E; 1) the initial conformation corres-
ponds to figure 25 with nematic layers separated by
(empty) 1800 walls. When H is decreased this will give
rise to a compensated cholesteric. To prepare a ferro-
cholesteric of small pitch more sophisticated methods
should be used. One possibility is to have the plire
cholesteric C in contact with an isotropic liquid I,
the grains being initially in I (and polarised by a weak
field H). If C is a better solvent than I for the grains,
they will diffuse in C and one could reach a ferrocho-
lesteric state.

5) CONTAMINATION EFFECTS. - If a nominal ferro-
nematic is really only partially saturated (i. e., at

each point, f + &#x3E; f _ but f- =A 0) some of our conclu-
sions in section 111-2 become totally invalid. For

twisted configurations near a wall (and p &#x3E; 1) we
predicted a depletion layer of thickness b (f, --+ 0
in the layer). However, it must be realized that this

layer acts as a trap for the minority carriers (/-).
Thus, even if there are but few minority carriers in the
bulk, they may saturate the layer and change comple-
tely its optical properties.
To conclude : the physics of magnetic suspensions

in liquid crystals will require a long and careful experi-
mentation involving both physicists and physical-
chemists. But these experiments should display a
number of rather remarkable phase transitions.
Apart from magnetic grains, there are also many

other « floating objects » which could give interes-
ting effects in liquid crystals. One example is polypep-
tide rods, carrying a strong electric dipole moment :

dilute solutions of such rods might be sensitive to
low electric fields. We hope to come back to some of
these problems in later work.
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Appendix A. - Distortion of a ferrocholesteric
structure in the limit qo £5 « 1.

The equilibrium condition (111.29), in the limit

P « 1, may be written

This equation has for first integral

The pitch B of the structure corresponds to a varia-
. tion A(p = 2 n :

Eq. (III .40), the condition of stationary f with res-
pect to llk’ leads to :

using elliptic integral formulation [7].
Eq. (I) and (II) give the relationship between B

and H (Fig. 22). As the field’s strength approaches
a critical value

the pitch diverges logarithmically. For H &#x3E; Hc,
the structure is converted to a nematic one. The

pitch is much more sensitive to the field than for a
pure liquid crystal. For small values of H, the varia-
tion of B is proportional to H2

instead of H4.
The magnetization per cm’ in the field direction is

given by
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Eq. (II) and (III) give the relationship betweenM/M
and HIH, (Fig. 22). M is a linear function of H for
small fields

As H - He, M/M - 1 with a vertical tangent.
The continuity of M = f(H) proves that the transi-

tion is second order.

Appendix B. - Conical structures in ferrocholes-
terics.

In section III.3 we have restricted our attention to

spirals with the field H normal to the spiral axis z.

We now discuss briefly the opposite case, where H
is parallel to z and look for solutions of the form

For such a configuration there is no segregation since
the energy of one grain ( - J-lH cos 0) is independent of
its location. The free energy density is

F = sin2 0[( K(O) q2 - K22 qqo] - MH cos 0+const.
where K(O) = K22 sin2 0 + K33 COS2 8. Minimizing F
with respect to q one arrives at

Let us start from the nematic phase in high fields
(assuming qo b  1) and investigate the stability with
respect to a small conical distortion (0 -+ 0).
We have :

conical structures will not appear if the coefficient of
82 stays positive for all H &#x3E; He (He = critical field
defined by eq. (111.41)). This condition may be writ-
ten as

where G = [p/2 S2(p)] H=Hc’ The function G is plotted
on figure 27.

For

FIG. 27. - Conical structures in ferrocholesteric will appear if
K22/ K33 &#x3E; G(qo S).
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