

Propriétés métamagnétique s d'un monocristal de ErCrO3

C. Veyret, J.B. Ayasse, J. Chaussy, J. Mareschal, J. Sivardière

► To cite this version:

C. Veyret, J.B. Ayasse, J. Chaussy, J. Mareschal, J. Sivardière. Propriétés métamagnétique s d'un monocristal de ErCrO3. Journal de Physique, 1970, 31 (7), pp.607-611. 10.1051/jphys:01970003107060700. jpa-00206960

HAL Id: jpa-00206960 https://hal.science/jpa-00206960

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROPRIÉTÉS MÉTAMAGNÉTIQUES D'UN MONOCRISTAL DE ErCrO₃

C. VEYRET, J. B. AYASSE, J, CHAUSSY, J. MARESCHAL, J. SIVARDIÈRE

C. N. R. S. et C. E. N. G., rue des Martyrs, Grenoble

(Reçu le 4 mars 1970)

Résumé. — Les propriétés métamagnétiques d'un monocristal de ErCrO₃ sont étudiées par mesures d'aimantation et de diffraction neutronique sous champ. Les résultats mettent en évidence la forte anisotropie de l'erbium et l'existence d'un couplage chrome-erbium non négligeable. Une mesure de chaleur spécifique à basse température montre que l'ordre C_z de l'erbium n'est pas coopératif.

Abstract. — The metamagnetic properties of a single crystal ErCrO₃ are studied by magnetic measurements and neutron diffraction. The results show the strong anisotropy of erbium and a non negligible coupling between the two sub-lattices. A low temperature specific heat measurement shows that the C_z ordering of erbium moments is not cooperative.

L'orthochromite d'erbium a déjà fait l'objet de nombreuses études sur poudres : propriétés magnétiques [1], [2], structure magnétique [3], effet Mössbauer [4]. Nous présentons ici les résultats d'une étude d'un monocristal de ErCrO_3 par mesures d'aimantation et diffraction neutronique sous champ ; cette étude est complétée par une mesure de chaleur spécifique à basse température.

D'après [3], le chrome s'ordonne antiferromagnétiquement à la température $T_{N_1} = 133$ °K suivant le mode G_x [5]; à la température $T_{N_2} = 16,8$ °K apparaît un ordre C_z de l'erbium et en même temps le mode G du chrome tourne dans le plan xy de 55°. L'application d'un champ H_z détruit le mode C_z suivant la transition $C_z \to F_z$, le mode G du chrome revenant alors vers x.

Mesures de susceptibilité et d'aimantation. – A haute température, les courbes d'aimantation $\sigma_z(H)$ sont des droites de Curie-Weiss. Pour

$$T < T_{N_{\star}} = 133.1 \text{ °K}$$

on observe suivant z une aimantation spontanée : $\sigma_z = \sigma_z^0 + \chi_z H_z$, $\sigma_z^0 = f_z + M_z$. f_z est le faible ferromagnétisme associé au mode G_x du chrome ; M_z est la polarisation de l'erbium induite par le chrome (*), z est la direction de facile aimantation de l'erbium. σ_z^0 varie linéairement en fonction de 1/T, on en déduit que le champ H_{Cr} créé par le chrome sur l'erbium est compris entre 1 600 Oe et 3 000 Oe suivant la valeur adoptée pour le moment μ_{Er} de l'erbium (entre 6 et 9 μ_B).

Le mode F_z disparaît vers $T_{N_2} = 9 \,^{\circ}$ K (et non 16,8 $^{\circ}$ K) au profit de l'ordre C_z . En même temps la valeur de f_z diminue (0,025 μ_B à 1,5 $^{\circ}$ K) ce qui impli-

que une rotation du mode G vers y, aucun ferromagnétisme n'étant compatible avec G_y . Pour $T < T_{N_2}$, on observe la transition métamagnétique $C_z \rightarrow F_z$: le champ seuil est 1 000 Oe à 1,5 °K, 9 00 Oe à 4,2 °K et s'annule à 9 °K; le moment à saturation est de 6,1 μ_B à 1,5 °K. L'inverse de la susceptibilité moléculaire $1/\chi_z$ présente un minimum à T_{N_2} : χ_z est en effet une susceptibilité parallèle (Fig. 1 et 2).

FIG. 1. — Aimantation σ_z en fonction du champ H_z (H_D désigne le champ démagnétisant).

^(*) Longueur du mode F_z couplé à G_x .

Quelle que soit la température, les courbes $\sigma_y(H)$ sont des droites (Fig. 3), et l'aimantation en champ nul est toujours nulle. L'inverse de la susceptibilité

FIG. 3. — Aimantation σ_y en fonction du champ H_y .

(perpendiculaire) $1/\chi_y$ diminue quand T diminue et tend vers une valeur limite à 0 °K (Fig. 4), cependant la variation thermique de $1/\chi_y$ met en évidence les températures T_{N_x} et T_{N_x} .

températures T_{N_1} et T_{N_2} . Enfin les courbes $\sigma_x(H)$ ne sont pas des droites entre T_{N_1} et T_{N_2} , elles présentent une cassure (Fig. 5) pour un champ H_c qui dépend de T. Pour $H < H_c$ la courbe $(1/\chi_x)$ (T) est continue à T_{N_2} ; pour $H > H_c$ la courbe $(1/\chi_x)$ (T) est continue à T_{N_1} (Fig. 6). La figure 6 représente aussi la variation thermique de H_c et de l'ordonnée à l'origine σ'_x de la droite $\sigma_x(H)$ pour $H > H_c$.

La comparaison des susceptibilités χ_x , χ_y , et χ_z montre que l'anisotropie de l'erbium est très pro-

FIG. 5. — Aimantation σ_x en fonction du champ H_x .

000

FIG. 6. — Variation thermique de l'inverse de la susceptibilité suivant x pour $H < H_c$ et $H > H_c$, variation thermique de H_c et de σ'_x en champ nul (après cassure).

noncée; comme l'ont montré diverses expériences de diffraction neutronique [3], [6], le tenseur g du doublet fondamental de l'ion Er^{3+} est tel que : $g_z \ge g_x \ge g_y$.

La cassure observée sur les courbes $\sigma_x(H)$ n'est observée qu'entre T_{N_1} et T_{N_2} , elle est donc liée à l'existence de la polarisation F_z de l'erbium puisque la susceptibilité du chrome est négligeable, et peut s'interpréter de la manière suivante : pour $H < H_c$, l'erbium est polarisé par le chrome suivant F_z et on mesure une susceptibilité perpendiculaire χ_x (d'où la continuité avec la phase C_z); un champ H supérieur à H_c découple les deux sous-réseaux, la susceptibilité diminue alors car x est une direction de difficile aimantation et l'erbium se comporte comme un paramagnétique (d'où la continuité avec la phase paramagnétique). H_c dépend du champ H_{Cr} et du champ d'anisotropie de l'erbium dans le plan zx (dans le plan zy, ce champ est très élevé et la cassure n'apparaît pas). Les variations thermiques de H_{c} et de $1/\chi_x$ ($H < H_c$) sont en accord avec ce modèle : plus la température diminue, plus les moments d'erbium sont fixés suivant z.

Diffraction neutronique sous champ à 4,2 °K. — Deux monocristaux ont été étudiés dans un champ H_z vertical : l'un parallélépipédique, l'autre sphérique. Nous avons suivi en fonction du champ les intensités des raies de la state 0 et des raies (011) et (101). Les courbes I(H) sont représentées sur les figures 7 et 8.

Des excroissances sont visibles sur toutes les courbes pour des valeurs de H comprises entre 2 000 et 3 000 Oe. Leur importance vis-à-vis de la variation totale de l'intensité varie beaucoup d'un cristal à l'autre et suggèrent qu'elles ne sont pas liées directement au mécanisme de métamagnétisme mais à la présence de plusieurs cristaux ou macles dans les échantillons. Les excroissances sont donc négligées dans la suite.

FIG. 7. — Diffraction neutronique sous champ (échantillon parallélépipédique).

FIG. 8. — Diffraction neutronique sous champ (échantillon sphérique).

Les raies (010) et (100), caractéristiques de l'ordre C_z de l'erbium, disparaissent simultanément, ce qui indique bien un mécanisme de renversement des moments d'erbium antiparallèles au champ sans réorientation dans une direction perpendiculaire. En même temps apparaissent les raies (110), (020), (200) sensibles au ferromagnétisme F_z ; elles croissent jusqu'à des valeurs correspondant à l'alignement de tous les moments parallèlement au champ.

La décroissance des intensités des raies (011) et (101) est partiellement masquée par les excroissances signalées ci-dessus; elle correspond à la disparition de l'ordre C_z de l'erbium et à la rotation vers x du mode G du chrome; l'ordre F_z de l'erbium contribue à l'intensité de la seule raie (101) ce qui explique sa décroissance lente.

Chaleur spécifique à basse température. — Aucune anomalie λ de chaleur spécifique n'est observée entre 1 °K et 20 °K sur un échantillon de poudre frittée (Fig. 9). Par conséquent, comme dans ErFeO₃ [7], l'ordre C_z de l'erbium n'est pas coopératif, son origine est précisée dans le paragraphe suivant : la température T_{N_2} n'est pas une température de Néel et nous la notons dorénavant T_R , température de réorientation $G_x \to G_{xy}$ des moments de chrome.

FIG. 9. — Chaleur spécifique de ErCrO₃ entre 1 °K et 20 °K.

C'est au contraire une anomalie Schottky à deux niveaux de même dégénérescence, séparés par l'énergie notée Δ_{xy} , qui est observée. L'entropie ΔS associée à l'anomalie est légèrement inférieure à R Log 2. Δ_{xy} s'obtient à partir des régions haute et basse température de l'anomalie et des coordonnées du maximum de chaleur spécifique ; nous avons déterminé respectivement : $\Delta_{xy} = 11,2 \text{ °K}$; 13,8° et 10,3 °K et nous adoptons la valeur : $\Delta_{xy} = 12 \text{ °K}$. Δ_{xy} représente la séparation du doublet de Kramers fondamental des ions Er^{3+} par les diverses interactions magnétiques Er-Cr et Er-Er.

La variation thermique de la chaleur spécifique ne présente aucun accident à 9 °K et 16,8 °K. Le fait que l'énergie Δ_{xy} ne varie pas entre 1 °K et 15 °K environ suggère que l'ordre C_z de l'erbium apparaît bien à $T_R = 16,8$ °K sur poudre [3]. La température T_R est plus faible sur un monocristal : $T_R = 9$ °K car la réorientation $G_x \rightarrow G_{xy}$ est très sensible aux imperfections cristallines comme cela a déjà été observé dans le cas de TbFeO₃.

Origine de l'ordre C_z **de l'erbium.** — Dans la phase G_x , le champ H_{Cr} agissant sur les moments d'erbium vaut environ 3 000 Oe, d'où l'énergie de couplage Er-Cr: $\Delta_x = 2 \mu . H_{Cr}^x = 4 \, {}^{\circ}$ K. Dans la phase G_{xy} , le champ H_{Cr}' agissant sur les moments d'erbium est 1 0000 Oe ($\Delta_{xy} = 2 \mu . H_{Cr}' = 12 \, {}^{\circ}$ K) si on néglige les interactions Er-Er.

Par conséquent à basse température, la phase G_{xy} est favorisée par le couplage entre les deux sousréseaux [7], [8], la variation $\Delta_x - \Delta_{xy}$ de ce couplage compensant l'augmentation d'énergie d'anisotropie ΔE_a des moments de chrome. Plus précisément, la

$$T_R = \frac{\Delta_{xy}^2 - \Delta_x^2}{8 \, \Delta E_a} \,.$$

 $T_R = 16,8 \text{ °K}$ d'où $\Delta E_a = 1 \text{ °K}$ par atome, soit 6×10^7 ergs par mole, en bon accord avec les résultats de Bertaut et Mareschal [3].

La figure 10 décrit la polarisation des quatre moments d'erbium par le champ effectif du chrome dans les phases G_x , G_{xy} et G_y . Soit θ l'angle entre l'axe x et les moments de chrome : le champ H_1 agissant sur les moments 1 et 2 vaut

G. 10. — Polarisation de l'erbium par le champ effectif du chrome.

FIG. 11. — Influence d'un champ H_z sur la température $T_{N_2} = T_R$.

Nº 7

$H_{\rm Cr}^x \cos \theta + H_{\rm Cr}^y \sin \theta$;

le champ H_3 agissant sur les moments 3 et 4 vaut $H_{Cr}^x \cos \theta - H_{Cr}^y \sin \theta$ et s'annule pour $\theta = \theta_0$, tg $\theta_0 = H_{Cr}^x/H_{Cr}^y$.

Un champ extérieur H agit sur la réorientation $G_x \rightarrow G_{xy}$. H_y est sans influence sur l'erbium dont y est une direction de difficile aimantation mais stabilise G_x en agissant directement sur le chrome. H_z couple les deux sous-réseaux dans la phase $G_x F_z$ et abaisse T_R ; la réorientation disparaît si H_z est supérieur au champ seuil H_S (Fig. 11). Enfin un champ H_x tend à découpler les deux sous-réseaux, il doit donc abaisser T_R .

Conclusion. — Les études précédentes ont confirmé d'une part les propriétés d'anisotropie de l'erbium dans ErCrO_3 ($g_z \ge g_x > g_y$) d'autre part l'existence d'un couplage entre le chrome et l'erbium : entre T_{N_1} et T_{N_2} , l'erbium est polarisé suivant F_z par le chrome ; au-dessous de T_{N_2} , le mode C_z de l'erbium apparaît en même temps que la composante y du mode G du chrome et sous champ H_z , C_z et G_y disparaissent en même temps.

L'ordre C_z de l'erbium n'est pas coopératif mais induit par le sous-réseau de chrome : aucune anomalie λ de chaleur spécifique n'est en effet observée à $T_{N_2} = T_R$; l'anomalie Schottky observée à plus basse température fournit la valeur du couplage chrome-erbium dans la phase G_{xy} $C_z : \Delta_{xy} \sim 12$ °K; cette valeur permet de calculer la température de rotation $G_x \rightarrow G_{xy}$ des moments du chrome en bon accord avec l'expérience.

Remerciements. — Nous remercions MM. les Professeurs E. F. Bertaut et R. Pauthenet de leurs nombreux conseils.

Bibliographie

- BERTAUT (E. F.), MARESCHAL (J.), PAUTHENET (R.), REBOUILLAT (J. P.), Bull. Soc. Fr. Céram., 1966, A 75, 44.
- [2] REBOUILLAT (J. P.), Thèse 3^e cycle, Grenoble, 1965.
- [3] BERTAUT (E. F.), MARESCHAL (J.), Solid State Comm., 1967, 5, 93.
- [4] EIBSCHUTZ (M.), COHEN (R. L.), WEST (K. W.), J. Phys. Rev., 1969, 178, 572.
- [5] BERTAUT (E. F.), Magnetism III, Rado et Suhl. ed. chap. 4, Academic Press, 1963.
- [6] KAPPATSCH (A.), QUEZEL-AMBRUNAZ (S.), SIVARDIÈRE (J.), J. Physique (à paraître).
- [7] PATAUD (P.), SIVARDIÈRE (J.), J. Physique (à paraître).
- [8] SIVARDIERE (J.), Solid State Comm., 1969, 7, 1555.