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STRESS TENSOR FOR A NEMATIC LIQUID CRYSTAL

O. PARODI

Laboratoire de Physique des Solides (*), Faculté des Sciences, 91, Orsay
(Reçu le 16 décembre 1969)

Resumé. 2014 Des équations constitutives pour les cristaux liquides nématiques ont été établies
par Ericksen et Leslie. Dans ces équations apparait un tenseur des contraintes faisant intervenir
six coefficients de viscosité 03B1i (i = 1...6). On montre ici que l’application des relations d’Onsager
conduit à la relation

03B12 + 03B13 = 03B16 - 03B15.

Il ne subsiste donc que cinq coefficients de viscosité indépendants.

Abstract. 2014 Constitutive equations for nematic liquid crystals were first established by Ericksen
and Leslie. They used a stress tensor with six viscosity coefficients 03B1i (i = 1...6). It is shown in this
paper that the Onsager reciprocal relations lead to the relation

03B12 + 03B13 = 03B16 - 03B15 .

Hence there are only five independent viscosity coefficients for a nematic liquid crystal.

LE JOURNAL DE PHYSIQUE TOME 31, JUILLET 1970,

1. Introduction. - Ericksen [1] and Leslie [2] [3]
have written constitutive equations for anisotropic
fluids. For incompressible isothermal nematic liquid
crystals, the dissipative part of the stress tensor takes
the form (1)

where n is the director (n2 - 11, A the strain rate

tensor :

and N the velocity of the director relative to the fluid :

(*) Laboratoire associé au C. N. R. S.

(1) The dyadic ab has components (ab)xp = aa bp.
The products A. B and A : B are defined by

The vectors A , b and b. A have components

Hence ab :

The dyadics ab. A and A, ab have components

where Il and w are the angular velocities of the direc-
tor and of the fluid :

The torque exerted by the director on the fluid is

where yl 1 and y2 are given by

When deriving these equations, Ericksen and Leslie
have taken into account the spatial symmetry proper-
ties of the medium, and the equality of action and
reaction. It is shown in this paper that the Onsager
reciprocal relations, that reflect the time-reversal
invariance of the equations of motion of the individual
particles, lead to the relation

2. Thermodynamic fluxes and forces. -- In order to
use the Onsager [4] reciprocal relations, one has to
express the entropy production as a product of ther-
modynamic fluxes and forces [5] [6]. The entropy
production is given by

Let be the antisymmetric tensor

where (a, p, y) is a cyclic permutation, and r n the tensor
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Using eqs. (l.l) and (1.5), one easily shows that
the antisymmetric part of b is - r m and that

Let 77 be the symmetric part of the stress tensor 0-,

The grad v tensor can be split into a symmetric
part A, and an antisymmetric part co,

Eq. (2.1) can be now written

In eq. (2.7), two independent thermodynamic forces

appear, A and (Q - co). The conjugated fluxes are II
and Tn. These are the symmetric and antisymmetric
viscous parts of the momentum density flux. We have
now to express these fluxes as linear forms on the
forces.

Eqs (2.3) and (2.5) can be written

3. Onsager reciprocal relations. - Eqs (2.9) and

(2.10) are linear relations between fluxes V and

forces X’ :

Onsager reciprocal relations state that

The matrices L12 and L21 have elements

Relations (3.2) implies that

There are now five independent viscosity coeffi-

cients, oei, CX4, Y1, 72 and fi = oc5 + a6. The symmetric
part of the stress tensor is

With these notations, the stress tensor is

And the entropy production (2. 7) can be written as

Let us take local axes with n along the z-axis.

Eq. (3.6) is now

This expression must be positive definite. This

implies that

4. Some applications. - a) STRESS EXERTED BY A
ROTATION OF THE DIRECTOR. - Let us first consider
the fluid at rest, and let us rotate n with angular velo-
city!1. Take n along Z-axis and!1 along X-axis (Fig. 1).
Using (3.5) and (1.5), one finds
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FIG.1. - The fluid is at rest, and the director n spins with angu-
lar velocity Il (n 1 n). fzy, fyZ are the surface forces exerted

by an elementary volume including n on the extemal fluid

The dissipative stress tensor, u, has non-zero compo-
nents

The forces acting on the surface of an elementary
volume in the fluid are shown on figure 1 :

b) SHEAR FLOW. - oc) Let us now assume n at
.

rest (n = 0), and a shear flow in YZ-plane parallel
to n (Fig. 2a) :

Using eqs (3. 7) and (1. 5), one finds for the torque
per unit volume exerted by the flow on the nematic
molecule Ff (Ff = - rj :

P) Let us now assume a shear flow perpendicular
to n, and parallel to the Z-axis (Fig. 2b) :

FIG. 2. - The director n is at rest in a shear flow in the yz plane
(a) shear flow parallel to n ; b) shear flow perpendicular to n).
Ff and rI are the torques exerted by the fluid on the director

Eq. (3.7) give

The coefficients are the same in eqs (4.1) and (4.2).
This results from eq. (1 . 7).

In case a) and P), the two flows have opposite
angular velocities

The difference in the torques rfx and T)x is due to
the anisotropic shape of the nematic molecule. This
effect is very well known for macroscopic bodies. In
this case, rfX &#x3E; r;x, which implies that 72 is nega-
tive, and 1 Yl - Y2 1 « Yn

Helfrich [7] has derived this last result for nematic
molecules from a model in which the molecules are
assumed to be equally and rigidly oriented ellipsoids
of revolution, colliding with each other like the mole-
cules of a gas. He finds 72  - 7i’ This result implies
that, in case oc), the torque exerted on the nematic
molecule is negative.

Helfrich’s model is not very convincing : it neglects
the correlations between molecules and the exchange
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of angular momentum. Moreover, in his model, the
sign of (Yl + y2) depends strongly on the shape of the
molecule (2).
The behaviour of a nematic liquid crystal in a shear

flow depends strongly on the sign of (yi + y2). Leslie
[3] has shown that, if (Yl + y2)  0, the nematic mole-
cules are oriented in a shear fiow, and that the angle 0,
between the flow and the director is given by

If (y, + y2) &#x3E; 0, there is no such orientation.
The experiments of Marinin and Tsvetkov [8] seem

to confirm the orientation of p-azoxyanisole in a

rectangular capillary. It then seems reasonable to
think that y,  - y 1 .

References

[1] ERICKSEN (J. L.), Arch. ration. Mech. Analysis, 1960, 4,
231.

[2] LESLIE (F. M.), Quart. J. Mech. Appl. Math., 1966, 19,
357.

[3] LESLIE (F. M.), Arch. ration. Mech. Analysis, 1968, 28,
265.

[4] ONSAGER (L.), Phys. Rev., 1931, 37, 405; 1931, 38,
2265.

[5] DE GROOT (S. R.) and MAZUR (P.), Non equilibrium
Thermodynamics, Amsterdam, North Holland
Publishing Company, 1962.

[6] DE GROOT (S. R.) and MAZUR (P.), Phys. Rev., 1954,
94, 218.

[7] HELFRICH (W.), J. Chem. Phys., 1969, 50, 100.
[8] MARININ (B. A.) and TSVETKOV (V. N.), Acta Physico-

chimica URSS, 1939, 11, 837.

(2) Note added in proof. In a more recent paper, to be published in the Journal of Chemical Physics, Helfrich uses a new
model, with a two-body ellipsoidal interaction potential. From this model, which is more convincing, he derives the same result
(Yl + Y2) &#x3E; 0.


