
HAL Id: jpa-00206332
https://hal.science/jpa-00206332

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Raman scattering from crystals of the diamond structure
R.A. Cowley

To cite this version:
R.A. Cowley. Raman scattering from crystals of the diamond structure. Journal de Physique, 1965,
26 (11), pp.659-667. �10.1051/jphys:019650026011065900�. �jpa-00206332�

https://hal.science/jpa-00206332
https://hal.archives-ouvertes.fr


659

RAMAN SCATTERING FROM CRYSTALS OF THE DIAMOND STRUCTURE

By R. A. COWLEY,
Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada.

Résumé. 2014 On discute la théorie de la diffusion Raman de la lumière par des cristaux du type
diamant, et on effectue les calculs détaillés pour la diffusion par le germanium, le silicium et le
diamant. L’anharmonicité entre les modes normaux de vibration produit un élargissement de la
raie à un phonon. La forme de cette raie dépend du comportement détaillé de la durée de vie et de
la fréquence du mode optique de grande longueur d’onde. L’anharmonicité amène aussi un cou-
plage entre les diffusions à un et à deux phonons, qui tend, en partie, à écarter le centre de la raie
à un phonon de la fréquence du mode optique.

Les modèles en coquille adaptés aux courbes de dispersion mesurées servent au calcul des modes
normaux de vibration. Les éléments des matrices à un et à deux phonons de la diffusion Raman
sont évalués au moyen de la méthode du modèle en coquille, appliquée à ces modèles particuliers,
et les spectres sont calculés, en tenant compte des effets de l’anharmonicité de la diffusion, par un
phonon. La comparaison des résultats avec les données expérimentales connues montre que les
détails du spectre dépendent considérablement de la polarisation de la lumière et de l’orientation
du cristal.

Abstract. 2014 The theory of the Raman scattering of light from crystals of the diamond struc-
ture is discussed and detailed calculations made of the scattering by germanium, silicon and dia-
mond. The anharmonicity between the normal modes of vibrations gives rise to a broadening
of the one-phonon peak. The shape of this peak then depends upon the detailed behaviour of the
lifetime and frequency of the long wavelength optic mode. The anharmonicity also introduces
a coupling between the one and two-phonon scattering, part of which tends to shift the center of
the one phonon Raman peak away from the frequency of the optic mode. Shell models which
were fitted to the measured dispersion curves are used to calculate the frequencies of the normal
modes of vibration. The one and two-phonon matrix elements for the Raman scattering are
evaluated by means of the shell model formalism for these models and the spectra calculated
including the effects of anharmonicity on the one phonon scattering. The results which are
compared with the available experimental results show that the details of the spectra depend
considerably on the polarization of the light and on the orientation of the crystal.
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1. Introduction. -- The theory of the Rarnan
scattering of light by the lattice vibrations of a
crystal shows that it depends on the way in which
the lattice vibrations modify the electronic polari-
zability, PaB, of the crystal as described by Born
and Huang [1], and by Loudon [2].
The intensity of the scattered light depends upon

the polarizations of the light and upon the crystal
orientation. If the electric vector of the incident

light is defined by E, and the polarization of the
electric vector of the scattered light by n, the
intensity of scattering per unit solid angle is [1]

where

The frequency of the incident light is wo, v is
the initial state of the crystal of energy ev, v’ the
final state of energy e,,, and Q the change in
frequency of the light. The expression (1.2) is
most readily evaluated by the use of the tech-

niques of many body theory (for example Abri-
kosov, Gorkov and Dyzaloshinski [3]). The
Fourier transform of the thermodynamic time orde-
red Green’s functions G(P :yPa8’ Q) are easily
evaluated by the use of these techniques, and

The Raman scattering is now obtained by expan-
ding the polarizability of the crystal as a power
series and evaluating the Green’s functions by
means of diagrams [4]. In each diagram the pho-
nons associated with the PgT operator enter on the
left, while those associated with Pys leave on the
right. In between they interact with one another
through the anharmonic interactions in the crystal.
The rules for calculating the contributions of these
diagrams have been given by Maradudin and
Fein [5] and by Cowley [6].
The Raman spectra of the crystal can then be

obtained from the I,,,py8, appropriate for the parti-
cular conditions of the experiment. The spectra
are dependent upon the state of polarization of
both the incident and scattered light, and also on
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the crystal orientation. A table of the appro-
priate combinations of the 1,,pys for some typical
experiments is given in [4].
Two difficulties arise in the detailed calculation

of the Raman spectra. Firstly the frequencies and
eigenvectors of the normal modes of vibration are
usually unknown. In this paper this difl’lculty is
overcome by the use of models whose parameters
were fitted to give good agreement with measu-
rements of the dispersion curves, as made by ine-
lastic neutron scattering techniques. The models
are described in detail by Dolling [7] and by Dolling
and Cowley [8].
The second difficulty arises because the influence

of the lattice vibrations on the polarizability of the
crystal is unknown. These calculations are per-
formed by assuming that the interaction is of a

very simple form between nearest neighbour ions,
as described in the next section. The detailed
form of the Raman spectra of the diamond struc-
ture materials depends on the behaviour of the
one-phonon contribution. This is largely in-
fluenced by the anharmonic interactions of the long
wavelength optic mode of vibration with the other
normal modes. These interactions have been cal-
culated by means of the parameters of the anhar-
monicity determined from the experimental ther-
mal expansion of the crystal [8].

In section 3 the detailed expressions for ,the
Raman spectra are given, including the effects of
anharmonicity on the long wavelength optic mode.
The calculation of the spectra and the results are
described in section 4.
Measurements of the Raman spectra are fre-

quently used to deduce critical point frequencies
(Loudon [2] and Bilz, Geick and Renk [9]). Some
of the difliculties in deciding and interpreting
these critical point frequencies are described in
section 5. The results are summarized and dis-
cussed in section 6.

2. The polarizability. -- The electronic polari-
zability of a crystal may be expanded as a power
series in the phonon coordinates [1] :

where the A(q j ) are the sum of the phonon creation
and destruction operators. The one-phonon con-
tribution arises from the long wavelength optic
mode of vibration in the diamond structure, the
symmetry of which shows that P«T(oj) is non-zero
only if ce and p are unequal [2]. The coefficients
of the two-phonon term, Paa(q j j’), are more compli-
cated and depend both on the wave vector q and
the indices j and j’ of the normal modes. Birman

[10], Johnson and Loudon [11] and Kleinman [12]
have given the selection rules for these coefficients
which result from the symmetry of the normal
modes.

In these calculations the coeflicients are deter-
mined by assuming a form for the interaction
between the ions giving rise to the polarizability.
The two-phonon contribution to the polarizability
may be written as

where u(lx) is the displacement of the xth ion in
the Zth unit cell. The number of arbitrary coef-
ficients needed to describe the interactions in equa-
tion (2.2) is restricted by the symmetry of the
crystal and by making physical approximations
about the form of the interaction. In these calcu-
lations the simplest form of one parameter nearest
neighbour interaction has been used in which

where X is a constant and R is the vector distance
of the ion (l’x’) from the ion (lx) and the inter-
action is restricted to nearest neighbours. The

expressions for (l’x’) = (lx) were deduced by the
use of translational invariance. The coefficients of
the two-phonon term in equation (2.1) are then

given by
v,

The eigenvectors of the normal modes are writ-
ten e(x, qj) and the frequencies m(qj) while X’ is
another constant.

This development of detailed expressions for the
two-phonon contribution to equation (2.1) may be
compared with those deduced earlier [4] by use of
the shell model formalism. Equation (9) of [4]
is very similar to equation (2.4) if the terms depen-
ding on the displacements of the shells are neglec-
ted. The one parameter interaction we have used
here is equivalent to assuming that the interaction
in equation (10) of [4] is a central force in which the
fourth derivative terms are by far the largest.
The parameters for the calculation of the Raman
spectra of the alkali halides were deduced earlier
by assuming that all the short range interaction
acts through the shells. In the case of the
diamond structure this approximation necessarily
gives rise to no Raman scattering, when transla-
tional invariance is applied to the interaction.
The parameter of’ the two-phonon Raman scat-
tering in the diamond structure could not there-
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fore readily be deduced from other measurements.
The contributions included by the expressions

(2.3) and (2.4) are therefore very similar to those
of equations (9) and (10) of [4]. However the
shell model formalism shows that there is an addi-
tional contribution to the two-phonon scattering
from two optic modes of long wavelength. Such a
scattering is observed experimentally in dia-
mond [13] and it is necessary to add in this extra
two-phonon term to explain the magnitude of this
scattering.

3. The Raman spectra. - The Raman spectra
can be obtained from the expressions given in I
and the expansion for the polarizability (2.1).
The detailed shape of the one-phonon spectra is
determined by the anharmonic interactions invol-
ving the optic mode of vibration. The extra con-
tribution to the Hamiltonian from the anharmonic
interactions is written as

The anharmonic interactions alter the self-ener-
gies of the normal modes. The three lowest order

diagrams are shown in figure 1, and their effect on

FIG. 1. - The three lowest order diagrams which contri-
bute to the self-energy of the normal modes. Dia-
gram (a) arises from the thermal expansion while the
other diagrams arise from the interactions between the
normal modes.

the optic mode of vibration is to make its fre-

quency and lifetime dependent upon both the
temperature and the applied frequency (Q) :

The detailed expressions for the contributions to
A(oj, Q) and r(oj, Q), shown in figure 1, are [5],

Diagram (a), figure 1, and the first term of this
equation arise from tlie thermal expansion of the
crystal, while the second term is from diagram (b).
The function R(Q) is

The occupation number of the normal mode is
n(qj) and its inverse lifetime

where

The diagrams which contribute to the Raman
spectra are shown in figure 2. The one-phonon
contribution to Ixyxy is

FIG. 2. - The lowest order diagrams which contribute to
the Raman spectra of the diamond structure materials,
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Diagrams (b) also contribute only to IxYXY, and involves both one and two-phonon processes :

Diagrams (c) and (d) are the two-phonon contri-
butions to 7Arjcy and I xx xx respectively ; dia-

gram (d) gives

2 n { exp (ph 0) - 11-1

The Raman spectra can now be obtained in
detail by the use of these equations and those for
the coefficients in the expansion of the polariza-
bility (2.1).

4. Calculations and results. - The one-phonon
scattering cross-section depends in detail on the
anharmonic interaction of the long wavelength optic
mode with the other normal modes. The calculation
of the shift, A(0/, Q), and inverse lifetime, r(o/, Q),
have been performed using the eigenvectors and
frequencies of harmonic models, obtained by fit-
ting the parameters of the models to give excel-
lent agreement with the dispersion curves as mea-
sured by inelastic neutron scattering. The models
are described in detail by Dolling [7] and by
Dolling and Cowley [8].

FIG. 3. - The shift in frequency, 3(oj, Q), and the inverse
lifetime, r(oj, Q), as a function of the applied frequency,
í1, for the optic mode of germanium at 10 OK and 300 OK.

The anharmonic interactions V (I F . q )1 /1 12
were deduced by assuming they were two body
central forces between nearest neighbours, and
finding the parameters which give best agreement
with the experimentally measured thermal expan-
sion as described by Dolling and Cowley [8]. The
calculation of the third contribution, diagram (c) of
figure 1, to A(oj, Q) and to h(oj, Q) were then
performed numerically by sampling q over 4 000
wave vectors in the full Brillouin zone. The
results for germanium at 10 oK and 300 OK are
shown in figure 3 as a function of the applied fre-
quency. The contributions to the shift from dia-
grams (a) and (b) of figure 1 were not evaluated
because they do not alter with applied frequency,
and furthermore in calculations for the alkali
halides they almost exactly cancel [6]. It is of f
interest that both the shift and inverse lifetime are
quite stiongly dependent upon the applied fre-

quency, Q. In any particular experiment the
inverse lifetime is normally taken as given by the
width of the one-phonon peak. This is roughly
approximated by h(o j, 6J(oj)) and the shift in fre-
quency by A(o/, 6J(oj)). These are listed in the
table at various temperatures for germanium, sili-
con and diamond.

TABLE

THE SHIFT IN FREQUENCY A(oj, co(0/))
AND THE INVERSE LIFETIME r(oj, M(0/))

OF THE OPTIC MODES, FOR DIAGRAM (c) OF FIGURE 1.
UNITS 1012 c. p. s.
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Once the-form of,&#x26;(Oi, Q) and r(oj, Q) have been
calculated the shape of the one-phonon peak is

given by equation (3.7). The results for germa-
nium are shown in figure 4, and for silicon in

figure 5 by the curves A and AA. Curve AA shows
the fine structure resulting from the frequency
dependence of A(o/B Q) and r(oj, Q) while A
shows the principal peak. Since the numerical
value of Pxp(o/) is unknown the intensity scalelis
arbitrary.

FIG. 4. - The contributions to the Raman spectra of ger-
manium at 300 °K. Curves AA and A show the one-
phonon part. Curve AA is on 100 times larger scale
than A. B arises from the joint one-and two-phonon
type of process, C is the two-phonon Ix yx y contribution,
and D the Ixxxx contribution. - E results from the two
phonon contribution from 2r phonons. The relative
intensity of the curves A, C, E is arbitrary as explained
in the text.

The two-phonon contributions have been evalua-
ted by means of equation (3.9) and the expression
for the matrix elements given in section 2. The
results differ for the contribution to Ixyxy, curve C,
and to Ixxxx, curve D, showing that the observed
two-phonon intensity will depend on the polari-
zation of the light and the orientation of the

crystal. The contribution involving both one and
two-phonon processes, equation (3.8), contributes
to Ix yxy alone and is shown in figure 4 and 5 as
curve B. Since the magnitude of the two-phonon
relative to the one-phonon matrix element is
unknown the curves C and D may be scaled by

FIG. 5. - The contributions to the Raman spectra of sili-
con at 300 °K. The contributions are labelled simi-
larly to these of figure 4 except the ratios of the scales
for AA to A is 1/200. The critical point frequencies
for r, X, W are also shown. Those with a horizontal
bar arise from difference bands, and those dotted occur
only for Ixxxx.

any constant K 2 while curves B are scaled by K.
A further two-phonon contribution identical for
both I xYxY and Ixxxx, arises from the term invol-
ving two long wavelength optic modes and its
additional contribution is shown by the curves E
of figures 4 and 5. The relative intensity of this
contribution is not simply related to that of the
other contributions.
The detailed structure of the scattering near the

one-phonon peak is of considerable interest.
Figure 6 shows the detailed shape of the one-

phonon contribution and it is clearly not sym-
metric because of the frequency dependence of
A(oj, Q) and r(oj, Q). Figure 6 also shows the
contribution of the last part of expression (3.8)
which is asymmetric about the one-phonon peak
frequency. This contribution will act so as to shift
the observed peak away from the peak in the one-
phonon contribution. In the cases calculated here
it appears that the size of the shift is very small,
but nevertheless the detailed study of the shapes
of one-phonon lines might well be rewarding.

It is also possibly of interest to point out that
the size of the asymmetric term relative to the one-
phonon term depends on the coefficient of the
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expansion (2.1). Since the coefficients of this

expansion differ for neutron and X-ray scattering
and for infrared absorption the frequencies deter-
mined using these different techniques may differ,
because the relative size of the asymmetric term
will be different.

FIG. 6. - The detailed behaviour of the one-phonon con-
tribution, A, and of the asymmetric part of B near the
optic mode frequency in germanium at 300 °K.

Diamond is unfortunately the only one of the
materials discussed here for which the Raman

FIG. 7. - The Raman spectra of diamond as measured by
Krishnan [13], dotted line, and as obtained by the
present calculations, solid line.

spectra has been measured. Figure 7 shows a
sketch of the experimental results of Krishnan [13]
compared with the spectra as calculated by the
same methods as those described for germanium
and silicon. Since Krishnan does not state the
orientation of the specimen, the appropriate com-
bination of the IapY$ is unknown, the calcula-
tions shown in figure. 7 are for Ixxxx + 3I g pg p
with a value of the parameter X chosen to give
approximately a similar shape to that of the experi-
mental results. It should be emphasized that the
curve shown in figure 7 is obtained by adding
parts from all the contributions A-E shown in

figures 4 and 5, and far worse agreement was
obtained if any of them were neglected.
The results show that the largest peak is dis-

placed in the calculations by about 2 (1012 c. p. s.)
from the largest peak in the experiment. This

may possibly be due to errors in the harmonic
models however, because the accuracy of the mea-
surements of the dispersion curves on which they
are based is about 3 % [14].

In view of the uncertainties in the dispersion
curves, of the crystal orientation in the 1,Raman
measurements, and in the scale factor K, the
agreement between the calculations and the expe-
riment is probably as good as may be expected.
The Raman spectrum of gallium phosphide has

been measured recently using a laser source, by
Hobden and Russell [15]. It is of interest to com-

pare the general shape of this spectrum with the
present calculations. The spectrum of gallium
phosphide shows two one-phonon peaks instead of
the one for germanium and silicon. However the
fine structure on the low frequency side of the one-
phonon peaks is very similar in shape to that of
curves AA in this region. Furthermore there are

peaks near the one-phonon peaks which might
result from contribution B, and at higher fre-

quencies there are peaks which appear as though
they probably arise from contributions C and D.
These features seem to suggest that a combination
of all these different contributions could give excel-
lent agreement with the Raman spectra of silicon
and germanium. ,

5. Critical points. - The fine structure of the
Raman spectra of crystals is frequently inter-

preted in terms of the frequencies of the normal
modes of vibration at certain special points within
the Brillouin zone. Van Hove [16] showed that
the one-phonon density of states plotted against
frequency exhibits a discontinuity of slope, when
the frequency is equal to that of a point where the
gradient of the dispersion curve is zero. These

points are known as critical points. This work has
been extended by Johnson and Loudon [11] to give
the shapes of the critical points in the two-phonon
density of states function.
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The interpretation of the measured Raman
spectra by Bilz, Geick and Renk [9], Burstein,
Johnson and Loudon [17] and Hobden and Russell
[15] for example, is based on identifying the peaks
and shoulders of the distributions with the fre-

quencies of the critical points. The calculations
performed in this paper are not sufficiently detailed
to show the discontinuities in slope, even though
they are comparable in resolution to the experi-
mental measurements. In figure 5 the frequencies
of the critical points for r, X, L are shown for
comparison with the calculated curves for silicon.
Although some of the peaks do occur at the same
frequencies as the critical points, many of them
occur slightly to one side of the peaks in the fine
structure, or even are not readily correlated with
the structure. Krishnan [13] gives a list of fre-
quencies deduced from his measurements of which
10 are greater than a frequency of 75 (1012 c. p. s.),
whereas the model based on the experimental dis-
persion curves only gives the 21, critical point in
this frequency range. In view of these conside-
rations it is not surprising that the dispersion
curves predicted by Bilz et al. [9] and others for
diamond, on the basis of critical points in the
infrared and Raman spectra, show several marked
discrepancies with those subsequently measured by
Warren et al. [14]. Similar difficulties occur in the
analysis of critical points in the two-phonon infra-
red spectra of crystals as described in detail by
Dolling and Cowley [8].

Features of the measured spectra can clearly
only be identified as critical points if the resolution
of the experiments is sufficient to be able to dis-
tinguish the discontinuities in slope, to avoid the
necessity of having to rely on interpretating gross
features of the spectra as arising from critical
points. This necessitates performing very high
resolution experiments. Useful information may
then be obtained about the frequencies of the cri-
tical points if the type of critical point is deter-
mined [11], and with the aid of the selection rules
[8], [12]. Even under ideal conditions however,
it seems unlikely that assignments can be made
unambiguously in the absence of measurements of
the dispersion curves.

Since very high experimental resolution is
needed to establish the existence of critical points,
it is necessary to examine the effects of anharmo-
nicity on the critical points. Diagram (a) of

figure 8 shows the ordinary two-phonon process
which gives rise to the critical points in the har-
monic approximation. In an anharmonic crystal
both of the lines shown in diagram (a) can have
self-energy insertions. A typical diagram of this
type is (b). The contributions from these diagrams
may be calculated by replacing the harmonic
Green’s functions with the dressed Green’s

functions in the expressions for diagram (a).
The result is proportional to

where P(qj, (0) is the spectral function of the mode
(qi) ; 

-

In general the expression (5.1) is complicated,
However if we assume the modes have long life-
times, the expression (5.1) is large when

and the peak has a width given approximately by

These results show that the width of a two-

phonon addition process is the sum of the lifetimes
of the two independent normal modes. Since the
critical point behaviour depends on the frequencies
being well defined, it would clearly be impossible
to observe them once the lifetimes of the normal
modes became significantly large.

FIG. 8. - Two-phonon diagrams showing
the different ways anharmonicity can enter.
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Moreover not all the diagrams can be decom-
posed into two phonon diagrams with self-energy
insertions however. Diagrams of a more complex
type are shown in figure 8 (c) and (d). The contri-
bution from diagram (c) is proportional to

lS(qii j2’ Q) -R(P/i j2, Q) + R(qii j2, Q) S(Pil j2 0)], (5.2)

where S and R are the functions defined by equa-
tions (3.4) and (3.6).
The critical point behaviour arises because of

the S functions in (5.2), whereas the R functions
behave smoothly. If the critical points are well
defined this type of diagram will not alter the fre-
quency or the sharpness of the critical point com-
pared with diagram (a). Similar arguments can be
used to show that diagram (d) will also leave the
behaviour of the critical points unaltered. Dia-
gram (e) shows another more complicated diagram
including both self-energy parts and coupling
between the modes.

It is of interest to compare the frequencies of
the critical points with those obtained from one-
phonon measurements. As remarked earlier all

one-phonon measurements have an asymmetric
contribution associated with them which tends to
shift the frequency by amounts which vary accor-
ding to the type of measurement. The two-

phonon critical points do not however have any
asymmetric contribution associated with them.
Nevertheless this does not enable the size of the
asymmetric contribution to the one-phonon results
to be determined, since the asymmetric term is

only considerable if the inverse lifetime of the
normal modes become large. In this case the cri-
tical point is not well defined and would be
difficult to identify.

6. Summary and conclusions. - The Raman
spectra of germanium, silicon and diamond have
been discussed. The models which describe the
frequencies and eigenvectors of the normal modes
give good agreement with the measured dispersion
curves [8]. The deficiencies of the calculations
probably lie in the treatment of the polarizability
in terms of only a simple form of nearest neighbour
interaction.
The detailed shape of the one-phonon peak has

been calculated including the frequency and tem-
perature dependent lifetime of the optic mode, and
also the asymmetric term arising from the process
involving both a one and two-phonon interaction.
This latter term shifts the frequency of the optic
mode slightly, while both effects make the peak
asymmetric.
The fine structure arises from all of the different

contributions : one-phonon, two-phonon and joint
processes. The available experimental results [13,

15] suggest that all these contributions are needed
to explain the measurements. The results also
show that the fine structure depends on the polari-
zation of the light and on the orientation of the
specimen.
The frequencies of the critical points of the

models are not given by the peaks in the fine
structure. Critical points can only be satisfac-
torily determined under conditions of very good
experimental resolution. Even under these condi-
tions and with the aid of the selection rules, the
author believes that their interpretation can only
be made satisfactorily under extremely favourable
circumstances, unless measurements of the dis-
persion curves have already been made by other
methods.

It is hoped that these calculations will stimulate
work on the Raman spectra of germanium and
silicon and particularly on single crystal specimens
now that laser sources are available. In parti-
cular it would be of interest to study the detailed
shape of the one-phonon peak under high reso-
lution. The fine structure appears to depend on
the polarization of the light and on the orientation
of the crystal. These experiments would undoub-
tedly show that the simple nearest neighbour type
of interaction used here to describe the polari-
zability is inadequate, and lead to a better under-
standing of the processes involved in Raman scat-
tering. 

"
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Discussion

M. THEIMER. - Do you have some quantum
mechanical estimates concerning the relative
magnitude of nearest neighbours and second nea-
rest neighbours effects on the polarizability of an
atom ? -

M. COWLEY. - The calculation of the matrix
elements is very difficult. Second neighbour inter-
action is very important for the dielectric suscepti-
bility, so it may be important for Raman scattering.

M. MARADUDIN. - In principle, every term in
the expansion of the electronic polarisability in
powers of the atomic displacements contributes to
the intensity of the first order Raman spectrum.
Have you compared your theoretical results for

diamond with those of Miss Smith ?
What is the origin of the contribution to the

Raman spectrum which you have labeled E in your
curves ?
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M. COWLEY. - The contribution E arises from a
double single phonon term in the shell model for-
malism (Proc. Phys. Soc., 84, 281).

M. BURSTEIN. - In the case of the diamond and

perhaps also in the zinc-blende structure, it would
seem to me that one should expect that the matrix
elements for Raman scattering would have a dis-
tinct orientation dependence, since the electron

density exhibits a localization along the (111) direc-
tions which the present calculations do not take
into account. In the case of NaCI type crystals,
it appears, at least from the analysis of the 2nd
order spectra, that the phonons at the X point make
a major contribution. One might expect, in the
zinc-blende and diamond structure, that the (longi-
tudinal) phonons with atom displacements along
(111) would make the major contribution. This

would, for example include the longitudinal mode
at the L point.

It is of interest to note that there is an inte-
resting analogy between the second order infrared
spectra of diamond type crystals and the second
order Raman spectra of rocksalt type crystals. In
the case of diamond type crystals which exhibit no
linear moment, one must involve the second order
moment mechanism for infrared absorption. The
mechanical anharmonicity can not lead to absorp-
tion. In the case of rocksalt type crystals, one
must involve the second order terms in the polari-
zability, since the first order scattering does not
occur. For this structure, the anharmonic cou-
pling makes no contribution.

M. COWLEY. - The processes involved are

exactly analogous to those needed for infrared

spectra.
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