Synthesis of amplitude and phase achromatized dielectric mirrors
Zdenek Knittl

To cite this version:

HAL Id: jpa-00205747
https://hal.archives-ouvertes.fr/jpa-00205747
Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SYNTHESIS OF AMPLITUDE AND PHASE ACHROMATIZED DIELECTRIC MIRRORS

By ZDENEK KNITTL,
Meopta Optics and Fine Mechanics Research Institute, Prerov, Czechoslovakia.

Résumé. — On déduit les conditions analytiques pour les indices de réfraction d'une couche multiple 03BB/4 générale, assurant la dispersion nulle du déphasage par réflexion. On indique les méthodes numériques pour chercher à l'aide du computeur automatique les solutions et, simultanément, les conditions d'achromatisme en amplitude, en conservant la réflexion nominale du miroir.

Abstract. — Conditions for an achronomatous phase change upon reflection are derived in terms of the refractive indices of a quarter-wave dielectric multilayer. A numerical method of solution is indicated using a trial-and-error sequence on a digital computer. This method is extended to the simultaneous solution of achronomatous amplitude, observing also the condition of a prescribed standard reflectivity value.

The well-known advantage of dielectric semireflectors of being non-dissipative is somewhat invalidated by the strong dispersion of reflected power and phase. Since the original idea that a quarter-wave stack of alternating refractive indices may simulate a metallic film of some thickness, design work has concentrated on improving the dispersion characteristics of such dielectric mirrors. There have been methods of varying the optical thicknesses and methods of selecting refractive indices. The first kind of procedure is of a rather empirical character, but well suited to the present day technologies with limited material resources. On the other hand, the variation of indices, although still ahead of technology, allows of a more compact theoretical treatment, since it is concerned with a "tuned", i.e. strictly quarterwave multilayer.

During the greater part of its history the quarter-wave stack has been regarded as an alternating sequence of two refractive indices, which in the domain of power-reflection implies the existence of a central maximum at

\[\phi \equiv (2\pi/\lambda) nh = \pi/2 \]

and a certain number of subsidiary maxima on both sides of it. The corresponding phase-change \(\delta \) in dependence of \(\phi \) is an oscillating function with a more or less negative slope at \(\phi = \pi/2 \).

These typical characteristics of the orthodox quarter-wave system may be substantially changed by using a general sequence of indices. A drastic example how conditions may change is the theoretical case computed recently by R. J. Pegis [1]: by taking some five quarter-wave layers of various materials, with the refractive indices in the range \(\Lambda \leq n \leq 12.00 \), the central extreme becomes a subsidiary one, while two high maxima build up in the left and right hand part of the \(\rho \)-versus-\(\phi \) diagram. The left one may then be used to cover a broad spectral range, which was the goal of the synthesis.

The aim of the present report is not to change the key position of the \(\phi = \pi/2 \) region, but rather to influence the shape of the \(\rho(\phi) \) and \(\delta(\phi) \) functions in that region, observing simultaneously the condition of a prescribed light division \(\rho : (1 - \rho) \), with \(\rho \) given as \(\rho(\pi/2) \).

The problem of shaping \(\rho(\phi) \) in the vicinity of \(\phi = \pi/2 \) was theoretically solved in 1952 by Pohlack [2], [3].

His expansion of the inverse transmittance \(1/\tau \) as a symmetrical polynomial in \(\cos^2 \phi \):

\[\frac{1}{\tau} = A_{k0} + A_{k1} \Lambda^2 + \ldots + A_{k2n} \Lambda^{2n}; \quad \Lambda = \cos \phi, \]

with the \(A_{kn} \)'s being functions of the refractive indices alone, has lead to a synthetic condition for...
a flat (i.e. achromatic) extreme in terms of the refractive indices:

\[A_{k2} = 0. \]

Solving this equation proved to be a fairly laborious affair.

In a recent co-paper [4], the present author has contributed to the usefulness of this method by modifying it into a form suitable for automatic digital evaluation, observing at the same time the calibration condition

Another method of achromatizing a dielectric semireflector was worked out by Kard in [5], as an extension of his previous work on a similar problem in antireflection techniques [6].

To the author's knowledge no attempt has yet been made to flatten out the dispersion characteristics of the phase-change upon reflection, although the simple fact that it does exist and causes positive, negative or interesting effects in interference spectroscopy, metrology and filtering techniques gave rise to a number of papers: by Rank and Bennett, by Baumeister and Jenkins or Bruce and Ciddor [7, 8, 9], to mention at least some of them.

In the present paper a theoretical condition is derived ensuring a flat \(\delta \)-versus-\(\varphi \) curve in the region of the central reflectivity extreme, and methods for its numerical solution are indicated. The problem is then extended to the simultaneous study of power and phase achromaticity and a procedure is found enabling a systematic search for achromatic power, with the phase-dispersion achromatized implicitly. By a similar procedure a higher-order achromatization of phase only may be investigated.

As a general introduction and for better understanding of the system of notation used, the reader is referred to the papers [2] and [4].

The total interference matrix of the quarter-wave system being \(|K_{\mu\nu}| \), the reflected phase-change is given by the relations

\[\tan \delta = \frac{2n_{\varphi}}{n_{\varphi}} = \frac{y}{Z}, \]

where

\[y = n_{\varphi}(I_m K_{12}) K_{23} - \frac{1}{n_{\varphi}} (I_m K_{13}) K_{11} \]

\[Z = \left(\frac{n_{\varphi}}{n_{\varphi}}\right)^2 K_{11} + K_{22} + n_{\varphi}(I_m K_{12})^2 - \frac{1}{n_{\varphi}} (I_m K_{12})^2. \] (1)

Since for quarter-wave systems any central extreme at \(\varphi = \pi/2 \) entails either \(\delta = 0 \) or \(\pi \), it is to be expected that the denominator \(Z \) is stationary at that point and the rate at which \(\delta \) changes in the vicinity of \(\varphi = \pi/2 \) is essentially given by the numerator. In fact, it may be proved rigorously that a necessary and sufficient condition for \(\delta \) to be stationary at the central extreme is

\[y = \frac{dy}{d\varphi} = 0, \]

so that the above given expression for \(y \) presents our main interest. We shall try to bring it into a form, where stationarity may easily be seen. The method consists in developing a polynomial in \(\Lambda = \cos \varphi \) and \(\Lambda^* = \sin \varphi \).

We shall make use of Pohlack's expressions defining the \(K_{\mu\nu} \)'s in terms of algebraic forms of the \(k \)-th degree (\(k \), numbers of layers), with the coefficients given as special functions \(N^{(k)}_{]*}, N^{(k)}_{K*} \) of the refractive indices.

After some tedious work \(y \) may be put into the form

\[y = \Lambda \Lambda^*(C_{k0} + C_{k2} \Lambda^2 + \ldots + C_{Kl} \Lambda^{k-l-1}) \] (2)

where the \(C_{k0} \) are functions of the \(N^{(k)}_{]*}, N^{(k)}_{K*} \) and the outer indices \(n_0, n_{\varphi} \).

\[\frac{dy}{d\varphi} \] at the central extreme \(\varphi = \pi/2 \) is easily seen to equal \(C_{k0} \) so that the condition for a stationary phase is

\[C_{k0} = 0. \] (3)

Evaluating the second derivative \(\ddot{y} \) for \(\Lambda = 0 \) this is found to vanish independently of \(C_{k0} \) and \(\dot{y} \), so that there is always inflexion in the \(\delta \)-versus-\(\varphi \) curve at \(\varphi = \pi/2 \). When in addition \(\dot{y} = 0 \) is satisfied, the inflexion point has a horizontal tangent. It may be assumed that, while power reflection may be achromatized in the way of a flat extreme, achromaticity of the phase-change corresponds to a horizontal inflexion.

The region of the horizontal tangent may, of course, be more or less extended. The flatness of the inflexion will increase with the number of coefficients annulled. Thus the combined conditions

\[C_{k0} = 0, \quad C_{k2} = 0 \] (4)
should lead to a better phase-achromaticity than (3) alone.

By inspection of the way the expression \(y \) is built up, these two coefficients may be found to be, if \(k \) odd:

\[
C_{K0} = n_g N^{(b)}_{KK} N^{(a)}_{KK} \times \frac{1}{n_g} N^{(a)}_{KK} N^{(b)}_{KK}
\]

\[
C_{K2} = -(K - 1) \times C_{K0}
\]

\[= \left[n_g N^{(b)}_{KK} N^{(a)}_{KK} - \frac{1}{n_g} N^{(a)}_{KK} N^{(b)}_{KK} \right]
\]

if \(k \) even,

\[
C_{K0} = \frac{1}{n_g} N^{(b)}_{KK} N^{(a)}_{KK} - n_g N^{(a)}_{KK} N^{(b)}_{KK}
\]

\[
C_{K2} = -(K - 1) \times C_{K0}
\]

\[+ \left[n_g N^{(a)}_{KK} N^{(b)}_{KK} - \frac{1}{n_g} N^{(b)}_{KK} N^{(a)}_{KK} \right]
\]

\[+ \frac{n^2 - 1}{n^2} N^{(a)}_{KK} N^{(b)}_{KK}.
\]

The further coefficients are still more complicated and any conditions imposed on them would complicate matters enormously. First of all we shall deal only with \(C_{K0} \).

By the manner the \(N^{(a)}_v \) and \(N^{(b)}_v \) are built up of the refractive indices, already the simplified condition (3) represents a very intricate equation, which it is difficult to tackle for a solution. However, it is possible to apply the method developed in [4], where the solution of \(A_{K2} = 0 \) was reduced to a trial-and-error sequence on a digital computer. One of the indices is chosen as the independent variable, while the remaining ones are given by the calibration condition.

Since the \(N^{(a)}_v \) and \(N^{(b)}_v \) computed for the Pohlack coefficient \(A_{K2} \) more than suffice to combine into the term \(C_{K0} \), the whole method of solving (3) is essentially identical with that described in [4], differing only in the way the \(N^{(a)}_v \) and \(N^{(b)}_v \) are combined into a final result.

Practical tests have shown, however, that a phase achromatized system is often extremely dispersive as regards power reflection. It is very difficult to keep both power and phase flat, because in the adopted trial-and-error system there are now two functions \(C_{K0} \) and \(A_{K2} \) to be annulled by one variable.

The computing procedure was therefore rescheduled in the following way: let there be three variable indices \(n_p, n_q, n_w \), distributed in the complete system according to the pattern

\[n_1, n_2, \ldots n_q, \ldots n_k-2, n_q, n_w; \quad 1 < p < k - 2
\]

\(n_p \) again is the independent variable proper, \(n_q \) and \(n_w \) are to be determined implicitly.

Denote \(k = 2 = k' \). If, during the recursion process according to [4], the first \(k' \) indices are consumed, the \(N^{(a)}_v, N^{(b)}_v \) (\(v = k', k' - 1, k' - 2 \)) so far computed already suffice to set up a quadratic equation for the last index \(n_w = n_k \), whose solution, together with the first \(k - 2 \) indices ensures \(C_{K0} = 0 \) for the given calibration. This is secured in the last step by computing \(n_k - 1 \) so far skipped.

\[\text{FIG. 3. — Describing five situations in a four-layer system, calibrated for } \phi = 50 \% \text{ and } \delta = \pi. \text{ For various } n_p \text{ the } C_{K0} \text{ assumes the values } \pm 2.0, \pm 1.0 \text{ and } - 0.05. \text{ The last phase dispersion curve is indeed flat at the centre.}
\]

\[\text{FIG. 4. — An uncorrected case to show that e.g. a negative slope of the } \delta \text{-versus- } \phi \text{ function may correspond to a negative or positive } C_{K0}, \text{ according as the multilayer is of the } a_1(\delta = \pi), \text{ or } a_2(\delta = 0) \text{ class. This is in connection with the quantity } z \text{ cooperating on } \tan \delta \text{ and } d\phi/d\delta.
\]
With the set of indices thus completed, the recursion may proceed to \(N_{KK}^{(a)} \), \(N_{KK}^{(b)} \), and \(N_{KK}^{(c)} \), and the coefficient \(A_{k2} \) is set up. Obviously, it is now only the function of \(n_p \), with \(n_q \), \(mw \) implicitly involved by the phase and calibration condition. The operator now only follows this function \(A_{k2}(n_p) \) and tries to bring it to zero, as in the case of calibrated power-achromaticity.

The possibility of implicitly observing \(C_{k0} = 0 \) and the calibration condition may also be applied to finding a solution to \(C_{k0} = 0 \) instead of to \(A_{k2} = 0 \). Thus a higher order phase-achromaticity may be achieved, losing of course the possibility of controlling \(A_{k2} \).

A difficult problem met in numerical work is the occurrence of non-technical indices of refrac-

Fig. 5. — The simultaneous suppression of power and phase dispersion is an exception rather than a rule in the original system of computation designed for \(A_{k2} \) alone. A further important feature of this case is that, in addition, \(C_{k2} \) is small. The achromaticity has a broad range.

Fig. 6. — A less favourable compromise: \(C_{k2} \approx 0 \) with \(A_{k2} = 1.43 \). Moreover, \(C_{k0} = 2.185 \), which is clearly seen in the shorter range of the horizontal tangent for \(\delta \).

Fig. 7. — Another fair compromise, to be checked in the following figure for oblique incidence at \(45^\circ \).

Fig. 8. — The normal design of the preceding figure proves to be stable as regards the angle of incidence. However, this is not a rule, and cases with complete breakdown may occur. A special design with optical admittances and observing polarization and de-tuning is needed in general.
The redesigned theory with three variable indices allows of an automatic correction for A_{k2} and C_{k2}, the operator checking A_{k2} and/or C_{k2}. Extract from a computer record. Compare A_{k4} and C_{k2}.

tion, at least in systems of up to five layers. The author was so far unable to carry out time-consuming procedures on systems with larger numbers

of layers, where the probability of a realistic solution seems greater. Also, it might seem of interest to seek some kind of equivalence theorem, enabling to replace one layer of inconvenient refractive index by several normal layers.

Graphs of various achromatized systems will be shown.

Discussion

M. Gabler. — Are there possibilities to realize refractive indices as high as 3.5?

Réponse de M. Welford. — Some of the refractive indices which are found are not available in the visible but are perhaps available in other regions of the spectrum.

Alternatively it is possible that the theory of L. I. Epstein could be used, in which a layer of very high or low index is simulated by a three-layer symmetrical system in which known available indices are used.

REFERENCES

