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There are many practical representations of probability families that make them
easier to handle in applications. Among them are random sets, possibility distributions,
Ferson’s p-boxes [4] and Neumaier’s clouds [6]. Both for theoretical and practical con-
siderations, it is very useful to know whether one representation can be translated into
or approximated by other ones. We first briefly recall formalisms and existing results,
before exhibiting relationships between all these representations. In this note, which is
a summary of an extended forthcoming paper, we restrict ourselves to representations
on a finite set X = {x;,x2,...,x,} of n elements.

1 Formalisms

Possibility distribution A possibility distribution is a mapping 7 : X — [0, 1] represent-
ing incomplete information about an ill-known parameter v. two dual measures (respec-
tively the possibility and necessity measures) can be defined : IT(A) = sup,4 7t(x) and
N(A) =1—TI(A). To any normal possibility distribution (7 such that t(x) = 1 for some
x € X) can be associated a probability family 2y s.t. Py = {P,VA C X measurable, N(A) <
P(A) <TI(A)}.

Random Set A random set is defined here as a probability distribution on the power
set of X, namely m : 2X — [0,1]. m(A) is the probability that all is known about v
is that v € A. Two dual measures (respectively the plausibility and belief measures)
can be defined : PI(A) = ¥p grasom(E) and Bel(A) = 1 — PI(A°) = Y.p pcam(E).
To any random set m can be associated a probability family ?,, s.t. B, = {P|VA C X
measurable, Bel(A) < P(A) < PI(A)}.

Generalized p-box A p-box is usually defined on the real line by a pair of cumula-
tive distributions [F,F]|, defining the probability family Py ={PIE(x) < F(x) <
F(x) Vx € R}. The notion of cumulative distribution on the real line is based on a
natural ordering of numbers. In order to generalize this notion to arbitrary finite sets, we
need to define a weak order relation <g on this space. Given <g, an R-downset is of the
form {x; : x; <g x}, and denoted (x]g. A generalized R-cumulative distribution is defined
as the function Fg : X — [0, 1] s.t. Fg(x) = Pr((x]g), where Pr is a probability measure

on X. We can now define a generalized p-box as a pair [Fg(x), Fgr(x)] of generalized



cumulative distributions defining a probability family P ) 7, = {P|Vx, Fp(x) <
Fr(x) < Fr(x)}. Generalized P-boxes can also be represented by a set of constraints

o; <PA)<B  i=1,...,n )]

where o <o < ... <0, <1, ﬁl < Bz <...< ]3,, <landA; = (x,-]R,Vx,- € X with
x; <gx;iffi < j (sets A; form a sequence of nested confidence sets 0 CA; CA> C ... C
A, CX).

Cloud Formally, a cloud is described by an Interval-Valued Fuzzy Set (IVF) s.t. (0,1) C
Urex F(x) € [0,1], where F(x) is an interval [3(x),7(x)]. A cloud is called thin when
the two membership functions coincide (8 = 7). It is called fuzzy when the lower mem-
bership function & is 0 everywhere. Let o; be a sequence of o-cuts s.t. 1 =09 > o) >
oy > ...> 0, > 0,1 = 0 with A;, B; the corresponding a-cut of fuzzy sets T and &
(A; = {x;,m(x;) > Qi1 } and B; = {x;,8(x;) > a;41}). Then, a random variable x is in a
cloud if it satisfies the constraints

P(B,-)gl—oc,-gP(Ai)andBigAi i:l,...,n. 2)

2 Generalized p-boxes

First, let us notice that a generalized upper cumulative distribution F» can be seen as a
possibility distribution Tz dominating a probability distribution Pr, since it is a maxitive
measure s.t. max,ea Fg(x) > Pr(A),VA C X. In [2], we have shown the following results

Proposition 1. A family ’.P[ Fr().Fr()] described by a generalized P-box can be encoded
by a pair of possibility distributions T, s.t. Pip, () Fe(v) = Pr O Pr, with T (x) =
Fr(x) and mp(x) = 1 — Fp(x)

Proposition 2. A family ’.P[ Fr().Fr()] described by a generalized P-box can be encoded
by a random set m s.t. T[ER()()?R(X)] =P,.

If X is the real line, this last proposition reduces to results already shown in [5].

3 Cloud

In [3], the following relationship linking clouds to possibility distributions is shown

Proposition 3. A probability family Ps r described by the cloud (8, T) is equivalent to
the family Py N P;_g described by the two possibility distributions T and 1 — 8.

This result already suggests that clouds and generalized p-boxes are somewhat related.
To lay bare this relationship, it is useful to introduce the following special case of
clouds:

Definition 1. A cloud is said to be comonotonic if distributions T and & are comono-
tonic. If it is not the case, a cloud is called non-comonotonic.



Fig. 1. Illustration of clouds.
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Remark 1. Thin and fuzzy clouds are special cases of comonotonic clouds.

Figure 1 illustrates comonotonic and non-comonotonic clouds. The two following
propositions show why it is useful to make this distinction.

Proposition 4. The probability family Ps 5. induced by a comonotonic cloud is equiva-
lent to a generalized p-box and can thus be encoded through a random set.

Proof (sketch). Since comonotonicity imply that sets A;,B; i = 1,...,n form a complete
sequence of nested sets, one can always retrieve the structure of a generalized p-box
from a comonotonic cloud by mapping constraints of the form of equation (2) into
constraints of the form of equation (1).

Proposition 5. The lower probability of the probability family Ps 5 induced by a non-
comonotonic cloud is not even a 2-monotone capacity (i.e. 3A,B C X s.t. P(ANB) +
P(AUB) < P(A) +P(B))

Proof (sketch). For each non-comonotonic cloud, there exist two sets B;,A; with i > j
and s.t. BiNA; #0, B; gé Ajand A; Q B;. Using a result from Chateauneuf [1] and the
fact that %5 5 is the intersection of two families corresponding to belief functions, we
can show that the following inequality holds

P(AjNB;)+P(A;UB;) < P(A;)+P(B;)
and this concludes the proof.
Remark 2. & must not be trivially reduced to a single set B,, s.t. B,NA,,_1 = 0, otherwise

the cloud can still be encoded by a random set (and is thus a capacity of order o), even
if it is no longer equivalent to a generalized p-box.



To our knowledge, non-comonotonic clouds are the only simple models (in the finite
case, we need at most 2|X| values to fully specify a cloud) of imprecise probabilities
that induce capacities that are not 2-monotone.

Let us also notice that if proposition 4 holds in the continuous case, we have a

nice way to characterize probability families induced by comonotonic clouds. Namely,
a continuous belief function [7] with uniform mass density, whose focal elements would
be disjoint sets of the form [x(o), u(a)]U[v(at),y(o)] where {x: m(x) > a} = [x(ct),y(ot)]
and {x:0(x) > a} = [u(ct), v(a)]. In particular, for thin clouds, focal sets would be dou-
bletons of the form {x(a),y(ct)}.

Computing upper and lower probability bounds P(A),P(A) of non-comonotonic

clouds appear not to be so easy a task. Thus, one may wish to work with inner or
outer approximations of the family %5 . The two following propositions provide such
bounds, which are easy to compute.

Proposition 6. If Ps ;. is the probability family described by the cloud (3,) on a refer-
ential X, then, the following bounds provide an outer approximation :

max(Nx(A),N5(A)) < P(A) < min(ITx(A),II5(A)) VA C X 3)

Remark 3. These bounds are the ones considered by Neumaier in [6], and the fact that
they are outer approximations explain why they are poorly related to random sets or to
Walley’s natural extensions.

But clouds can be approximated by random sets:

Proposition 7. Given sets {B;,A;,i = 1,...,n} and the corresponding confidence val-
ues 0, associated to the distributions (d,T) of a cloud, the belief and plausibility mea-
sures of the random set s.t. m(A;\ B;_1) = 01 — O; are inner approximations of Ps .

Remark 4. 1If the cloud is comonotonic, this random set is the one corresponding to the
family P;

Our results show that clouds generalize p-boxes and possibility distributions as rep-

resentations of imprecise probabilities, but are generally not a special case of random
set. Even if they look more complex to deal with than p-boxes and possibility distribu-
tions, clouds are more expressive and remain relatively simple representations. More-
over, results presented here may allow for easier computations in various cases. We
thus think that using clouds can be potentially interesting in various applications, but
that more work is needed to fully assess this potential.

4

Open questions and problems

There remain many open questions and problems related to clouds, some of them being
already emphasized by Neumaier. Among them are :

Testing the mathematical and the computational tractability of clouds

Testing clouds as descriptive models of uncertainty

Extending existing results to more general frameworks (unbounded variables, lower/upper
previsions)

Studying under which operations the cloud representation is preserved (joint distri-
butions, fusion, extension, ...)
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