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1. Introduction 8 

Knowledge of the radiative behavior and the energy budget of land surfaces is essential 9 
for studying the functioning of natural and urban surfaces with remotely acquired 10 
information. Account of their 3D nature is often essential because in most cases these 11 
surfaces are not isotropic. For example, it has long been known that the albedo of a 12 
canopy with an anisotropic Bi-directional Reflectance Factors (BRF) may be 13 
underestimated by as much as 45% if it is computed with nadir reflectance only (Kimes 14 
and Sellers, 1985). Radiative transfer (R.T.) models have the potential for correcting this 15 
type of error provided they account for the three dimensional (3D) nature of Earth 16 
surfaces. Neglect of the 3D structure of canopies can lead to large errors on the 3D 17 
radiation budget and remote sensing measurements. For example, for vegetation BRF and 18 
directional brightness temperature (DTDF) distribution functions, errors can be as large as 19 
50%, depending on instrumental (e.g., view and sun directions) and experimental (e.g., 20 
vegetation heterogeneity) conditions (Gastellu-Etchegorry et al., 1999). The problem is 21 
similar for urban canopies due to their strong spatial heterogeneity. The application of 22 
R.T. modeling to urban surfaces is important in the context of the advent of satellite 23 
sensors with spatial and spectral resolutions that are more and more adapted to urban 24 
characteristics such as building dimensions and temperature spatial variability. It explains 25 
the numerous works conducted in the field of remote sensing of urban surfaces (Soux et 26 
al., 2004; Voogt and Oke, 1998). The use of descriptions with qualitatively based land use 27 
data instead of more fundamental surface descriptors is a source of inaccuracy for 28 
modeling BRFs and DTDFs (Voogt and Oke, 2003).  29 
R.T. models are essential tools for assessing accurately radiative quantities such as the 30 
exitance, the irradiance and remote sensing measurements in the optical and thermal 31 
domains. However, in order to meet this objective, models must account for the three 32 
dimensional (3D) nature of Earth surfaces. Here, we consider vegetation canopies and urban 33 
canopies. This consideration of the 3D architecture of Earth surfaces is possible with the so-34 
called 3D models. Generally speaking, the latter ones are intended to be accurate, robust and 35 
more comprehensive than other models. Ideally, they should be used in place of other 36 
models. However, they are often more difficult to manage, both in terms of computation 37 
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time and landscape description. Moreover, when dealing with specific situations, one needs 1 
that the model be accurate and robust, but one does not necessarily need that the model be 2 
comprehensive. This explains that in many cases, the objective of 3D models is to calibrate 3 
models that are simpler to manage in terms of landscape description, computation time, etc. 4 
Once calibrated, these models can meet the required accuracy levels.  5 
These remarks stress the usefulness of 3D R.T. models. A number of 3D models is being 6 
developed by the scientific community (Widlowski et al., 2007). Usually, they are designed 7 
for a given type of landscape (e.g., natural or urban), with or without topography and 8 
atmosphere, for a specific type of application (e.g., remote sensing or radiation budget), and 9 
for a given spatial resolution of analysis (e.g., simulation of a tree crown with or without 10 
branches). Moreover, remote sensing models are usually designed for a given spectral 11 
domain (e.g., sun reflected spectral domain or thermal infrared spectral domain).  12 
A common problem when designing a R.T. model is to assess to which level of detail 13 
landscapes must be taken into account. This is very especially important in term of 14 
landscape simulation. However, it affects also the mathematical formulation of R.T. 15 
Generally speaking, one should take into account all landscape elements that have a 16 
significant influence on the application we are dealing with (i.e., landscape radiative budget 17 
or remote sensing measurement). In practice, the answer can be complex. For example, 18 
when simulating remote sensing measurements of heterogeneous Earth surfaces in the 19 
visible spectral domain, is it necessary to simulate the atmosphere within a unique "Earth - 20 
Atmosphere" system in order to simulate with a good accuracy its complex interaction with 21 
earth surfaces? 22 
Some of these aspects are discussed here with the brief presentation of DART (Discrete 23 
Anisotropic Radiative Transfer) model. This is one of the most complete 3D models 24 
designed for simulating the radiative budget and the satellite observations of the land 25 
surfaces in the visible, near infrared and thermal infrared of land surfaces. It was originally 26 
developed (Gastellu-Etchegorry et al., 1996) for simulating remote sensing images of 3D 27 
vegetation canopies in the visible / near infrared (NIR) spectral domain. Afterwards, it was 28 
extended to the thermal infrared domain and to the simulation of any landscape: urban or 29 
natural, with atmosphere and topography. As a result, the present DART model simulates 30 
the radiation budget and remote sensing images of vegetation and urban canopies, for any 31 
experimental (sun direction, canopy heterogeneity, topography, atmosphere, etc.) and 32 
instrumental (view direction, spatial resolution, etc.) configuration.  33 
After a brief presentation of DART, two types of applications are discussed: urban and 34 
forest canopies. This is followed by the presentation of three recent improvements: 35 
- Account of the Earth / Atmosphere curvature for oblique remote sensing 36 

measurements. 37 
- Possibility to import 3D objects simulated as the juxtaposition of triangles and to 38 

transform them into 3D turbid objects. 39 
- Possibility to simulate landscapes that have a continuous topography and landscapes 40 

that are non repetitive.  41 
Finally, preliminary results concerning two application domains are discussed. 1) 2D 42 
distributions of reflectance, brightness temperature and radiance of the African continent 43 
that would be measured by a geostationary satellite. 2) Radiative budget of urban (Gastellu-44 
Etchegorry, 2008) and natural (Belot, 2007) canopies. They are simulated with a DART 45 
energy budget (EB) component, called DARTEB, under development.  46 
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2. DART model 1 

DART was originally developed for simulating BRFs (Bi-directionnal Reflectance Factor), 2 
remote sensing images and the spectral radiation budget of 3D natural (e.g., trees, roads, 3 
grass, soil, water) landscapes in the visible and short wave infrared domains. Since its first 4 
release in 1996, it was successfully tested, in the case of vegetation canopies, against 5 
reflectance measurements (Gastellu-Etchegorry et al., 1999) and against a number of 3-D 6 
reflectance models (e.g., Flight (North, 1996), Sprint (Thompson and Goel, 1998), Raytran 7 
(Govaerts and Verstraete, 1998)), in the context of the RAMI (RAdiation transfer Model 8 
Intercomparison) experiment (Pinty et al., 2001; Pinty et al., 2004; Widlowski et al., 2007; 9 
Widlowski et al., 2008). Only BRFs could be compared because DART was the only 3-D 10 
model that simulates images. 11 
DART was successfully used in many scientific domains: impact of canopy structure on 12 
satellite images texture (Pinel and Gastellu-Etchegorry, 1998) and reflectance (Gastellu-13 
Etchegorry et al., 1999), 3D distribution of photosynthesis and primary production rates of 14 
vegetation canopies (Guillevic and Gastellu-Etchegorry, 1999), influence of Norway forest 15 
spruce structure and woody elements on LAI retrieval (Malenovský et al., 2005) and canopy 16 
reflectance (Malenovský et al., 2008), determination of a new hyperspectral index for 17 
chlorophyll estimation of forest canopy (Malenovský et al., 2006), study of tropical forest 18 
texture (Barbier et. al., 2010; Barbier et. al., 2011; Proisy C. et al., 2011).  19 
DART simulates R.T. in heterogeneous 3-D landscapes with the exact kernel and discrete 20 
ordinate methods. It uses an iterative approach: radiation intercepted in iteration "i" is 21 
scattered in iteration "i+1". Any landscape is simulated as a rectangular matrix of 22 
parallelepipedic cells. Figure 1 illustrates the way urban and natural landscapes are  23 
 24 
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 25 
Fig. 1. DART cell matrix of the Earth / Atmosphere system. 26 
The atmosphere has 3 levels: upper (i.e., layers with any depth), mid (i.e., cells with any size) 27 
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and lower (i.e., cells identical to land surface cells) atmosphere. Land surface elements are 1 
the juxtaposition of triangles and/or turbid cells.  2 

simulated, possibly with topography and atmosphere. The atmosphere is made of cells the 3 
size of which increases with altitude. Radiation is restricted to propagate in a finite number 4 
of directions (i) with an angular sector width (i) (sr). Any set of N discrete directions can 5 
be selected (∑ ΔΩ୬ே௡ୀଵ =  A radiation that propagates along direction (i) at a position r 6 .(ߨ4
is called a source vector W(r,i). It has 3 components: total radiation W, radiation unrelated 7 
to leaf mesophyll and polarization degree associated to first order scattering.  8 
DART can work in 3 operating modes: flux tracking, Lidar and Monte Carlo. Only, the flux 9 
tracking mode is considered here. This mode tracks emitted and scattered radiation fluxes 10 
(i.e., watts) within angular cones. The Monte Carlo mode tracks individual photons that are 11 
emitted by the sun or a sensor. It is a reference tool for testing the accuracy of the flux 12 
tracking mode. The Lidar mode uses the Monte Carlo mode and keeps track of the path 13 
length (i.e., time) of each single photon.  14 
For the flux tracking mode, there are 3 sub modes:  15 
- Mode reflectance (R): sun is the only source of radiation. Atmosphere is a secondary 16 

source.  17 
- Mode temperature (T): the atmosphere and the land surfaces are the sources of 18 

radiation. They depend on temperature and wavelength, using either the Planck's law 19 
or the Boltzmann law. Boltzmann law is especially useful for simulation radiation 20 
budget over the whole spectrum.  21 

- Mode (R + T): the sun, atmosphere and land surfaces are the radiation sources. This 22 
mode is very useful for simulating remote sensing measurements in the 3-4µm spectral 23 
domain.  24 

For the 3 modes, the atmosphere can be treated as a propagating medium or as an interface. 25 
In any case, landscape irradiance has 2 components: direct sun W(s,x,y) and atmospheric 26 
Wa(n,x,y) source vectors. W(s) propagates along direction (s). W(s) and Wa(n) are 27 
simulated from a fictitious cell layer on top of the scene (Figure 1), with values equal to: 28 

W(s) = Es(s).|s|.x.y       and      Wa(n) = La(n).|n|.x.y.n  29 

where x.y is the area of the cell face, s=coss, n=cosn, Es(s) is the solar constant at the 30 
top of the scene, and s denotes the solar incident direction. La(n) is the atmospheric 31 
radiance along direction (n), with n[1  N'], where N' is the number of downward discrete 32 
directions. It is null at the top of the atmosphere. 33 
DART landscape modeling is as independent as possible from the RT modeling in order to 34 
allow DART to simulate RT on landscapes simulations that are generated by any other 35 
model. It can combine them with its own simulated landscapes. Imported landscapes and 36 
landscape elements can be edited to some extent. Geometric transformations (i.e., 3D 37 
translation, 3D homothety, 3D rotation) can be applied and optical properties can be 38 
assigned.  39 
DART uses 2 complementary approaches for simulating landscapes: 40 
- Juxtaposition of cells that contain one or several turbid medium (i.e., cloud of infinitely 41 

small planar elements). This is useful for simulating volumes of foliar elements such as 42 
grass and tree crown. A turbid medium is characterized by its volume density, an 43 
angular distribution and optical properties (i.e., abaxial reflectance, adaxial reflectance, 44 
transmittance).  45 
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- Juxtaposition of translucent triangles. This is useful for simulating the ground, the 1 
branches, the urban surfaces (i.e., walls and roofs) and also foliar elements. A single cell 2 
can contain several turbid medium and several triangles or part of them. 3 

In addition to the atmosphere and to the ground and its topography, DART simulates 4 4 
types of landscape elements: 5 
- Trees with exact or random locations and specific optical properties. Each tree is made 6 

of a trunk, possibly with branches, simulated as triangles, and a tree crown simulated as 7 
the juxtaposition of turbid cells. Tree crown can have a number of predefined shapes 8 
(e.g., ellipsoid, cone, trapezoid, etc.), with specific vertical and horizontal distributions 9 
of leaf volume density. Trees with different geometric and optical properties can be 10 
mixed.  11 

- Grass or crops. They are simulated as a volume of turbid medium. This volume can 12 
located anywhere in space (x,y,z). 13 

- Urban elements (i.e., houses, roads,...). The basic element is a house with walls 14 
characterized by the location of their 4 upper corners and roofs characterized by their 4 15 
upper corners.  16 

- Water elements (i.e., river, lake). They are simulated as surfaces with any optical 17 
property (e.g., anisotropic reflectance possibly with specular component).  18 

Generally speaking, two types of radiation interaction take place. (1) Volume interaction 19 
within turbid cells (Gastellu-Etchegorry et al., 2004). (2) Surface interaction on triangles 20 
(Gastellu-Etchegorry, 2008). First scattering order is exactly computed in turbid cells, using 2 21 
points on the ray path within the cell: one point for upward scattering and one point for 22 
downward scattering. As expected, simplifying hypotheses are used for simulating multiple 23 
scattering in turbid cells. Its computation uses a much faster method than the initial 24 
"harmonic expansion" method: it uses the energy intercepted within a finite number of 25 
incident angular sectors sect,k that sample the 4 space of directions ( sect,k = 4). An 26 
angular sector sect is a set of close discrete directions. Their number can be as large as the 27 
number of directions of ray propagation, but a number equal to 6 leads to very accurate 28 
results, with relative errors smaller than 10-3 (Gastellu-Etchegorry et al., 2004). Actually, 29 
these points are computed for each sub-face of each cell face f (f  [1 6]) that intercepts 30 
incident rays, and for each angular sector "incident" on the cell face (Martin, 2006; Grau, 31 
2011). This implies that intercepted vector sources Wint(s,f,sect,k) are stored per sub face s of 32 
cell face f and per incident angular sector sect,k. Thus, we have: 33 
Wint(s,f,sect,k) = s Wint(s,f,s), with directions (s) within (sect,k). For the case "direct sun 34 
illumination", there is 1 sector only.  35 
Atmospheric R.T. modeling is implemented for any spectral band in the optical domain 36 
from the ultraviolet up to the thermal infrared (Gascon, 2001; Grau and Gastellu-Etchegorry, 37 
2011). It simulates the atmospheric backscattering phenomenon, which avoids the need to 38 
couple DART with an atmospheric model. Atmospheric optical properties are characterized 39 
by the molecular Pm(,’,) and aerosol Pp(,’,) phase functions and by a number of 40 
profiles (molecular extinction coefficient ߙ௘௠(ߣ,  and spherical albedo m(,z), aerosol 41 (ݖ
extinction coefficient ߙ௘௣(ߣ,  and spherical albedo p(,z)). These quantities are specified by 42 (ݖ
the operator or come from a data base ([0.3m  30m]) pre-computed with the Modtran 43 
atmospheric model (Berk et al., 1989), for a few predefined atmospheres. DART TOA (Top 44 
Of the Atmosphere) reflectance, transmittance and brightness temperature values are very 45 
close to Modtran simulations for any atmosphere, any BOA (Bottom Of the Atmosphere) 46 
surface and sun / view configuration (Grau, 2011). 47 
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Several tools are integrated in the DART model for facilitating the task of the users. Major 1 
tools are listed below: 2 
- Sequencer of simulations: it runs a set of simulations where a predefined number of 3 

DART input variables vary. For example, one can run A1N1 . A2N2 . A3N3 . A4N4 … 4 
simulations where DART input variables A1, A2, A3,.. take N1, N2, N3,…, respectively. 5 
Results are stored in a LUT (Look Up Table) for further display and / or processing.  6 

- Manipulation of DEM (Digital Elevation Model): this is used for importing, creating 7 
and resampling DEMs. 8 

- Simulation of foliar spectra with the Prospect model (Jacquemoud and Baret, 1990).  9 
- Simulation of scene spectra (reflectance, brightness temperature, radiance). It can be 10 

computed using a single DART simulation that is conducted with N spectral bands, or 11 
with the help of the sequencer for running N DART simulations with 1 spectral band 12 
each.   13 

- Simulation of broadband reflectance, brightness temperature, radiance, irradiance,… It 14 
is the sum of a few DART simulated narrow spectral bands, possibly weighted by 15 
sensor spectral sensitivity.  16 

- Importation of land cover maps for a direct simulation of DART scenes.  17 
DART models and tools are managed with a user friendly Graphic User Interface (GUI: 18 
Figure 2) to input all necessary parameters (e.g., view and illumination conditions) and to 19 
specify the required products. They can be also managed with command lines such as 20 
scripts written in Python programming language. DART computation code is written in 21 
C++ language (more than 300 000 lines of code). The GUI is written in Java language.  22 
 23 

 24 
Fig. 2. Graphic User Interface of DART. 25 
'Simulation': creation of simulation folders. 'Parameters': input of DART parameters. 'Run': 26 
simulation of scene and RT. 'View': display of results. 'Tools': for deriving products from 27 
DART simulations.  28 

DART provides two major types of products: 29 
- Remote sensing measurements at 3 altitude levels: BOA, TOA and atmosphere level. 30 

Measurements are essentially images for the "Flux tracking" mode and waveforms for 31 
the "Lidar" mode. Images are simulated in the focal plane of the satellite sensor. The 32 
cross section of the emitters and scatterers at the origin of the signal are taken into 33 
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account for improving the image quality, especially for scenes with marked 3D 1 
architectures (urban elements, topography). A bi-linear interpolation method is used for 2 
projecting the horizontal upper grid of the scene onto an over sampled grid in the 3 
sensor plane, at any altitude (BOA to TOA).  4 

- Radiative budget: 3D, 2D and 1D distribution of the radiation that is intercepted, 5 
scattered, emitted and absorbed.  6 

3. Examples of DART simulations 7 

DART potential for simulating remote sensing images of urban and forest canopies is 8 
illustrated here with 2 examples.  9 

3.1 Urban canopy 10 
The example shown here is derived from the CAPITOUL project of Meteo France (Masson 11 
et al., 2007) that took place over the city of Toulouse, France, from February 2004 to 12 
February 2005. Study of urban energy balance was one of the objectives. For that, different 13 
types of measurements took place: acquisition of TIR airborne images, in-situ 14 
measurements of turbulent fluxes, surface energy balance, surface temperatures, etc. 15 
DART was used for simulating remote sensing images and the radiative budget (Gastellu-16 
Etchegorry, 2008). First, we developed a specific program for creating a DART scene from 17 
the urban database (Autocad format) and digital elevation model (DEM) of the Toulouse 18 
town hall (France). This led to the creation of DART objects (e.g., houses, trees). The fact 19 
that urban elements in the data base are not individual houses or buildings but unrelated 20 
walls and roofs was a difficulty. Figure 3 shows nadir (a) and oblique (b) color composites 21 
of the St Sernin district of Toulouse city. They were created with DART simulations in the 22 
blue, green and red spectral bands. Simulations stress that urban reflectance and 23 
brightness temperature values display a marked angular heterogeneity. This 24 
heterogeneity is illustrated here with the angular distribution of NIR reflectance values of 25 
St Sernin district (Figure 4).  26 
Figure 3.c and d display DART remote sensing images of St Sernin basilica, in the center of 27 
district. They are simulated for a sensor at the bottom of the atmosphere (i.e., BOA image) 28 
and for a sensor at the top the atmosphere (TOA). The bluish tone of the TOA image, 29 
compared to the BOA image, is due to the fact that atmosphere scatters more in the blue 30 
than in the red spectral domain. DART images realism is very useful for verifying that the 31 
land surface is correctly simulated. Moreover, it helps also for testing the coherence of the 32 
RT. For example, at the 1st scattering order, the reflectance of shadows is null.  33 

3.2 Forests 34 
One considers here DART simulations of the reflectance of a tropical forest (Sumatra, 35 
Indonesia) in the visible (VIS), near infrared (NIR) and short wave infrared (SWIR) spectral 36 
domains. Optical and geometric characteristics are given in Gastellu-Etchegorry et al., 1998. 37 
Sun direction is characterized by a 35° off-nadir angle (s) and a 200° azimuth angle (s). 38 
Figure 5 shows DART VIS images for three viewing directions: nadir viewing direction 39 
(v=0°), sun backscattering viewing direction (v=35°, v=200°), also called hot spot 40 
configuration, and specular configuration (v=35°, v=20°).  41 
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  1 
a) 2 

 3 
b) 4 

   5 
c)      d) 6 

Fig. 3. DART simulated nadir (a) and oblique (b) images of St Sernin district. They are color 7 
composites made with blue, green and red DART simulated images. c) Zoom of black box in 8 
a): St Sernin basilica. d) Top of the atmosphere simulation.  9 
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 1 
Fig. 4. Example of near infrared BRF of St Sernin district. 2 
It is computed with simulated reflectance values (crosses), for a sun direction shown by a 3 
black circle. Distance from the circle centre gives the view zenith angle ([0 90°]) and the anti 4 
clockwise angle from the horizontal axis gives  the azimuth view angle ([0 360°]). 5 
 6 

a) b) c)  

Fig. 5. VIS DART images of tropical forest (Sumatra, Indonesia). Sun direction: s=35°, 7 
s=200°. (a) Nadir (0.031), (b) specular (v=35°, v=20°: 0.023), and (c) hot spot (0.091) 8 
viewing directions. SKYL=0. 9 
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- Nadir viewing direction (Figure 5.a). Mean canopy reflectance is (vis0.031, nir0.376, 1 
swir0.143). Illuminated and shaded tree crowns have very different reflectances, 2 
shown here with gray tones. Only trees of the upper canopy are easily distinguished. 3 
Surfaces with a reflectance smaller than 0.02, i.e. shaded crowns and understory, 4 
represent 36% of the total scene area. Reflectance of illuminated crown is vis0.048 5 
(nir0.55, swir0.21). 6 

- Specular direction (Figure 5.b), i.e. (v=35°, v=20°). Mean canopy reflectance is 7 
(vis0.023, nir0.344, swir0.119). The reflectance difference between nadir and 8 
specular directions stresses the non lambertian nature of forest BRF. Vertical sides of 9 
tree crowns can be observed, which explains why trees appear with larger dimensions, 10 
compared to nadir viewing direction. This forward scattering configuration is mainly 11 
characterized by the important proportion of dark shadows, i.e. light trapping, due to 12 
the 3-D distribution of trees. Surfaces with a reflectance smaller than 0.02, i.e. shaded 13 
crowns and understory, occupy 50% of the total scene area. Reflectance of illuminated 14 
crown is (vis0.037, nir0.51, swir0.18). Thus, crown VIS, NIR and SWIR reflectance is 15 
smaller than in the nadir configuration. This is explained by the fact the sunlit crown 16 
fraction and the leaf scattering phase function ଵସగ.P(s,v) are smaller.  17 

- hot spot configuration (Figure 5.c), i.e. (v=35°, v=200°). The absence of shade in this 18 
configuration explains the strong canopy reflectance in all spectral domains, i.e. 19 
vis0.091 (nir0.684, swir0.341). Darkest areas correspond to the low reflecting 20 
understory. Their reflectance is less than 0.03 and occupy about 5% of the total scene 21 
area. Crown reflectance is (vis0.1, nir0.74, swir0.4). 22 

Figure 6 shows DART NDVI (Normalized Vegetation Index) and VIS / NIR / SWIR 23 
reflectance values in the principal and perpendicular solar planes, for several sun off-nadir 24 
directions. Reflectance values share some similar characteristics: (1) a well marked bowl 25 
shape in the principal solar plane with a spectrally dependent minimum for a direction 26 
between the specular and nadir directions, (2) a strong maximum in the hot spot direction, 27 
more marked in the VIS than in the NIR and SWIR, (3) a systematic increase of reflectance if 28 
view zenith angles exceed a threshold value (e.g. 50° in the VIS if s=0°), which depends on 29 
the spectral domain and the sun direction, (4) an azimuth symmetry relative to the principal 30 
solar plane, and (5) a relatively small variability in the perpendicular solar plane.  31 
Reflectance is maximal at hot spot (vis=0.073, nir=0.615, swir=0.324) and minimal for 32 
directions between nadir and specular configurations (vis=0.025, nir=0.354, swir=0.12), 33 
whereas NDVI is minimal (0.79) in the hot spot direction and maximal (0.87) in the 34 
specular direction.  35 
In addition to DART simulations, Figure 6 shows reflectance simulations carried out with 36 
the well known SAIL model (Verhoef, 1984). For this model, vegetation is an homogeneous 37 
turbid medium. Figure 6 allows one to stress the role of canopy architecture on forest 38 
reflectance. Its neglect by the SAIL model explains that DART reflectance is much smaller. 39 
Reflectance differences depend a lot on view direction. Smaller differences occur in the hot 40 
spot directions because no shadows occur for these viewing directions. Outside the hot spot 41 
configuration, for s=0°, mean relative reflectance difference is around 60-70% in the VIS, 42 
50% in the SWIR and 25% in the NIR. Differences tend to increase with sun off-nadir angle.  43 
The bowl shape of VIS and SWIR reflectance is more marked with SAIL than with DART. It 44 
corresponds to the fact that in the forward principal plane, for large off-nadir viewing 45 
angles v, an increase of v implies that DART reflectance increases less than SAIL 46 
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reflectance, especially for large off-nadir sun angles. Indeed, the canopy 3-D heterogeneous 1 
structure ensures that an increase of v leads to an increase of the proportion of shaded tree 2 
crowns that are viewed in the principal plane. This effect tends to be less marked in the NIR 3 
than in the VIS because the role of shadows is less marked in the NIR, due to the increased 4 
occurrence of multiple scattering processes. Moreover, the presence of shadows explains 5 
that with oblique sun illumination, minimal values of DART reflectance are more shifted 6 
towards the specular direction than those of SAIL. This is also true for NDVI. 7 
 8 
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g)     h) 2 

Fig. 6. Tropical forest angular DART and SAIL VIS (a, b), NIR (c, d), SWIR (e, f) simulated 3 
reflectance and NDVI (g, h) for 4 sun off-nadir directions (0°, 20°, 40°, 60°). Principal  4 
(left column) and perpendicular (right column) solar planes. SKYL is 0.3 for VIS, 0.24 for 5 
NIR and 0.09 for SWIR. For a better clarity SAIL simulations are for s=0° and 60° only.  6 

Image simulation is very useful for understanding forest reflectance behavior with 7 
experimental and instrumental parameters. Here, this is shown for sky radiation. Figure 7 8 
shows DART nadir NIR images of part of the tropical forest, for 2 extreme atmosphere 9 

conditions: SKYL equal to 0 and 1, with 
  Atmosphere irradianceSKYL

Total irradiance
. We note that some 10 

tree crowns are invisible with SKYL=0 (bottom of Figure 7), because they are shaded, and  11 
 12 
 13 

 14 
a)       b) 15 

Fig. 7. NIR DART nadir images of a tropical forest with SKYL equal to 0 (a) and 1 (b). Most 16 
crowns of upper trees that are shaded with SKYL=0 are well lit if SKYL=1. Moreover, 17 
shaded crowns of a few lower trees that are not viewed with SKYL=0 become visible if 18 
SKYL=1. Sun off-nadir angle is 35°. 19 
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visible with SKYL=1. It explains that forest reflectance varies with atmosphere radiation. In 1 
a first approximation, we can consider that forest reflectance depends on the fraction of 2 
illuminated crowns, shaded crowns of upper trees, and shaded lower trees and understory 3 
(i.e. vegetation smaller than 10m height). With SKYL=0 (SKYL=1), fractions of these 3 classes 4 
are around 48% (68%), 37% (12%) and 15% (20%), respectively, whereas their apparent NIR 5 
reflectances are around 0.55 (0.52), 0.27 (0.14) and 0.069 (0.062), respectively. As expected, a 6 
SKYL increase implies that the area of illuminated crowns increases whereas their apparent 7 
reflectance slightly decreases. Indeed, with SKYL=1 all upper trees are totally illuminated, 8 
conversely to the case SKYL=0. On the other hand, a SKYL increase implies that the fraction 9 
and reflectance of shaded upper trees regularly decrease, whereas the area and apparent 10 
reflectance of the shaded lower trees and understory remain nearly constant if SKYL<0.5. 11 
The fraction and reflectance decrease of the shaded upper tree crowns results from two 12 
opposite effects: when SKYL increases some crown surfaces, only slightly shaded if SKYL=0, 13 
become darker whereas crown surfaces that are initially totally shaded become better lit. 14 
Thus, when SKYL increases, tree crowns that are initially shaded with SKYL=0, can become 15 
lit enough to belong to the category "illuminated upper trees".  16 

4. Recent and on going improvements  17 

Three recent improvements of DART are briefly described here:  18 
- Earth / Atmosphere curvature. It is important when simulating satellite measurements, 19 

because the usual assumption that the Earth is a flat surface is less and less valid with 20 
more and more oblique view directions.   21 

- Transformation of 3D objects made of juxtaposed triangles into 3D turbid objects. 22 
- Finite landscapes and infinite landscapes with a continuous (i.e., not repetitive) 23 

topography.  24 
- Simulation of Lidar waveform.  25 

4.1 Earth / Atmosphere curvature 26 
The Earth / Atmosphere curvature has an impact at 2 levels: (1) the incidence angle of sun 27 
and view directions of Earth surfaces, and (2) ray path lengths in the atmosphere. Both 28 
effects are now taken into account by DART.   29 

View and sun incidence angle 30 

For a non-horizontal atmosphere, the incidence angle  differs from the satellite sensor off 31 
nadir angle . DART computes ,  and the azimuth view direction in the Earth surface 32 
reference system with the locations (latitude, longitude, altitude) of the Earth target T and 33 
satellite sensor S, assuming  the Earth to be an ellipsoid (cf. Annex).  34 
Sun incidence angle at target level and on an horizontal surface below the satellite are 35 
computed by DART as a function of time with the equations of the NOAA solar calculator 36 
(http://www.esrl.noaa.gov/gmd/grad/solcalc/).  37 

Ray paths in the atmosphere 38 

For an off-nadir angle , an atmosphere path length between altitudes za and zb is smaller 39 
than in an horizontal atmosphere (i.e., z/|µ|, with µ=cos and z = |za - zb|). Moreover, 40 
gas and aerosol vertical distributions are not constant. Here, atmosphere is assumed to be 41 
spherical (Figure 27).  42 
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 1 
Fig. 8. The atmosphere with the Earth curvature. 2 

µ=cos > 0 : Path {z > 0; µ} is ܤܣ =  −ܴ஺. μ + ඥܴ஺ଶ. μଶ + Δݖ. (Δݖ + 2ܴ஺) 3 
It can be viewed as a path {z; µsph} in an horizontal atmosphere if:  4 μ௦௣௛ = Δ௭ିோಲ.ஜାටோಲమ .ஜమାΔ௭.(Δ௭ାଶோಲ)  ܤܣ = Δ௭ஜೞ೛೓ < ୼௭ஜ  5 

µ=cos < 0 : Path {z < 0; µ} is ܤܣ =  −ܴ஺. μ − ඥܴ஺ଶ. μଶ + Δݖ. (Δݖ − 2ܴ஺) 6 
It can be viewed as a path {z; µsph} in an horizontal atmosphere if: 7 μ௦௣௛ = ୼௭ோಲ.ஜାටோಲమ .ஜమା୼௭.(୼௭ିଶோಲ)  ܤܣ = ି୼௭ஜೞ೛೓ < ି୼௭ஜ  8 

Note: the 2 expressions of AB and µsph are identical. Indeed: {µ > 0, z > 0} for the 1st one and 9 
{µ < 0, z < 0} for the 2nd one. 10 
The optical depth of path AB is: 11 

Δ߬(ݖ஺,Δݖ, μ) = ׬ .(ݐ)ߙ ݈݀ = ׬ .(ݐ)ߙ ோಲା௧ටோಲమ .ஜమା୲.(୲ାଶோಲ)௭ಳ௭ಲΔ௟ୀ஺஻଴ .  with t the altitude relative to za 12 ,ݐ݀

and l the path length from A, we have: ݈ = −ܴ஺ଶ. μ + ඥܴ஺ଶ. μଶ + t. (t + 2ܴ஺)l if µ > 0 and : 13 ݈ = −ܴ஺ଶ. μ − ඥܴ஺ଶ. μଶ + t. (t − 2ܴ஺) if µ < 0. 14 
The computation of (za,z,µ) could be solved with an integration by parts: 15 
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This approach requires the derivative '(z) of the extinction coefficient. However, '(z) is 1 
known only for an ideal case such as an exponential atmosphere. In order to work with any 2 
atmosphere (e.g., non exponential vertical profile of O3), (za,z,µ) is computed with: 3 

Δ߬(ݖ஺, Δݖ, μ) = .തതതതതത(ݖ)ߙ ܤܣ = .തതതതതത(ݖ)ߙ | Δ௭ஜೞ೛೓ |, with (ݖ)ߙതതതതതത the mean extinction coefficient within [za  4 

za+z] 5 
Thus, before simulating the atmosphere RT, DART computes µsph(zi,µj) for all I atmosphere 6 
layers and all J discrete directions, including the sun direction, with i  [1  I] and j  [1  J].  7 

 

      2 2 2Δµ ( ,µ ) ( ) . µ ( ) .µ Δ . Δ 2.( )sph i j T i j T i j T izz R z R z z z R z  8 

The use of µsph(zi,µj) allows one to treat the atmosphere as an horizontal plane for simulating 9 
the atmosphere RT: any path r(zi,µj) that is computed for an horizontal atmosphere layer 10 

i i[z z Dz]  is replaced by      
 

 
. ,, , . . ,j i jsph i j i j sph i j

µ z µr z µ r z µ µ z µ 11 

We have:      
Δ, ,sph i j sph i j
j

zr z µ r z µ
µ

  12 

4.2 Transformation of "3D triangle objects" into "3D turbid objects" 13 
As already mentioned DART can import 3D objects (Figure 9) that are simulated as groups 14 
of triangles. In many cases, especially for vegetation, these objects are simulated with 15 
tremendous numbers of triangles (e.g., 106 triangles). This is very costly is terms of 16 
computation time and volume memory, especially if we work with forests… In order to 17 
solve this problem, we designed a module that transforms 3D objects simulated as triangles 18 
(i.e., 3D triangle objects) into 3D objects simulated as turbid medium (i.e., 3D turbid objects). 19 
Figure 10 shows the schematic approach. It is reminded that a cell filled with turbid medium 20 
is characterized by its LAI (Leaf Area Index), its leaf angle distribution (LAD) and the leaf 21 
optical properties (e.g., transmittance and adaxial and abaxial reflectance, possibly with 22 
specular parameters). The "transformation" module computes the LAI and LAD of all leaf  23 
 24 

 25 

 26 
Fig. 9. Examples of 3D trees that are imported by DART. 27 
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elements within each cell of a 3D cell matrix. This is done for all or part of the groups of 1 
triangles of the "3D triangle" object. Optical properties of the turbid medium are those of the 2 
triangles. On the other hand, the LAD is either the one that is computed or a predefined 3 
LAD. The possibility to use a predefined LAD is well adapted to the case of 3D triangle 4 
objects with low volume densities of triangles.  5 
 6 

 7 
Fig. 10. Schematic representation of the transformation of a "triangle cell" into a "turbid 8 
cell".   9 

Here, the transformation of a 3D triangle scene into a turbid 3D turbid scene is illustrated by 10 
DART color composite images of the citrus tree "3D triangle scene" and "3D turbid scene" 11 
(Figure 11). The associated 2D reflectance polar plots are shown also. For these  12 
2 cases, RT was simulated in the blue, green and red spectral bands. Results are very 13 
encouraging: reflectance values are very close. Actually, reflectance values of the  14 
3D triangle and turbid scenes are much closer than the 3D triangle objects contain a lot of 15 
triangles. It can be noted that DART images in Figure 11 b and e are duplicated  16 
2 x 2 times. This mode of representation of images is often useful for better interpreting 17 
simulated images where objects (e.g., trees) and their shadows cross the scene boundaries.  18 
Compared to the usual simulation of trees with classical tree crown shapes such ellipsoids 19 
or cones, the transformation of 3D triangle tree crowns into 3D turbid tree crowns is very 20 
interesting for keeping the 3D architecture of trees.  21 
 22 
 23 
 24 

 25 
 26 

a)     b)     c) 27 
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 1 
 2 

a)     b)     c) 3 

 4 
 5 

a)      b) 6 

Fig. 11. 3D triangle and turbid simulations in the blue (B0), green (B1) and red (B2) spectral 7 
bands of the citrus plot. a) 3D triangle scene. d) Derived 3D turbid scene. Associated nadir 8 
(b, e) and oblique (g, h) color composite of the DART simulated images. c, f) Associated 2D 9 
reflectance polar plots.  10 

4.3 Finite landscapes and continuous infinite landscapes topography 11 
DART was designed to operate with infinite scenes that are made of a DART simulated 12 
pattern that is periodic. When a ray exits the scene, it re-enters the scene by the scene 13 
opposite side. This is the so-called "repetitive topography" method. This approach is used in 14 
most 3D models. It works very well with landscapes without topography or if the 15 
topography is identical on the landscape opposite sides. Thus, it is erroneous in presence of 16 
any topography. It is also erroneous if one wants to simulate a finite landscape without 17 
interaction with their neighborhood. We solved these 2 problems by introducing 2 new 18 
landscape modeling methods, called "Continuous topography" and "Isolated landscape", 19 
respectively. This implied to adapt the 3 DART RT modeling modes (i.e., flux tracing, Monte 20 
Carlo and lidar). In short, landscapes can be simulated with 3 methods (Figure 12): 21 
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- Repetitive topography: the landscape and the topography are periodic. It that case, a 1 
landscape with a simple slope is actually simulated as a series of periodic slopes, which 2 
implies undesirable illumination (Figure 12.a) and view (Figure 12.b) effects.  3 

- Continuous topography: repetitive landscape with a continuous topography. It allows 4 
one to simulate more realistic landscapes such as infinite slopes. This method is well 5 
adapted to landscapes such as mountain slopes.  6 

- Isolated landscape: no influence of the neighborhood. 7 
 8 

 9 
 10 

 11 
 12 

    13 
Fig. 12. The 3 methods of landscape simulation in DART. Top: Repetitive landscape.  14 
Middle: Continuous topography. Bottom: Isolated landscape. Left and right columns 15 
illustrate the illumination and view configurations. 16 

Figure 13 illustrates the 3 methods for simulating landscapes. In the image simulated with 17 
the repetitive method, shadow is not continuous on the scene edges, due to the 18 
discontinuity of the slope. It would have been continuous in the absence of topography. On 19 
the other hand, as expected, shadow is continuous with the "Continuous method". As 20 
expected, for the "Isolated landscape", shadow is not continuous (no adjacency effects). 21 
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  1 
a)      b) 2 

  3 
c)      d) 4 

Fig. 13. Simulation of a house on a slope. 5 
a) Scene. b) Repetitive topography. c) Infinite (i.e., continuous) slope. The shadow is not 6 
continuous, due to the discontinuity of the slope) Isolated scene (no adjacency effects). 7 

4.4 Radiative budget 8 
Different modules and tools were added to DART for better simulating and managing the 9 
3D radiative budget. DART computes the different terms of the radiative budget: absorbed 10 
energy per cell, intercepted energy per cell, scattered energy per cell and downward and 11 
upward energy on top cell faces. Here, this is illustrated by a schematic tree landscape 12 
(Figure 14). DART simulation was conducted in the near infrared with a SKYL equal to 0.2 13 
and a sun direction (s = 160°, s = 90°). The possibility to obtain 2D and 3D displays is very 14 
helpful for understanding the radiation interaction within the tree canopy. For example, 15 
here, larger downward radiation occurs in the air cells that are directly illuminated by the 16 
sun. This quantity can be larger than 1 because tree crowns scatter radiation through these 17 
air cells. Larger interception occurs on the illuminated tree crowns and the ground that is 18 
directly illuminated by the sun. Larger scattering occurs where interception is maximal and 19 
where local reflectance / albedo is maximal. This explains that scattering by illuminated tree 20 
crowns is larger than scattering by the illuminated ground. Indeed, in the near infrared, leaf 21 
albedo is larger than ground reflectance. It is interesting to note that the "Broadband" 22 
module of DART computes broadband radiation budget with the DART simulated narrow 23 
band radiation budgets. 24 
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a) 

 

 
b) 

c) 

 

 
d) 

e) 

 

 
f) 

 

 
g) 

Fig. 14. 3D radiative budget of a schematic tree cover. Spatial resolution is x=0.5m. Ox axis 1 
is in blue color in a). Figures b to g) show 2D distributions in the plane x=5m of the ratio 2 
"Radiometric quantity / Irradiance on the top of the landscape. b) LAIcell. Leaf volume 3 
density is LAIcell.x. c) Downward energy. d) Intercepted energy. e) Scattered energy. 4 
f) Absorbed energy. g) Upward energy. 5 

4.5 Lidar 6 
DART simulates lidar waveforms of urban and natural landscapes. For that, it uses a Monte 7 
Carlo method that is adapted for taking into account the usually strong anisotropy of the 8 
phase function of landscape elements. In short, the occurrence probabilities of scattering 9 
events that have the same order of magnitude are grouped for obtaining groups that have 10 
cumulated probabilities with the same order of magnitude (Gastellu-Etchegorry et al., 2010). 11 
The Monte Carlo mode in the DART model was initially developed for assessing the 12 
accuracy of DART flux tracing method, using the same simulations of landscapes. Indeed, 13 
flux tracing RT modelling requires some simplifying hypotheses for representing multiple 14 
scattering. The associated inaccuracy depends on the trade-off between the expected 15 
accuracy and computational time of simulations. The advantage of the Monte Carlo 16 
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approach is to simulate multiple scattering processes as a succession of exactly modelled 1 
single scattering processes.  2 
In order to simulate Lidar waveforms, the DART Lidar module works with a Gaussian 3 
spatial distribution for illumination, and a Gaussian (time) laser pulse. It is suited for small 4 
and large footprints. It is very flexible because it inherits major features of the DART model: 5 
urban and natural scenes, with topography, atmosphere, etc. Examples of waveforms are 6 
presented here for urban and natural scenes.   7 
Figure 15 illustrates lidar modelling of a urban area that is the St Sernin district (Figure 3). It 8 
shows the image that is simulated with the flux tracing mode and the waveform that is 9 
simulated with the lidar module. As expected, the horizontal axis of the waveform gives the 10 
altitude of scene elements (buildings, vegetation, ground). 11 
 12 
 13 

 14 
 15 

a)       b) 16 

Fig. 15. DART lidar simulation of the St Sernin district. a) Image simulated with the flux 17 
tracing mode. b) Waveform (Ox: time (ns), Oy: power (logarithmic).  Ground gives the 18 
larger peak. Top point (Basilique) gives the 1st signal. 19 

Lidar simulation of a plot of citrus trees is shown here (Figure 20.a). Figure 20 b and c show 20 
the DART images simulated with the Monte Carlo mode and with the flux tracing mode. 21 
The 2 images are very similar. Actually, the degree of similarity depends on the number of 22 
photons that are used. As expected, the Monte Carlo mode is usually much more expensive 23 
in terms of computation time. An interesting point is that DART simulates the images of the 24 
illuminated and view footprints (Figure 20 d and e). This is very useful for interpreting the 25 
simulated waveform (Figure 20 f). As expected, the latter one shows a peak that corresponds 26 
to the ground and a peak that corresponds to the tree crowns.  27 
The citrus waveform (Figure 16.f) being related to the LAI (Leaf Area Index) vertical profile, 28 
Ueberschlag (2010) assessed the potential of DART for retrieving the LAI of forests with an 29 
inversion procedure. Results were encouraging. As expected, similarly to the lidar response, 30 
the LAI retrieval depends a lot on the location of trees within the footprint, except if the 31 
lidar signal is uniform. For a Gaussian lidar signal, Figure 17 shows that in the case of a tree 32 
cover the LAI of which is 0.5, the retrieved LAI can vary from 0.33 up to 0.70, depending on 33 
the tree location within the footprint.  34 
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 1 
Fig. 16. Lidar simulation of citrus trees (a). Images simulated with the Monte Carlo mode  2 
(b) and the flux tracing mode (c). Images of Lidar ground (d) and view area (e) footprint. 3 
Waveform (f). The lidar has a 3ns pulse duration, a 0.5ns acquisition rate, a 4m footprint 4 
radius and a 0.368 Gaussian illumination parameter. 5 
 6 
 7 
 8 

             9 
 10 
 11 

Case 1 2 3 4 5 6 
Theoretical LAI  0,5 0,5 0,5 0,5 0,5 0,5 
Retrieved LAI - Gaussian signal 0,52 0,70 0,50 0,45 0,64 0,33 
Absolute error (%) - Gaussian signal 4,5 40,1 -0,2 -10,4 28,2 -33,8 
Retrieved LAI - Uniform signal  0,5 0,5 0,5 0,5 0,5 0,5 
Absolute error (%) - Uniform signal  0 0 0 0 0 0 

Fig. 17. Influence of vegetation location in the lidar footprint for retrieving forest LAI with 12 
DART.  13 

The potential of altitude mapping was assessed. Figure 18.a shows an altitude map where 14 
the altitude of each pixel is the local higher altitude. This is called the Lidar first return 15 
altitude map. Figure 18.b is an interpolation of Figure 18.a for obtaining a 3D display.  16 
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Fig. 18. Altitude mapping from DART waveforms. a) Height scale. b) Lidar first return 1 
altitude map: resolution 0.25*0.25m. c) Lidar interpolated altitude 3D map  2 

5. Examples of applications 3 

5.1 Radiance and radiative budget at continental scale 4 
A method was developed to create automatically for every spectral band, any date and any 5 
land area, maps of radiometric products (i.e., radiance, reflectance, brightness temperature) 6 
at a continental scale. For that, it realizes a spatial interpolation on a set of georeferenced 7 
DART products that are created by running the DART "sequencer" module with time, 8 
wavelength and land surface location used as variable parameters.  9 
Results shown here are for the African continent, with a geostationary satellite (35800km 10 
altitude, 0° N, 17° E) for 2 spectral bands (550nm: Figure 19 and Figure 20; 900nm: Figure 21 11 
and Figure 22) at 4 dates: March 21 2011 (spring equinox), June 21 2011 (summer solstice), 12 
September 21 2011 (autumn equinox) and December 21 2011 (winter solstice), at 3 daytimes 13 
(8hUTC, 12hUTC, 16hUTC). The atmosphere is defined by a US Standard gas model and 14 
rural aerosols with a 23km visibility. Simulations were carried out with the ground 15 
horizontal Lambertian "Brown to dark brown gravelly loam" from the USDA Soil 16 
Conservation Service): ground,550 = 0.061 and ground,900 = 0.351.  17 
 18 

 19 
a) 20 
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Fig. 19. Seasonal 550nm BOA radiance at 8, 12 and 16h UTC.  10 
a) Spring. b) Summer. c) Autumn. d) Winter. 11 
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 1 
d) 2 

Fig. 20. Seasonal TOA 550nm radiance at 8, 12 and 16h UTC.  3 
a) Spring. b) Summer. c) Autumn. d) Winter.  4 
 5 

 6 
a) 7 

 8 
b) 9 
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Fig. 21. Seasonal BOA 900nm radiance at 8, 12 and 16h UTC.  5 
a) Spring. b) Summer. c) Autumn. d) Winter. 6 
 7 

 8 
a) 9 
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Fig. 22. Seasonal TOA 900nm radiance at 8, 12 and 16h. a) Spring. b) Summer. c) Autumn. d) 7 
Winter. 8 
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In a 1st step, the tool "Sequencer" created a grid of 20x20 DART simulations at 5 wavelengths 1 
(0.4μm, 0.55μm, 0.67μm, 0.9μm, 1.65μm, 11μm), with an automatic computation of the sun 2 
and view sensor angles in the local reference system, as a function of the date, time and 3 
coordinates. The grid covers almost all of the African continent: "40° S - 44° N" in latitude 4 
(step of 4.2°) and "20° W - 54° E" in longitude (step of 3.7°). In a 2nd step, the grid of DART 5 
products is interpolated (Python script and Numpy module). Results are displayed with a 6 
Python script and the module Basemap. 7 
Logically, TOA radiances differ a lot from BOA radiances, because of the atmosphere. 8 
Moreover, one can note: 9 
- BOA radiances are maximal in the East in the morning and West in the evening. During 10 

summer, they are larger in the Northern Hemisphere and lower in the Southern 11 
hemisphere. The situation is reversed in winter. 12 

- TOA radiances tend to be maximal in the East in the morning and in the West in the 13 
evening. This effect is less clear than for BOA radiances. During summer, TOA 14 
radiances are larger in the Northern Hemisphere and lower in the southern hemisphere. 15 
The situation is reversed in winter. 16 

The impact of atmosphere on TOA radiances depends on its optical thickness and phase 17 
function and on the sun and view directions. The analysis of DART images allows  18 
one to verify that this impact is not symmetric from the point of view of the satellite 19 
sensor.  20 
The Figure 11 and Figure 12 show the maps of luminance to 900nm of the African 21 
continent to 4 dates (spring, summer, autumn, winter) and 3:00 (UTC 8h, 12h UTC 16h 22 
UTC) defined above. As Figure 9 and Figure 10, this is 100 * 100 maps obtained by 23 
interpolation of DART simulations performed for 400 geographical sites, with a 24 
Lambertian soil ( = 900 0351: "Brown to dark brown gravelly loam" of USDA Soil 25 
Conservation service) and an atmosphere "US Standard" with aerosols 23km visibility. 26 
Logically, the TOA radiances and reflectances are much less affected by the atmosphere in 27 
the near infrared than in the field of green. The spatial variability of radiances is mainly 28 
due to the spatial variability of the illumination of the land surface. The geometric 29 
configuration "Sun - Earth" plays a much more important role than the geometric 30 
configuration "Sensor - Sun-Atmosphere". This is particularly the case of the phase 31 
function of gases and aerosols. This explains the much larger symmetry of the near-32 
infrared maps of luminance. 33 
Figure 23 shows the annual evolution of BOA (a) and TOA (b) radiances of 6 cities: Algiers 34 
(36.42 ° N, 3.13 ° E, UTC +1), Cairo (30.2 ° N, 31.13 ° E; UTC +2), Dakar (14.4 ° N, 17.25 ° W, 35 
UTC), Pretoria (25.45 ° S, 28.11 ° E, UTC +2), Mogadishu (2.02 ° N 45.21 ° E, UTC +3), 36 
Luanda (8.50 ° S, 13.14 ° E, UTC +1). The evolution of the radiance Lref(t) at the nadir of the 37 
satellite sensor is used as a reference. Any radiance L(t) larger than Lref(t) indicates that the 38 
sensor receives light above this reference.  39 
Figure 24 shows the 11µm TOA radiance, and its associated Brightness temperature, of the 40 
African continent. It was obtained with a ground surface characterized by an emissivity 41 
equal to 1 and a 300K thermodynamic temperature, a US standard atmosphere and an 42 
atmosphere water vapor thickness equal to 1.4cm. The simplicity of this configuration 43 
explains the spatial symmetry of brightness and temperature. Indeed, one should take into 44 
account the actual local emissivity and thermodynamic temperature.  45 
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Fig. 23. 550nm BOA (a) and TOA (b) radiance of 7 cities at 16h UTC over1 year.  9 
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Fig. 24. 11µm TOA radiance (a) and associated brightness temperature (b). 10 

5.2 DARTEB energy budget simulation 11 
Energy budget modeling is essential for many application domains such as the functioning 12 
of land surfaces. It is also essential for obtaining realistic simulations of satellite 13 
measurements in the thermal infrared. Indeed, it allows one to obtain the 3D distribution of 14 
thermodynamic temperature. This explains present efforts for developing a model, called 15 
DARTEB (DART Energy Budget), that simulates the 3D radiative budget of urban and 16 
vegetation surfaces, possibly with topography and atmosphere. DARTEB uses the 3-D 17 
DART radiative budget and it models all physical phenomena, other than radiation, that 18 
contribute to the energy budget: heat conduction, turbulent momentum and heat fluxes, 19 
water reservoir evolution, vegetation photosynthesis, evapotranspiration. The example 20 
shown here is for a urban canopy. In that case, non-radiative mechanisms that contribute to 21 
the energy budget are simulated with the equations of the TEB urban surface scheme 22 
(Masson, 2000). This scheme works with a canyon geometry. For example, turbulent fluxes 23 
and conduction are computed with classical boundary-layer laws using equations of TEB. 24 

Brightness temperature (K)

TOA radiance (W/m2/sr/µm
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Conversely to the TEB scheme, DARTEB uses a 3-D cell discretization, in addition to the 1 
layer discretization of roofs, walls and roads: modeling is conducted on a DART cell per cell 2 
basis. As a result, fluxes are computed for each point of the 3-D scene. The transfer 3 
coefficients for turbulent heat and moisture fluxes are identical; they differ from the transfer 4 
coefficients for momentum fluxes. For DARTEB, the urban canopy is simulated as the 5 
juxtaposition of urban street canyons. Here, we worked with a single urban canyon, for 6 
remaining in the validity domain of TEB equations (Masson, 2000). Each surface type (wall, 7 
soil, roof) is discretized into several layers for simulating the conduction fluxes to or from 8 
the ground and building interiors. The number of layers for road, wall and roof can differ. A 9 
minimal number of three layers is advised because temperature gradients can be large and 10 
because of the multi-layer structure of the walls and roofs.  11 
DARTEB uses a prognostic approach for assessing the 3D radiative budget distribution, and 12 
consequently the 3D temperature distribution. Temperature values at time "k - 1" are used 13 
for computing the 3D TIR and energy budgets at time "k", which allows one to compute the 14 
3D temperature distribution at time "k", using the 3D visible and NIR radiation budget at 15 
time "k" (Figure 25). DART simulations in the short wave domain are conducted during the 16 
day period only. 17 
 18 
 19 
 20 

 21 
 22 
 23 

Fig. 25. Diagram of DARTEB model. 24 

The validity of DARTEB was tested against TEB simulations and against in situ temperature 25 
measurements during the Capitoul campaign (Albinet, 2008). DARTEB proved to be 26 
coherent with TEB and with measurements. Here, this is illustrated by the comparison of 27 
simulated and measured temperatures during 3 days, from July 14 to July 17, 2004, for the 28 
Alsace Lorraine street (South-North orientation) and La Pomme street (South East – North 29 
West orientation) in Toulouse.  30 
The simulated and measured road temperature curves are very similar (Figure 26.a). As 31 
expected, road temperature values increase during the day. There are 3 major differences  32 
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Fig. 26. Comparison of temperature measurements (blue) with DARTEB (red) and TEB 5 
(green) simulations. July 14-16 2004. a) Road of La Pomme street (Toulouse) with a south 6 
East - North West orientation. b) Walls of Alsace Lorraine street (Toulouse) with a South-7 
North orientation. The 2 walls are facing West and East directions, which implies different 8 
thermal behaviors.  9 
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between DARTEB and TEB simulations. (1) Maximal DARTEB temperatures are larger than 1 
maximal TEB temperatures. (2) Maximal DARTEB temperatures occur before midday 2 
conversely to maximal TEB temperatures that occur at midday. (3) DARTEB curves are 3 
smoother than TEB curves. These differences are mostly explained by the fact that DARTEB 4 
takes into account the 3-D nature of the canyon geometry, conversely to TEB. Indeed, the 5 
TEB model works with a mean canyon that corresponds to an azimuthally averaged street 6 
direction. Thus, TEB temperatures are mean values, which explains that their time 7 
variations are smoothed, with maximal values at midday. Actually, due to the South East - 8 
North West orientation of La Pomme street, the maximum road illumination occurs before 9 
midday and the maximal road illumination is larger than the mean road illumination for all 10 
possible canyon orientations. This is well simulated by DARTEB. Each morning, the 11 
measured and DARTEB temperature values display nearly the same sharp increase. 12 
However, each afternoon, DARTEB temperature values decrease faster than TEB and the 13 
observed temperature values. Several factors can explain the differences between  14 
the DARTEB and observed temperature values. For example, an inaccurate road heat 15 
capacity implies an inaccurate conduction flux, and an inaccurate road roughness length 16 
tends to imply an inaccurate heat flux, which tends to lead to inaccurate road temperature 17 
values. Another possible explanation can come from an inaccurate simulation of the 18 
proportions of the 2 components of the canyon illumination: sun and sky illumination. 19 
Here, these components are driven by the atmosphere optical depth and sun zenith angle. 20 
However, in the absence of measurements, the atmosphere optical depth is assumed to be 21 
constant. 22 
The wall (Figure 26.b) DARTEB and measured temperature values tend to be very close, 23 
both for the wall facing West, and for the wall facing East. They differ from TEB 24 
temperature values because TEB gives a mean value for the 2 walls of the canyon. 25 
Account of wall orientation is important because walls with different sun illumination 26 
have different temperature values, with larger values during daytime for walls with best 27 
sun orientation. As expected, DARTEB maximal temperature values occur in the morning 28 
for the wall facing East, and in the afternoon for the wall facing West. This is not the case 29 
with TEB maximal temperature values; they occur at midday due to the fact that TEB 30 
works with azimuthally averaged canyons. This explains also that TEB temperature 31 
values are too small. These examples stress the impact of 3-D architecture on temperature 32 
distributions.  33 

6. Concluding remarks 34 

Some major and recent improvements of DART radiative transfer model are presented in 35 
this paper. After years of development DART has reached the stage of a reference model in 36 
the field of remote sensing in the optical domain. It was patented (PCT/FR 02/01181) in 37 
2003. It is used in more than 80 Space Centers, Universities and Research Centers: NASA 38 
GSFC (USA), the King's College (UK), Research center of Meteo France, IRD (France), 39 
Virginia University (USA), Instituto de Agricultura Sostenible (Spain), etc. Paul Sabatier 40 
University (France) provides free licenses for scientific works (www.cesbio.ups-tlse.fr), for 41 
windows and Linux systems. Its domains of application are centered on remote sensing 42 
applications for land surfaces (forestry, agriculture, urbanism,…), on the preparation of 43 
future satellite sensors and on the improvement of the use of already available satellite data. 44 
It is also more and more used for radiation budget in urban and natural environments, with 45 



 
DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces 35 

the objective to couple it with functioning models. Moreover, DART is also more and more 1 
used in the field of education for teaching the physical bases of remote sensing and radiative 2 
budget. Generally speaking, the possibility to create very easily urban and natural 3 
landscapes is very interesting for scientists who want assess remote sensing measurements 4 
in any experimental and instrument conditions.  5 
Today, work continues for improving DART, for both the physics, functionalities and 6 
computer science aspects. Present ongoing improvements concern the storing and 7 
manipulation of LUTs as actual databases, the inversion of satellite images, the Lidar and 8 
the design of a new GUI. Planned improvements concern the modeling of the Earth-9 
Atmosphere system in presence of clouds. DART will not simulate RT within clouds. These 10 
will be considered as interfaces with specific optical properties and geometric dimensions. 11 
Other major planned improvements will be the simulation of RT adapted to water bodies 12 
and to fire.  13 
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8. Annex: Computation of view incidence angle 19 

For an Earth target T and a satellite sensor S, DART computes the local incidence angle , 20 
the sensor off-nadir direction  and the sun azimuth angle in the Earth surface reference 21 
system as a function of the locations (latitude, longitude, altitude) of T and S, with the 22 
assumption that the Earth is an ellipsoid. 23 
Let us note O the Earth center and Oz the "South - North" axis perpendicular to the 24 
equatorial plane. The axis Ox is perpendicular to Oz and is in the plane {OTሬሬሬሬሬԦ, Oz}. The plane 25 

that contains the target T and the vertical Oz is an ellipse defined by ௫²௔² + ௭²௕² = 1 , with 26 

a=6378.136km and b=6356.751km. The earth eccentricity is: ݁ = ඥ௔²ି௕²௔ e. At local latitude Lat, 27 

the local Earth radius is: ܴ(ݐܽܮ) = ௕ඥଵି௘².௖௢௦²(௅௔௧)  28 

Any point M on the ellipsoid is characterized by (Latm, Longm) or by the angles (m, m) in 29 
the Earth spherical coordinate system (Figure 26):  30 
Lat  [90°S  90°N]      [0  180°]  ( = 0  Lat = 90°N) 31 
Long  [0  360°]      [0  360°]   32 
Let Rtarget and Rsat be the Earth radius at points t and s that are the vertical projection on the 33 
Earth ellipsoid of target T and satellite S respectively. Points t and s are defined by: 34 
- t: Latt, Longt. Target T altitude is Htarget above the Earth surface 35 
- s: Latsat, Longsat. Satellite altitude is Hsat above the Earth surface 36 
Zenith angles of vectors OSሬሬሬሬԦ and OTሬሬሬሬሬԦ, with s and t the vertical projections of points S and T, 37 
are:  38 

sat = గଶ - Latsat and t = గଶ - Latt     respectively (in radians) 39 
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Fig. 27. Geometric configuration "Satellite - Earth scene", for an ellipsoidal Earth. 12 

In the pre-defined Earth system, point t is defined by OTሬሬሬሬሬԦ {Rt(t).sin(t), 0, Rt(t).cos(t)}. The 13 
unit vector  W୲,∥ሬሬሬሬሬሬሬԦ of the tangent to the ellipse along the axis Ox at point t is defined by:   14 

- zt  0: W୲,∥ሬሬሬሬሬሬሬԦ ቄ1,0, − ௕మ௔మ ௫೟௭೟ቅ . ଵඨଵାቂ್మೌమೣ೟೥೟ቃమ  We note that  W୲,∥ሬሬሬሬሬሬሬԦ {0, 0, 1} if xt =0 (i.e., zt = b)  15 

- zt =0 (i.e., xt = a): W୲,∥ሬሬሬሬሬሬሬԦ{1, 0, 0}  16 

The unit vector W୲,ୄሬሬሬሬሬሬሬሬԦ perpendicular to the ellipse at point t is: W୲,ୄሬሬሬሬሬሬሬሬԦ ቄ1,0, − ௔మ௕మ ௭೟௫೟ቅ . ଵඨଵାቂೌమ್మ೥೟ೣ೟ቃమ  17 

Let ߛ௧∗  be the zenith angle of W୲,ୄሬሬሬሬሬሬሬሬԦ  in the Earth system. It allows one to compute OTሬሬሬሬሬԦ: 18 OTሬሬሬሬሬԦ = OtሬሬሬሬԦ + {h୲. sin(ߛ௧∗), 0, H୲. cos(ߛ௧∗)}  with cos(ߛ௧∗) =W୲,ୄሬሬሬሬሬሬሬሬԦ. W୸ሬሬሬሬሬԦ  and ߛ௧∗  [0  ] 19 
Similarly, for point s, we have: OsሬሬሬሬԦ  {Rsat.sin(sat).cos(Longsat - Longt), Rsat.sin(sat).sin(Longsat - 20 
Longt), Rsat.cos(sat)} 21 
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Let Wୱୟ୲,ୄሬሬሬሬሬሬሬሬሬሬሬሬԦ   be the perpendicular to the ellipse at point s in the Earth system. In the local 1 
reference: 2 (ܼ − ܼ௦௔௧)  =   ௔మ.௭ೞೌ೟௕మ.௑ೞೌ೟ (ܺ − ܺ௦௔௧)    Wୱୟ୲,ୄሬሬሬሬሬሬሬሬሬሬሬሬԦ ቄ1,0, − ௔మ௕మ ௭ೞೌ೟௑ೞೌ೟ቅ . ଵඨଵା൤ೌమ.೥ೞೌ೟್మ.೉ೞೌ೟൨మ  if Xsat  0. 3 

with ܺ௦௔௧ଶ = ௦௔௧ଶݔ + ௦௔௧ଶݕ
 = R2(Latsat).sin2(sat), xsat = R(Latsat).sin(sat).cos(Longsat - Longt) and ysat 4 

= R(Latsat).sin(sat).sin(Longsat - Longt) 5 

Thus, we have: Wୱୟ୲,ୄሬሬሬሬሬሬሬሬሬሬሬሬԦ ቄܿ݃݊݋ܮ)ݏ݋௦௔௧ − ,(௧݃݊݋ܮ ௦௔௧݃݊݋ܮ)݊݅ݏ − ,(௧݃݊݋ܮ ௔మ௕మ ௭ೞೌ೟௑ೞೌ೟ቅ . ଵඨଵା൤ೌమ.೥ೞೌ೟್మ.೉ೞೌ೟൨మ 6 

It implies: −OSሬሬሬሬԦ = OsሬሬሬሬԦ + {Hୱୟ୲. ∗௦௔௧ߛ)݊݅ݏ ). ௦௔௧݃݊݋ܮ)ݏ݋ܿ − ,(௧݃݊݋ܮ Hୱୟ୲. ∗௦௔௧ߛ)݊݅ݏ ). ௦௔௧݃݊݋ܮ)݊݅ݏ ,(௧݃݊݋ܮ 7− Hୱୟ୲. ∗௦௔௧ߛ)ݏ݋ܿ )}  8 
This allows one to compute the incidence angle , the sensor off-nadir angle  and the 9 
satellite azimuth sat in the local system: 10 

(ߙ)ݏ݋ܿ = ୘ୗሬሬሬሬሬԦ.୛౪,఼ሬሬሬሬሬሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ||.||୛౪,఼ሬሬሬሬሬሬሬሬሬሬԦ||    ߙ = )ݏ݋ܿܽ ୘ୗሬሬሬሬሬԦ.୛౪,఼ሬሬሬሬሬሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ||.||୛౪,఼ሬሬሬሬሬሬሬሬሬሬԦ||) with   [0  90°] and TSሬሬሬሬԦ = OSሬሬሬሬԦ − OTሬሬሬሬሬԦ 11 

(ߚ)ݏ݋ܿ = ୘ୗሬሬሬሬሬԦ.୛౩౗౪,఼ሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ||.||୛౩౗౪,఼ሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ||    ߚ = )ݏ݋ܿܽ ୘ୗሬሬሬሬሬԦ.୛౩౗౪,఼ሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ||.||୛౩౗౪,఼ሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ||) with β  [0  90°]  12 W୲,ୄሬሬሬሬሬሬሬሬԦ. ୘ୗሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ|| = −sin(α). cos(φୱୟ୲)  φୱୟ୲  =  acos(−W୲,ୄሬሬሬሬሬሬሬሬԦ. ୘ୗሬሬሬሬሬԦ||୘ୗሬሬሬሬሬԦ|| . ଵୱ୧୬(஑))  with φୱୟ୲ = 2π − φୱୟ୲ if 13 

Longt < Longsat  14 
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