M. Amacher, Nickel, cadmium, and lead, Method. Soil Anal. Part 3-Chem. Method, p.3, 1996.

K. Bradham, E. A. Dayton, N. T. Basta, J. Schroder, M. Payton et al., Effect of soil properties on lead bioavailability and toxicity to earthworms, Environ. Toxicol. Chem.: Int. J, vol.25, issue.3, pp.769-775, 2006.

J. Cheng and M. Wong, Effects of earthworms on Zn fractionation in soils, Biol. Fertil. Soils, vol.36, issue.1, pp.72-78, 2002.

J. Cortet, G. Vauflery, A. Poinsot-balaguer, N. Gomot, L. Texier et al., The use of invertebrate soil fauna in monitoring pollutant effects, Eur. J. Soil Biol, vol.35, issue.3, pp.115-134, 1999.

J. Dai, T. Becquer, H. Rouiller, J. Reversat, G. Bernhard-reversat et al., Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils, Soil Biol. Biochem, vol.36, issue.1, pp.91-98, 2004.

, Bioaccumulation, bioamplification des pollutants dans la faune terrestre-Un outil pour la biosurveillancedes écosystèmes: Un outil pour la biosurveillance des écosystèmes, EDP sciences, 2013.

R. Dinesh, M. Anandaraj, V. Srinivasan, and S. Hamza, Engineered nanoparticles in the soil and their potential implications to microbial activity, Geoderma, vol.173, pp.19-27, 2012.

G. Ernst, I. Henseler, D. Felten, and C. Emmerling, Decomposition and mineralization of energy crop residues governed by earthworms, Soil Biol. Biochem, vol.41, issue.7, pp.1548-1554, 2009.

T. Fan, Y. Wang, C. Li, J. He, J. Gao et al., Effect of organic matter on sorption of Zn on soil: elucidation by Wien effect measurements and EXAFS spectroscopy, Environ. Sci. Technol, vol.50, issue.6, pp.2931-2937, 2016.

A. Fließbach, R. Martens, and H. Reber, Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge, Soil Biol. Biochem, vol.26, issue.9, pp.1201-1205, 1994.

S. Fonte, A. Kong, C. Y-y,-van-kessel, P. F. Hendrix, and J. Six, Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management, Soil Biol. Biochem, vol.39, issue.5, pp.1014-1022, 2007.

S. Fusaro, F. Gavinelli, F. Lazzarini, and M. G. Paoletti, Soil Biological Quality Index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agroecosystems, Ecol. Indicat, vol.93, pp.1276-1292, 2018.

L. García-montero, I. Valverde-asenjo, M. Grande-ortíz, C. Menta, and I. Hernando, Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns, Agrofor. Syst, vol.87, issue.4, pp.815-826, 2013.

X. Gong, S. Wang, Z. Wang, Y. Jiang, Z. Hu et al., Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH, Geoderma, vol.347, pp.59-69, 2019.

L. Han, X. Zhao, J. , J. Gao, B. Yang et al., Using sequential extraction and DGT techniques to assess the efficacy of plant-and manure-derived hydrochar and pyrochar for alleviating the bioavailability of Cd in soils, Sci. Total Environ, vol.678, pp.543-550, 2019.

D. Hoang, B. S. Razavi, Y. Kuzyakov, and E. Blagodatskaya, Earthworm burrows: kinetics and spatial distribution of enzymes of C-, N-and P-cycles, Soil Biol. Biochem, vol.99, pp.94-103, 2016.

V. Jeyanthi, J. Paul, B. K. Selvi, and N. Karmegam, Comparative study of biochemical responses in three species of earthworms exposed to pesticide and metal contaminated soil, Environ. Process, vol.3, issue.1, pp.167-178, 2016.

A. Kavehei, G. C. Hose, and D. Gore, Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil, Environ. Pollut, vol.237, pp.851-857, 2018.

Y. Kim, B. Robinson, K. Lee, S. Boyer, and N. Dickinson, Interactions between earthworm burrowing, growth of a leguminous shrub and nitrogen cycling in a former agricultural soil, Appl. Soil Ecol, vol.110, pp.79-87, 2017.

R. Lanno, K. Oorts, E. Smolders, K. Albanese, and M. Chowdhury, Effects of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates, Environ. Toxicol. Chem, vol.38, issue.7, pp.1486-1491, 2019.

P. Lavelle, A. Spain, M. Blouin, G. Brown, T. Decaëns et al., Ecosystem engineers in a self-organized soil: a review of concepts and future research questions, Soil Sci, vol.181, issue.3/4, pp.91-109, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01601928

A. Lemtiri, A. Liénard, T. Alabi, Y. Brostaux, D. Cluzeau et al., Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils, Appl. Soil Ecol, vol.104, pp.67-78, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01255836

F. Li, Z. Li, P. Mao, Y. Li, Y. Li et al., Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms, Environ. Sci. Pollut. Control Ser, vol.26, issue.20, pp.20030-20039, 2019.

M. Li, X. Cheng, and H. Guo, Heavy metal removal by biomineralization of urease producing bacteria isolated from soil, Int. Biodeterior. Biodegrad, vol.76, pp.81-85, 2013.

Y. Li, T. Becquer, J. Dai, C. Quantin, and M. F. Benedetti, Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils, Environ. Pollut, vol.157, issue.4, pp.1249-1257, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00375583

Y. Li, S. Wang, M. Lu, Z. Zhang, M. Chen et al., Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils, Soil Tillage Res, vol.186, pp.146-151, 2019.

Z. Lin, X. Li, Y. Li, D. Huang, J. Dong et al., Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT, J. Environ. Monit, vol.14, issue.6, pp.1551-1558, 2012.

Z. Lin, Z. Zhen, Z. Wu, J. Yang, L. Zhong et al., The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils, J. Hazard Mater, vol.301, pp.35-45, 2016.

W. Lindsay and . Norvell, Development of a DTPA soil test for zinc, iron, manganese, and copper 1, Soil Sci. Soc. Am. J, vol.42, issue.3, pp.421-428, 1978.

G. Liu, S. Ling, X. Zhan, Z. Lin, W. Zhang et al., Interaction effects and mechanism of Pb pollution and soil microorganism in the presence of earthworm, Chemosphere, vol.173, pp.227-234, 2017.

T. Liu, X. Chen, X. Gong, I. M. Lubbers, Y. Jiang et al., Earthworms coordinate soil biota to improve multiple ecosystem functions, Curr. Biol, vol.29, issue.20, pp.3420-3429, 2019.

T. Lukkari, M. Taavitsainen, A. Väisänen, and J. Haimi, Effects of heavy metals on earthworms along contamination gradients in organic rich soils, Ecotoxicol. Environ. Saf, vol.59, issue.3, pp.340-348, 2004.

A. N. Oo, C. Iwai, and P. Saenjan, Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms, Land Degrad. Dev, vol.26, issue.3, pp.300-310, 2015.

M. Sady?, A. Strzelczak, A. Grinn-gofro?, and R. Kennedy, Application of redundancy analysis for aerobiological data, Int. J. Biometeorol, vol.59, issue.1, pp.25-36, 2015.

J. Sheehy, V. Nuutinen, J. Six, A. Palojärvi, O. Knuutila et al., Earthworm Lumbricus terrestris mediated redistribution of C and N into large macroaggregate-occluded soil fractions in fine-textured no-till soils, Appl. Soil Ecol, vol.140, pp.26-34, 2019.

M. Sinkakarimi, E. Solgi, and A. Colagar, Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species, Chemosphere, vol.238, p.124595, 2020.

T. Sizmur and M. E. Hodson, Do earthworms impact metal mobility and availability in soil? -a review, Environ. Pollut, vol.157, issue.7, pp.1981-1989, 2009.

B. A. Snyder, B. Boots, and P. F. Hendrix, Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): effects on carbon cycling and soil structure, Soil Biol. Biochem, vol.41, issue.7, pp.1442-1449, 2009.

D. Sparks, P. A. Helmke, and . Page, Methods of Soil Analysis: Chemical Methods. SSSA, 1996.

S. Suthar, S. Singh, and S. Dhawan, Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category?, Ecol. Eng, vol.32, issue.2, pp.99-107, 2008.

D. Team, A Language and Environment for Statistical Computing. R Foundation for statistical Computing, p.16, 2009.

E. Vance, P. C. Brookes, and D. Jenkinson, An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem, vol.19, issue.6, pp.703-707, 1987.

F. Wang, X. Liu, Z. Shi, R. Tong, A. et al., Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-a soil microcosm experiment, Chemosphere, vol.147, pp.88-97, 2016.

G. Wang, X. Xia, J. Yang, M. Tariq, J. Zhao et al., Exploring the bioavailability of nickel in a soil system: physiological and histopathological toxicity study to the earthworms (Eisenia fetida), J. Hazard Mater, vol.383, p.121169, 2020.

H. Wang, D. Guan, R. Zhang, Y. Chen, Y. Hu et al., Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field, Ecol. Eng, vol.70, pp.206-211, 2014.

K. Wang, Y. Qiao, H. Zhang, S. Yue, H. Li et al., Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China, Ecotoxicol. Environ. Saf, vol.148, pp.876-883, 2018.

B. Wen, X. Hu, Y. Liu, W. Wang, M. Feng et al., The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils, Biol. Fertil. Soils, vol.40, issue.3, pp.181-187, 2004.

L. Xiao, D. Guan, M. R. Peart, Y. Chen, and Q. Li, The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas, Environ. Sci. Pollut. Control Ser, vol.24, issue.3, pp.2558-2571, 2017.

L. Xiao, D. Guan, M. R. Peart, Y. Chen, Q. Li et al., The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain, Chemosphere, vol.185, pp.868-878, 2017.

Z. Xiao, L. Jiang, X. Chen, Y. Zhang, E. Defossez et al., Earthworms suppress thrips attack on tomato plants by concomitantly modulating soil properties and plant chemistry, Soil Biol. Biochem, vol.130, pp.23-32, 2019.

H. Xu, J. Bai, W. Li, L. Zhao, and Y. Li, Removal of persistent DDT residues from soils by earthworms: a mechanistic study, J. Hazard Mater, vol.365, pp.622-631, 2019.

H. Xu, H. Chen, X. Wang, Y. Zhang, J. Wang et al., Earthworms stimulate nitrogen transformation in an acidic soil under different Cd contamination, Ecotoxicol. Environ. Saf, vol.165, pp.564-572, 2018.

X. Yu, J. Cheng, and M. Wong, Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass, Soil Biol. Biochem, vol.37, issue.2, pp.195-201, 2005.

A. Yuvaraj, N. Karmegam, S. Tripathi, S. Kannan, and R. Thangaraj, Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: bioaccumulation of heavy metals and metallothionein production, J. Environ. Manag, vol.254, p.109813, 2020.

C. Zhang, P. Mora, J. Dai, X. Chen, S. Giusti-miller et al., Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China, Appl. Soil Ecol, vol.104, pp.54-66, 2016.

S. Zhang, F. Hu, H. Li, and X. Li, Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation, Environ. Pollut, vol.157, issue.10, pp.2737-2742, 2009.

T. Zhou, L. Wu, Y. Luo, and P. Christie, Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils, Environ. Pollut, vol.232, pp.514-522, 2018.