B. A. Maher and R. M. Taylor, Formation of ultrafine-grained magnetite in soils, Nature, vol.336, issue.6197, pp.336-333, 1988.
DOI : 10.1038/336368a0

K. B. Gregory, P. Larese-casanova, and G. Parkin, Abiotic Transformation of 340, Nanoscale Biogenic Magnetite Particles. Environ. Sci. Technol, vol.38, issue.3394, pp.1045-1053, 2004.

C. A. Gorski, 5-trinitro-1,3,5-triazine by FeII Bound to Magnetite, Influence of Magnetite Stoichiometry on Fe II Uptake and 343, pp.341-379, 2004.

J. Klausen, S. P. Troeber, S. B. Haderlein, R. P. Schwarzenbach, T. Missana et al., Reduction of Substituted 347 Nitrobenzenes by Fe(II) in Aqueous Mineral Suspensions Selenite retention 352 by nanocrystalline magnetite: Role of adsorption, reduction and dissolution/co-precipitation 353 processes U(VI) removal kinetics in 355 presence of synthetic magnetite nanoparticles M. 357 Influence of Magnetite Stoichiometry on UVI Reduction Magnetite nanoparticles for removal of heavy metals 360 from aqueous solutions: synthesis and characterization Sorption of cesium, barium and europium on magnetite, Magnetite: Implications for Contaminant Reduction. Environ. Sci. Technol, pp.55-60, 1984.

G. Pourroy, Phosphate Adsorption Properties of Magnetite-Based Nanoparticles, Chem, p.365
URL : https://hal.archives-ouvertes.fr/hal-00212131

E. Tombácz, I. Y. Tóth, D. Nesztor, E. Illés, A. Hajdú et al., Adsorption of 370 organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance 372 (17) Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic 373 environment: a review of recent research data Pharmaceutical residues in environmental waters 375 and wastewater: current state of knowledge and future research Antibiotic Pollution in the Environment: A Review Determination of Iron with o-Phenanthroline: A 380 Spectrophotometric Study, Spectroscopic Studies. Environ. Sci. Technol. 2015 371 Colloids Surf. Physicochem. Eng. Asp. 2013, pp.49-7726, 1938.

J. B. Mullin and J. P. Riley, The colorimetric determination of silicate with special reference to sea and natural waters, Analytica Chimica Acta, vol.12, issue.385, pp.162-176, 1955.
DOI : 10.1016/S0003-2670(00)87825-3

U. , D. , C. Ross, D. L. Riley, C. M. Vincent et al., Aqueous solubilities of some variously substituted quinolone 388 antimicrobials Prototropic and 390 metal complexation equilibria of nalidixic acid in the physiological pH region, Water-Resources Investigations Report; USGS Numbered Series 99?4259; Water-resources 386 Investigation) Jolsterå, R.; Gunneriusson, L.; Holmgren, A. Surface complexation modeling of Fe3O4?H+ and 393, pp.312-237, 1981.

R. Marsac, N. L. Banik, J. Lützenkirchen, C. Catrouillet, C. M. Marquardt et al., 396 Modeling metal ion-humic substances complexation in highly saline conditions Adsorption of zwitterionic fluoroquinolone 399 antibacterials to goethite: A charge distribution-multisite complexation model. J. Colloid 400 Interface Sci Sorption of nalidixic 402 acid onto micrometric and nanometric magnetites: Experimental study and modeling Oxolinic Acid Binding at Goethite and Akaganéite 405 Surfaces: Experimental Study and Modeling Sorption of Two Naphthoic Acids to Goethite Surface under Flow 407 through Conditions, Mg(II) sorption onto maghemite and magnetite. J. Colloid Interface Sci. 2012 Appl. 403 Surf. Sci. 2014 Sorption and Transport of Salicylate in a Porous 409 Heterogeneous Medium of Silica Quartz and Goethite32) Jolivet, J.-P.; Tronc, E. Interfacial electron transfer in colloidal spinel iron oxide. Conversion of, pp.260-394, 2010.

A. F. White, M. L. Peterson, and M. F. Hochella, Electrochemistry and dissolution kinetics of 414 magnetite and ilmenite (34) Fein, J. B. The effects of ternary surface complexes on the adsorption of metal cations and 416 organic acids onto mineral surfaces, Fe3O4-?Fe2O3 in aqueous medium, pp.688-701, 1988.

O. Interactions, E. Deposits, . Geochemistry, . Tribute, A. David et al., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters The stability of transition-metal complexes Ionization and divalent cation dissociation constants of nalidixic 424 and oxolinic acids Co-binding of Pharmaceutical 426 Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic 427 Acid and Niflumic Acid at Goethite Surfaces, Binding of 430 Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation 431 at Goethite/Water Interfaces, pp.365-378, 1953.

L. Haggstrom, H. Annersten, T. Ericsson, R. Wappling, W. Karner et al., Magnetic 433 Dipolar and Electric Quadrupolar Effects on Mossbauer-Spectra Evidence from Mössbauer spectroscopy of neo- 436 formation of magnetite/maghemite in the soils of loess/paleosol sequences in China, Hyperfine Interact, vol.5, issue.40341, pp.434-201, 1978.

L. Aristilde and G. Sposito, Complexes of the antimicrobial ciprofloxacin with soil, peat, and 439 aquatic humic substances, Hyperfine Interact Environ. Toxicol. Chem, vol.117, issue.20137, pp.1-4, 1998.