G. L. Shulman, Common blood flow changes across visual tasks: II. Decreases in cerebral cortex, J. Cognit. Neurosci, vol.9, pp.648-663, 1997.

L. Nyberg, Network analysis of positron emission tomography regional cerebral blood flow data: Ensemble inhibition during episodic memory retrieval, J. Neurosci, vol.16, pp.3753-3759, 1996.

M. E. Raichle, A default mode of brain function, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.676-682, 2001.

N. C. Andreasen, Remembering the past: Two facets of episodic memory explored with positron emission tomography, Am. J. Psychiatry, vol.152, pp.1576-1585, 1995.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn. Reson. Med, vol.34, pp.537-541, 1995.

G. Deco, V. K. Jirsa, and A. R. Mcintosh, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nat. Rev. Neurosci, vol.12, pp.43-56, 2011.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.253-258, 2003.

M. E. Raichle, The brain's default mode network, Annu. Rev. Neurosci, vol.38, pp.433-447, 2015.

R. L. Buckner, J. R. Andrews-hanna, and D. L. Schacter, The brain's default network: Anatomy, function, and relevance to disease, Ann. N. Y. Acad. Sci, vol.1124, pp.1-38, 2008.

E. L. Dennis and P. M. Thompson, Functional brain connectivity using fMRI in aging and Alzheimer's disease, Neuropsychol. Rev, vol.24, pp.49-62, 2014.

A. Mohan, The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: A review, Yale J. Biol. Med, vol.89, pp.49-57, 2016.

K. Chuang and F. A. Nasrallah, Functional networks and network perturbations in rodents, Neuroimage, vol.163, pp.419-436, 2017.

A. Gozzi and A. J. Schwarz, Large-scale functional connectivity networks in the rodent brain, Neuroimage, vol.127, pp.1-15, 2015.

L. Hsu, Constituents and functional implications of the rat default mode network, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.4541-4547, 2016.

H. Lu, Rat brains also have a default mode network, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.3979-3984, 2012.

A. J. Schwarz, Anti-correlated cortical networks of intrinsic connectivity in the rat brain, Brain Connect, vol.3, pp.503-511, 2013.

F. Sforazzini, A. J. Schwarz, A. Galbusera, A. Bifone, and A. Gozzi, Distributed BOLD and CBV-weighted resting-state networks in the mouse brain, Neuroimage, vol.87, pp.403-415, 2014.

J. M. Stafford, Large-scale topology and the default mode network in the mouse connectome, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.18745-18750, 2014.

Y. Gao, Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal, Neuroimage, vol.153, pp.382-398, 2017.

G. Deshpande, C. Kerssens, P. S. Sebel, and X. Hu, Altered local coherence in the default mode network due to sevoflurane anesthesia, Brain Res, vol.1318, pp.110-121, 2010.

E. A. Stamatakis, R. M. Adapa, A. R. Absalom, and D. K. Menon, Changes in resting neural connectivity during propofol sedation, PLoS One, vol.5, p.14224, 2010.

X. Liu, Variation of the default mode network with altered alertness levels induced by propofol, Neuropsychiatr. Dis. Treat, vol.11, pp.2573-2581, 2015.

A. Vanhaudenhuyse, Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients, Brain, vol.133, pp.161-171, 2010.

E. Tiran, Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent, Ultrasound Med. Biol, vol.43, pp.1679-1689, 2017.

D. Boido, Mesoscopic and microscopic imaging of sensory responses in the same animal, Nat. Commun, vol.10, p.1110, 2019.

É. Macé, Whole-brain functional ultrasound imaging reveals brain modules for visuomotor integration, Neuron, vol.100, pp.1241-1251, 2018.

B. Osmanski, S. Pezet, A. Ricobaraza, Z. Lenkei, and M. Tanter, Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution, Nat. Commun, vol.5, p.5023, 2014.

A. R. Batista-novais, Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction, Glia, vol.64, pp.2306-2320, 2016.

R. Hinz, Bottom-up sensory processing can induce negative BOLD responses and reduce functional connectivity in nodes of the default mode-like network in rats, Neuroimage, vol.197, pp.167-176, 2019.

J. Li, S. Martin, M. D. Tricklebank, A. J. Schwarz, and G. Gilmour, Task-induced modulation of intrinsic functional connectivity networks in the behaving rat, J. Neurosci, vol.35, pp.658-665, 2015.

F. Katsuki and C. Constantinidis, Bottom-up and top-down attention: Different processes and overlapping neural systems, Neuroscientist, vol.20, pp.509-521, 2014.

Z. Liang, J. King, and N. Zhang, Anticorrelated resting-state functional connectivity in awake rat brain, Neuroimage, vol.59, pp.1190-1199, 2012.

E. S. Lein, Genome-wide atlas of gene expression in the adult mouse brain, Nature, vol.445, pp.168-176, 2007.

J. Ferrier, Raw data for "Functional Imaging Evidence for Task-induced Deactivation and Disconnection of a Major Default Mode Network Hub in the Mouse Brain, 2020.

N. Zhang, Mapping resting-state brain networks in conscious animals, J. Neurosci. Methods, vol.189, pp.186-196, 2010.

C. C. Petersen, Sensorimotor processing in the rodent barrel cortex, Nat. Rev. Neurosci, vol.20, pp.533-546, 2019.

B. Huo, J. B. Smith, and P. J. Drew, Neurovascular coupling and decoupling in the cortex during voluntary locomotion, J. Neurosci, vol.34, pp.10975-10981, 2014.

B. Huo, Y. Gao, and P. J. Drew, Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion, Neuroimage, vol.105, pp.369-379, 2015.

E. Jonckers, J. Van-audekerke, G. De, A. Visscher, M. Van-der-linden et al., Functional connectivity fMRI of the rodent brain: Comparison of functional connectivity networks in rat and mouse, PLoS One, vol.6, p.18876, 2011.

D. Shah, Acute modulation of the cholinergic system in the mouse brain detected by pharmacological resting-state functional MRI, Neuroimage, vol.109, pp.151-159, 2015.

T. M. Arefin, Remodeling of sensorimotor brain connectivity in Gpr88-deficient mice, Brain Connect, vol.7, pp.526-540, 2017.

J. Grandjean, A. Schroeter, I. Batata, and M. Rudin, Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns, Neuroimage, vol.102, pp.838-847, 2014.

F. A. Nasrallah, H. Tay, and K. Chuang, Detection of functional connectivity in the resting mouse brain, Neuroimage, vol.86, pp.417-424, 2014.

Y. Ma, Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.8463-8471, 2016.

H. Xie, Differential effects of anesthetics on resting state functional connectivity in the mouse, J. Cereb. Blood Flow Metab, vol.40, pp.875-884, 2020.

X. Liu, X. Zhu, Y. Zhang, and W. Chen, The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin, Brain Topogr, vol.26, pp.363-377, 2013.

H. Lu, Synchronized delta oscillations correlate with the resting-state functional MRI signal, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.18265-18269, 2007.

A. T. Winder, C. Echagarruga, Q. Zhang, and P. J. Drew, Weak correlations between hemodynamic signals and ongoing neural activity during the resting state, Nat. Neurosci, vol.20, pp.1761-1769, 2017.

C. Rabut, 4D functional ultrasound imaging of whole-brain activity in rodents, Nat. Methods, vol.16, pp.994-997, 2019.

M. G. Shuler, D. J. Krupa, and M. A. Nicolelis, Integration of bilateral whisker stimuli in rats: Role of the whisker barrel cortices, Cereb. Cortex, vol.12, pp.86-97, 2002.

M. G. Shuler, D. J. Krupa, and M. A. Nicolelis, Bilateral integration of whisker information in the primary somatosensory cortex of rats, J. Neurosci, vol.21, pp.5251-5261, 2001.

M. Pietrasanta, L. Restani, and M. Caleo, The corpus callosum and the visual cortex: Plasticity is a game for two, Neural Plast, p.838672, 2012.

V. and D. Lazzaro, Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation, Exp. Brain Res, vol.124, pp.520-524, 1999.

A. Ferbert, Interhemispheric inhibition of the human motor cortex, J. Physiol, vol.453, pp.525-546, 1992.

C. Gerloff, Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract, J. Physiol, vol.510, pp.249-259, 1998.

M. Böhm, Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression, J. Cereb. Blood Flow Metab, vol.40, pp.808-822, 2020.

A. Pereira, Processing of tactile information by the hippocampus, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.18286-18291, 2007.

R. L. Buckner, The serendipitous discovery of the brain's default network, Neuroimage, vol.62, pp.1137-1145, 2012.

T. Eichele, Prediction of human errors by maladaptive changes in event-related brain networks, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.6173-6178, 2008.

S. J. Broyd, Default-mode brain dysfunction in mental disorders: A systematic review, Neurosci. Biobehav. Rev, vol.33, pp.279-296, 2009.

R. J. Maddock, The retrosplenial cortex and emotion: New insights from functional neuroimaging of the human brain, Trends Neurosci, vol.22, pp.310-316, 1999.

D. A. Gusnard, E. Akbudak, G. L. Shulman, and M. E. Raichle, Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.4259-4264, 2001.

J. R. Simpson, A. Z. Snyder, D. A. Gusnard, and M. E. Raichle, Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.683-687, 2001.

B. A. Vogt and G. Paxinos, Cytoarchitecture of mouse and rat cingulate cortex with human homologies, Brain Struct. Funct, vol.219, pp.185-192, 2014.

A. V. Utevsky, D. V. Smith, and S. A. Huettel, Precuneus is a functional core of the defaultmode network, J. Neurosci, vol.34, pp.932-940, 2014.

S. D. Vann, J. P. Aggleton, and E. A. Maguire, What does the retrosplenial cortex do?, Nat. Rev. Neurosci, vol.10, pp.792-802, 2009.

M. Kislin, Flat-floored air-lifted platform: A new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents, J. Vis. Exp, vol.88, p.51869, 2014.

J. Bercoff, Ultrafast ultrasound imaging" in Ultrasound Imaging-Medical Applications, pp.3-24, 2011.

G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.56, pp.489-506, 2009.

C. Demené, Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity, IEEE Trans. Med. Imaging, vol.34, pp.2271-2285, 2015.

M. D. Fox, D. Zhang, A. Z. Snyder, and M. E. Raichle, The global signal and observed anticorrelated resting state brain networks, J. Neurophysiol, vol.101, pp.3270-3283, 2009.

E. Jonckers, D. Shah, J. Hamaide, M. Verhoye, and A. Van-der-linden, The power of using functional fMRI on small rodents to study brain pharmacology and disease, Front. Pharmacol, vol.6, p.231, 2015.

M. D. Fox and M. E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat. Rev. Neurosci, vol.8, pp.700-711, 2007.

J. R. Bumstead, A. Q. Bauer, P. W. Wright, and J. P. Culver, Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability, J. Cereb. Blood Flow Metab, vol.37, pp.1-14, 2016.

J. Himberg and A. Hyvärinen, Icasso: software for investigating the reliability of ICA estimates by clustering and visualization, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing, pp.259-268, 2003.