. Université-paris-diderot, L. Sorbonne-paris-cité, . Pathologie, and F. Umr-s942, , p.75005

F. Paris, CNRS UMR, vol.8537

, ALIPP6, Institut des Sciences de la Terre de Paris UMR 7193, vol.13

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, issue.5, pp.359-86, 2015.

D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science, vol.235, issue.4785, pp.177-82, 1987.

K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown et al., J Langmuir, vol.12, p.2353, 1996.

M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl et al., Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease, J Clin Oncol, vol.17, issue.9, pp.2639-2687, 1999.

J. Baselga, J. Cortes, S. B. Kim, S. A. Im, R. Hegg et al., Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer, N Engl J Med, vol.366, issue.2, pp.109-128, 2012.

M. F. Rimawi, R. Schiff, and C. K. Osborne, Targeting HER2 for the treatment of breast cancer, Annu Rev Med, vol.66, pp.111-139, 2015.

N. Niikura, J. Liu, N. Hayashi, E. A. Mittendorf, Y. Gong et al., Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors, J Clin Oncol, vol.30, issue.6, pp.593-602, 2012.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit et al., Nanocarriers as an emerging platform for cancer therapy, Nat Nanotechnol, vol.2, issue.12, pp.751-60, 2007.

M. J. Gil-gil, M. Bellet, S. Morales, B. Ojeda, L. Manso et al., Pegylated liposomal doxorubicin plus cyclophosphamide followed by paclitaxel as primary chemotherapy in elderly or cardiotoxicity-prone patients with highrisk breast cancer: results of the phase II CAPRICE study, Breast Cancer Res Treat, vol.151, issue.3, pp.597-606, 2015.

M. Untch, C. Jackisch, A. Schneeweiss, B. Conrad, B. Aktas et al., Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, Lancet Oncol, vol.17, issue.3, pp.345-56, 2016.

O. S. Muddineti, B. Ghosh, and S. Biswas, Current trends in using polymer coated gold nanoparticles for cancer therapy, Int J Pharm, vol.484, issue.1-2, pp.252-67, 2015.

E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem Soc Rev, vol.38, issue.6, pp.1759-82, 2009.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, Inorganic nanoparticles for cancer imaging and therapy, J Control Release, vol.155, issue.3, pp.344-57, 2011.

S. Sun and H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J Am Chem Soc, vol.124, issue.28, pp.8204-8209, 2002.

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, Preparation and characterization of gold Nanoshells coated with self-assembled monolayers, Langmuir, vol.18, issue.12, pp.4915-4935, 2002.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski et al., Nonblinking quantum dot with a plasmonic nanoshell resonator, Nat Nanotechnol, vol.10, issue.2, pp.170-175, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01350067

D. G. Duff, A. Baiker, and P. P. Edwards, A new hydrosol of gold clusters. 1. Formation and particle size variation, Langmuir, vol.9, issue.9, pp.2301-2310, 1993.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE guidelines: minimum information for publication of quantitative realtime PCR experiments, Clin Chem, vol.55, issue.4, pp.611-633, 2009.

M. Varna, P. Ratajczak, I. Ferreira, C. Leboeuf, G. Bousquet et al., In vivo distribution of inorganic nanoparticles in preclinical models, J Biomater Nanobiotechnol, vol.03, issue.02, p.11, 2012.

C. L. Haynes and R. P. Van-duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J Phys Chem B, vol.105, issue.24, pp.5599-611, 2001.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. J. Kiely, J Chem Soc Chem Commun, p.1655, 1995.

B. Van-de-broek, N. Devoogdt, D. Hollander, A. Gijs, H. L. Jans et al., Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy, ACS Nano, vol.5, issue.6, pp.4319-4347, 2011.

M. Truffi, M. Colombo, L. Sorrentino, L. Pandolfi, S. Mazzucchelli et al., Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells, Sci Rep, vol.8, issue.1, p.6563, 2018.

C. H. Choi, C. A. Alabi, P. Webster, and M. E. Davis, Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles, Proc Natl Acad Sci, vol.107, issue.3, pp.1235-1275, 2010.

X. Huang, P. K. Jain, I. H. El-sayed, and M. A. El-sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med Sci, vol.23, issue.3, pp.217-245, 2008.

C. Qin, J. Fei, A. Wang, Y. Yang, and J. Li, Rational assembly of a biointerfaced core@shell nanocomplex towards selective and highly efficient synergistic photothermal/photodynamic therapy, Nanoscale, vol.7, issue.47, pp.20197-210, 2015.

W. Lu, G. Zhang, R. Zhang, L. G. Flores, Q. Huang et al., Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection, Cancer Res, vol.70, issue.8, pp.3177-88, 2010.

J. Shao, R. J. Griffin, E. I. Galanzha, J. W. Kim, N. Koonce et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci Rep, vol.3, p.1293, 2013.

C. Xu, Q. Feng, H. Yang, G. Wang, L. Huang et al., A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-Photothermal therapy of triple negative breast cancer, Adv Sci, vol.5, issue.10, p.1800382, 2018.

B. Palpant, Photothermal Properties of Gold Nanoparticles. Gold nanoparticles for physics, Chemistry and Biology, pp.87-130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00833486

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. J. Kiely, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, J Chem Soc Chem Commun, issue.7, pp.801-803, 1994.

T. Labouret, J. F. Audibert, R. B. Pansu, and B. Palpant, Plasmon-assisted production of reactive oxygen species by single gold Nanorods, Small, vol.11, issue.35, pp.4475-4484, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220293

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff et al., Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells, Breast Cancer Res Treat, vol.125, issue.1, pp.27-34, 2011.

X. Kang, X. Guo, X. Niu, A. W. Li, S. Liu et al., Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci Rep, vol.7, p.42069, 2017.

M. N. Rylander, R. J. Stafford, J. Hazle, J. Whitney, and K. R. Diller, Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells, Int J Hyperth, vol.27, issue.8, pp.791-801, 2011.

Y. Zhang, X. Zhan, J. Xiong, S. Peng, W. Huang et al., Temperaturedependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells, Sci Rep, vol.8, issue.1, p.8720, 2018.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations