I. Voskoboinik, M. J. Smyth, and J. A. Trapani, Perforinmediated target-cell death and immune homeostasis, Nat Rev Immunol, vol.6, pp.940-952, 2006.

J. H. Russell and T. J. Ley, Lymphocyte-mediated cytotoxicity, Annu Rev Immunol, vol.20, pp.323-370, 2002.

S. Shresta, C. T. Pham, D. A. Thomas, T. A. Graubert, and T. J. Ley, How do cytotoxic lymphocytes kill their targets?, Curr Opin Immunol, vol.10, pp.581-587, 1998.

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, pp.751-761, 2001.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, pp.462-465, 2006.

J. R. Kuhn and M. Poenie, Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing, Immunity, vol.16, pp.111-121, 2002.

M. M. Mé-nager, G. Menasche, and M. Romao, Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nat Immunol, vol.8, pp.257-267, 2007.

G. De-saint-basile and A. Fischer, The role of cytotoxicity in lymphocyte homeostasis, Curr Opin Immunol, vol.13, pp.549-554, 2001.

G. Mé-nasché, J. Feldmann, A. Fischer, and G. De-saint-basile, Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis, Immunol Rev, vol.203, pp.165-179, 2005.

G. Mé-nasché, E. Pastural, and J. Feldmann, Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome, Nat Genet, vol.25, pp.173-176, 2000.

S. M. Wilson, R. Yip, and D. A. Swing, A mutation in Rab27a causes the vesicle transport defects observed in ashen mice, Proc Natl Acad Sci, vol.97, pp.7933-7938, 2000.

O. Martinez and B. Goud, Rab proteins, Biochim Biophys Acta, vol.1404, pp.101-112, 1998.

Y. Takai, T. Sasaki, and T. Matozaki, Small GTP-binding proteins, Physiol Rev, vol.81, pp.153-208, 2001.

E. K. Haddad, X. Wu, J. A. Hammer, . Iii, and P. A. Henkart, Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice, J Cell Biol, vol.152, pp.835-842, 2001.

J. C. Stinchcombe, D. C. Barral, and E. H. Mules, Rab27a is required for regulated secretion in cytotoxic T lymphocytes, J Cell Biol, vol.152, pp.825-834, 2001.

J. Feldmann, I. Callebaut, and G. Raposo,

, Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, pp.461-473, 2003.

K. Crozat, K. Hoebe, and S. Ugolini, Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis, J Exp Med, vol.204, pp.853-863, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165505

R. Shirakawa, T. Higashi, and A. Tabuchi, Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets, J Biol Chem, vol.279, pp.10730-10737, 2004.

J. Basu, N. Shen, and I. Dulubova, A minimal domain responsible for Munc13 activity, Nat Struct Mol Biol, vol.12, pp.1017-1018, 2005.

T. S. Kuroda, M. Fukuda, H. Ariga, and K. Mikoshiba, The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain, J Biol Chem, vol.277, pp.9212-9218, 2002.

M. Fukuda, C. Saegusa, and K. Mikoshiba, Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain, Biochem Biophys Res Commun, vol.283, pp.513-519, 2001.

J. Wang, T. Takeuchi, H. Yokota, and T. Izumi, Novel rabphilin-3-like protein associates with insulin-containing granules in pancreatic beta cells, J Biol Chem, vol.274, pp.28542-28548, 1999.

M. Berkowitz, J. K. Catz, S. D. Johnson, J. L. Ruedi, J. M. Thon et al., JFC1, a novel tandem C2 domain-containing protein associated with the leukocyte NADPH oxidase, J Biol Chem, vol.276, pp.18855-18862, 2001.

S. Cheviet, T. Coppola, L. P. Haynes, R. D. Burgoyne, and R. Regazzi, The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic betacell exocytosis, Mol Endocrinol, vol.18, pp.117-126, 2004.

M. Fukuda, E. Kanno, and A. Yamamoto, Rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A in PC12 cells, J Biol Chem, vol.279, pp.13065-13075, 2004.

Z. Yi, H. Yokota, and S. Torii, The Rab27a/ granuphilin complex regulates the exocytosis of insulin-containing dense-core granules, Mol Cell Biol, vol.22, pp.1858-1867, 2002.

S. Torii, S. Zhao, Z. Yi, T. Takeuchi, and T. Izumi, Granuphilin modulates the exocytosis of secretory granules through interaction with syntaxin 1a, Mol Cell Biol, vol.22, pp.5518-5526, 2002.

L. Waselle, T. Coppola, and M. Fukuda, Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis, Mol Biol Cell, vol.14, pp.4103-4113, 2003.

C. Desnos, J. S. Schonn, and S. Huet, Rab27A and its effector MyRIP link secretory granules to Factin and control their motion towards release sites, J Cell Biol, vol.163, pp.559-570, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01274137

X. S. Wu, K. Rao, and H. Zhang, Identification of an organelle receptor for myosin-Va, Nat Cell Biol, vol.4, pp.271-278, 2002.

L. E. Matesic, R. Yip, and A. E. Reuss, Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice, Proc Natl Acad Sci U S A, vol.98, pp.10238-10243, 2001.

T. S. Kuroda and M. Fukuda, Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes, Nat Cell Biol, vol.6, pp.1195-1203, 2004.

C. Saegusa, T. Tanaka, S. Tani, S. Itohara, K. Mikoshiba et al., Decreased basal mucus secretion by Slp2-a-deficient gastric surface mucous cells, Genes Cells, vol.11, pp.623-631, 2006.

M. Yu, K. Kasai, and K. Nagashima, Exophilin4/ Slp2-a targets glucagon granules to the plasma membrane through unique Ca2?-inhibitory phospholipid-binding activity of the C2A domain, Mol Biol Cell, vol.18, pp.688-696, 2007.

G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann et al., A generic protein purification method for protein complex characterization and proteome exploration, Nat Biotechnol, vol.17, pp.1030-1032, 1999.

O. Puig, F. Caspary, and G. Rigaut, The tandem affinity purification (TAP) method: a general procedure of protein complex purification, Methods, vol.24, pp.218-229, 2001.

G. Menasche, J. Feldmann, and A. Houdusse, Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients, Blood, vol.101, pp.2736-2742, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-02440369

, Wellcome Trust Sanger. Ensembl, 2005.

, National Center for Biotechnology Information. GenBank, 2007.

, Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins, Electrophoresis, vol.21, pp.3517-3526, 2000.

, European Bioinformatics Institute. UniProtKB/ Swiss-Prot, 2003.

, European Bioinformatics Institute. TrEMBL, 2003.

E. M. Manders, R. Hoebe, J. Strackee, A. M. Vossepoel, and J. A. Aten, Largest contour segmentation: a tool for the localization of spots in confocal images, Cytometry, vol.23, pp.15-21, 1996.

M. Fukuda and T. Itoh, Slac2-a/melanophilin contains multiple PEST-like sequences that are highly sensitive to proteolysis, J Biol Chem, vol.279, pp.22314-22321, 2004.

O. Holt, E. Kanno, and G. Bossi, Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse, Traffic, vol.9, pp.446-457, 2008.

A. El-amraoui, J. S. Schonn, and P. Kussel-andermann, MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes, EMBO Rep, vol.3, pp.463-470, 2002.

T. Izumi, H. Gomi, K. Kasai, S. Mizutani, and S. Torii, The roles of Rab27 and its effectors in the regulated secretory pathways, Cell Struct Funct, vol.28, pp.465-474, 2003.

T. Tsuboi and M. Fukuda, The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex, Mol Biol Cell, vol.17, pp.2101-2112, 2006.

H. Gomi, S. Mizutani, K. Kasai, S. Itohara, and T. Izumi, Granuphilin molecularly docks insulin granules to the fusion machinery, J Cell Biol, vol.171, pp.99-109, 2005.

T. Tsuboi and M. Fukuda, The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells, J Biol Chem, vol.280, pp.39253-39259, 2005.

F. Tang, E. J. Kauffman, J. L. Novak, J. J. Nau, N. L. Catlett et al., Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole, Nature, vol.422, pp.87-92, 2003.