J. M. Shultz, Z. Espinel, M. Espinola, and A. Rechkemmer, Distinguishing epidemiological features of the 2013-2016 West Africa Ebola virus disease outbreak, Disaster Health, vol.3, pp.78-88, 2016.

J. H. Kuhn, S. Becker, H. Ebihara, T. W. Geisbert, K. M. Johnson et al., Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations, Arch. Virol, vol.155, pp.2083-2103, 2010.

R. W. Barrette, L. Xu, J. M. Rowland, and M. T. Mcintosh, Current perspectives on the phylogeny of Filoviridae, Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis, vol.11, pp.1514-1519, 2011.

C. L. Afonso, G. K. Amarasinghe, K. Bányai, Y. Bào, C. F. Basler et al., Taxonomy of the order Mononegavirales: update 2016, vol.161, pp.2351-2360, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911212

A. Sanchez, M. P. Kiley, B. P. Holloway, and D. D. Auperin, Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus, Virus Res, vol.29, pp.215-240, 1993.

L. H. Elliott, A. Sanchez, B. P. Holloway, M. P. Kiley, and J. B. Mccormick, Ebola protein analyses for the determination of genetic organization, Arch. Virol, vol.133, pp.423-436, 1993.

A. Nanbo, S. Watanabe, P. Halfmann, and Y. Kawaoka, The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells, Sci. Rep, vol.3, p.1206, 2013.

B. Martin, B. Canard, and E. Decroly, Filovirus proteins for antiviral drug discovery: structure/function bases of the replication cycle, Antiviral Res, vol.141, pp.48-61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802809

O. Poch, B. M. Blumberg, L. Bougueleret, and N. Tordo, Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains, J. Gen. Virol, vol.71, pp.1153-1162, 1990.

B. Liang, Z. Li, S. Jenni, A. A. Rahmeh, B. Morin et al., Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy, Cell, vol.162, pp.314-327, 2015.

B. Morin, B. Liang, E. Gardner, R. A. Ross, and S. P. Whelan, An in vitro RNA synthesis assay for rabies virus defines ribonucleoprotein interactions critical for polymerase activity, J. Virol, vol.91, pp.1508-1524, 2017.

G. Abraham, D. P. Rhodes, and A. K. Banerjee, The 5 terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus, Cell, vol.5, pp.51-58, 1975.

G. Abraham, D. P. Rhodes, and A. K. Banerjee, Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus, Nature, vol.255, pp.37-40, 1975.

K. C. Gupta and P. Roy, Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation, J. Virol, vol.33, pp.292-303, 1980.

S. Barik, The structure of the 5 terminal cap of the respiratory syncytial virus mRNA, J. Gen. Virol, vol.74, pp.485-490, 1993.

T. Ogino and A. K. Banerjee, The HR motif in the RNA-dependent RNA polymerase L protein of Chandipura virus is required for unconventional mRNA-capping activity, J. Gen. Virol, vol.91, pp.1311-1314, 2010.

T. Ogino and A. K. Banerjee, Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus, Mol. Cell, vol.25, pp.85-97, 2007.

G. Tekes, A. A. Rahmeh, and S. P. Whelan, A freeze frame view of vesicular stomatitis virus transcription defines a minimal length of RNA for 5 processing, PLoS Pathog, vol.7, p.1002073, 2011.

F. Ferron, S. Longhi, B. Henrissat, and B. Canard, Viral RNA-polymerases -a predicted 2 -O-ribose methyltransferase domain shared by all Mononegavirales, Trends Biochem. Sci, vol.27, pp.222-224, 2002.

J. M. Bujnicki and L. Rychlewski, In silico identification, structure prediction and phylogenetic analysis of the 2 -O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses, Protein Eng, vol.15, pp.101-108, 2002.

J. Li, E. C. Fontaine-rodriguez, and S. P. Whelan, Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity, J. Virol, vol.79, pp.13373-13384, 2005.

A. A. Rahmeh, J. Li, P. J. Kranzusch, and S. P. Whelan, Ribose 2 -O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein, J. Virol, vol.83, pp.11043-11050, 2009.

D. Testa and A. K. Banerjee, Two methyltransferase activities in the purified virions of vesicular stomatitis virus, J. Virol, vol.24, pp.786-793, 1977.

A. J. Shatkin, Capping of eucaryotic mRNAs, Cell, vol.9, pp.645-653, 1976.

E. Decroly, F. Ferron, J. Lescar, and B. Canard, Conventional and unconventional mechanisms for capping viral mRNA, Nat. Rev. Microbiol, vol.10, pp.51-65, 2011.

G. C. Paesen, A. Collet, C. Sallamand, F. Debart, J. J. Vasseur et al., , 2015.

, 15 7911 activities of an essential Mononegavirales L-protein domain, Nucleic Acids Research, vol.46, p.8749, 2018.

F. Peyrane, B. Selisko, E. Decroly, J. J. Vasseur, D. Benarroch et al., High-yield production of short GpppA-and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2'O positions, Nucleic Acids Res, vol.35, p.26, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139133

K. Barral, C. Sallamand, C. Petzold, B. Coutard, A. Collet et al., Development of specific dengue virus 2 -Oand N7-methyltransferase assays for antiviral drug screening, Antiviral Res, vol.99, pp.292-300, 2013.

B. Coutard, K. Barral, J. Lichière, B. Selisko, B. Martin et al., Zika virus Methyltransferase: Structure and functions for drug design perspectives, J. Virol, vol.91, pp.2202-2218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802793

T. Lavergne, J. R. Bertrand, J. J. Vasseur, and F. Debart, A base-labile group for 2 -OH protection of ribonucleosides: a major challenge for RNA synthesis, Chemistry, vol.14, pp.9135-9138
URL : https://hal.archives-ouvertes.fr/hal-00346580

T. Lavergne, M. Janin, C. Dupouy, J. J. Vasseur, and F. Debart, Chemical synthesis of RNA with base-labile 2 -o-(pivaloyloxymethyl)-protected ribonucleoside phosphoramidites, Curr. Protoc. Nucleic Acid Chem, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00556631

I. Zlatev, T. Lavergne, F. Debart, J. J. Vasseur, M. Manoharan et al., Efficient solid-phase chemical synthesis of 5 -triphosphates of DNA, RNA, and their analogues, Org. Lett, vol.12, pp.2190-2193, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519477

Y. Thillier, E. Decroly, F. Morvan, B. Canard, J. Vasseur et al., Synthesis of 5 cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-N 7 )-methyltransferase, RNA, vol.18, pp.856-868, 2012.

H. Dong, D. C. Chang, M. H. Hua, S. P. Lim, Y. H. Chionh et al., ) 2 -O methylation of internal adenosine by flavivirus NS5 methyltransferase, PLoS Pathog, vol.8, p.1002642, 2012.

T. Ogino, M. Kobayashi, M. Iwama, and K. Mizumoto, Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA, J. Biol. Chem, vol.280, pp.4429-4435, 2005.

M. Bouvet, C. Debarnot, I. Imbert, B. Selisko, E. J. Snijder et al., In vitro reconstitution of SARS-coronavirus mRNA cap methylation, PLoS Pathog, vol.6, p.1000863, 2010.

E. Decroly, C. Debarnot, F. Ferron, M. Bouvet, B. Coutard et al., Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2 -O-methyltransferase nsp10/nsp16 complex, PLoS Pathog, vol.7, p.1002059, 2011.

H. Dong, D. Ray, S. Ren, B. Zhang, F. Puig-basagoiti et al., Distinct RNA elements confer specificity to flavivirus RNA cap methylation events, J. Virol, vol.81, pp.4412-4421, 2007.

K. Y. Chung, H. Dong, A. T. Chao, P. Y. Shi, J. Lescar et al., Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2 -O methyltransferase activity in dengue virus, Virology, vol.402, pp.52-60, 2010.

K. Barral, C. Sallamand, C. Petzold, B. Coutard, A. Collet et al., Development of specific dengue virus 2 -O-and N7-methyltransferase assays for antiviral drug screening, Antiviral Res, vol.99, pp.292-300, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00874640

G. Hu, A. Oguro, C. Li, P. D. Gershon, and F. A. Quiocho, The 'cap-binding slot' of an mRNA cap-binding protein: quantitative effects of aromatic side chain choice in the double-stacking sandwich with cap, Biochemistry (Mosc.), vol.41, pp.7677-7687, 2002.

M. Egloff, E. Decroly, H. Malet, B. Selisko, D. Benarroch et al., Structural and functional analysis of methylation and 5 -RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5, J. Mol. Biol, vol.372, pp.723-736, 2007.

Y. Zhou, D. Ray, Y. Zhao, H. Dong, S. Ren et al., Structure and function of flavivirus NS5 methyltransferase, J. Virol, vol.81, pp.3891-3903, 2007.

H. Dong, D. C. Chang, X. Xie, Y. X. Toh, K. Y. Chung et al., Biochemical and genetic characterization of dengue virus methyltransferase, Virology, vol.405, pp.568-578, 2010.

D. Ray, A. Shah, M. Tilgner, Y. Guo, Y. Zhao et al., West Nile virus 5 -cap structure is formed by sequential guanine N-7 and ribose 2 -O methylations by nonstructural protein 5, J. Virol, vol.80, pp.8362-8370, 2006.

M. Egloff, D. Benarroch, B. Selisko, J. Romette, and B. Canard, An RNA cap (nucleoside-2 -O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, EMBO J, vol.21, pp.2757-2768, 2002.

C. Fabrega, S. Hausmann, V. Shen, S. Shuman, and C. D. Lima, Structure and mechanism of mRNA cap (guanine-N7) methyltransferase, Mol. Cell, vol.13, pp.77-89, 2004.

A. E. Hodel, P. D. Gershon, and F. A. Quiocho, Structural basis for sequence-nonspecific recognition of 5 -capped mRNA by a cap-modifying enzyme, Mol. Cell, vol.1, pp.443-447, 1998.

J. Hager, B. L. Staker, H. Bugl, and U. Jakob, Active site in RrmJ, a heat shock-induced methyltransferase, J. Biol. Chem, vol.277, pp.41978-41986, 2002.

E. Decroly, I. Imbert, B. Coutard, M. Bouvet, B. Selisko et al., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity, J. Virol, vol.82, pp.8071-8084, 2008.

W. Aouadi, A. Blanjoie, J. J. Vasseur, F. Debart, B. Canard et al., Binding of the methyl donor S-Adenosyl-l-Methionine to middle east respiratory syndrome coronavirus 2 -O-Methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10, J. Virol, vol.91, pp.2217-2233, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802788

W. Mcintyre, R. Netzband, G. Bonenfant, J. M. Biegel, C. Miller et al., Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection, Nucleic Acids Res, vol.46, pp.5776-5791, 2018.

Z. Yuan, W. Guo, J. Yang, L. Li, M. Wang et al., PNAS-4, an early DNA damage response gene, induces S phase arrest and apoptosis by activating checkpoint kinases in lung cancer cells, J. Biol. Chem, vol.290, pp.14927-14944, 2015.

K. Y. Chang and G. Varani, Nucleic acids structure and recognition, Nat. Struct. Biol, vol.4, pp.854-858, 1997.

R. G. Tawar, S. Duquerroy, C. Vonrhein, P. F. Varela, L. Damier-piolle et al., Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus, Science, vol.326, pp.1279-1283, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00457523

K. Karikó, M. Buckstein, H. Ni, and D. Weissman, Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA, Immunity, vol.23, pp.165-175, 2005.

R. Züst, L. Cervantes-barragan, M. Habjan, R. Maier, B. W. Neuman et al., Ribose 2 -O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol, vol.12, pp.137-143, 2011.

C. Schuberth-wagner, J. Ludwig, A. K. Bruder, A. M. Herzner, T. Zillinger et al., A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2'O-Methylated self RNA, Immunity, vol.43, pp.41-51, 2015.

S. C. Devarkar, C. Wang, M. T. Miller, A. Ramanathan, F. Jiang et al., Structural basis for m7G recognition and 2 -O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.596-601, 2016.

S. Daffis, K. J. Szretter, J. Schriewer, J. Li, S. Youn et al., ) 2 -O methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature, vol.468, pp.452-456, 2010.

P. Kumar, T. R. Sweeney, M. A. Skabkin, O. V. Skabkina, C. U. Hellen et al., Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5 -terminal regions of cap0-, cap1-and 5 ppp-mRNAs, Nucleic Acids Res, vol.42, pp.3228-3245, 2014.

R. S. Shabman, O. J. Jabado, C. E. Mire, T. B. Stockwell, M. Edwards et al., Deep sequencing identifies noncanonical editing of Ebola and Marburg virus RNAs in infected cells, mBio, vol.5, p.2011, 2014.

T. Brody, A. S. Yavatkar, D. S. Park, A. Kuzin, J. Ross et al., Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution, PLoS Negl. Trop. Dis, vol.11, p.5673, 2017.

H. Y. Yi-brunozzi, L. M. Easterwood, G. M. Kamilar, and P. A. Beal, Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2, Nucleic Acids Res, vol.27, pp.2912-2917, 1999.

W. Tao, T. Gan, M. Guo, Y. Xu, and J. Zhong, Novel stable ebola virus minigenome replicon reveals remarkable stability of the viral genome, J. Virol, vol.91, pp.1316-1333, 2017.

S. P. Reid, C. Valmas, O. Martinez, F. M. Sanchez, and C. F. Basler, Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1, J. Virol, vol.81, pp.13469-13477, 2007.

W. Xu, M. R. Edwards, D. M. Borek, A. R. Feagins, A. Mittal et al., Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1, Cell Host Microbe, vol.16, pp.187-200, 2014.