J. D. Brooks, Translational genomics: the challenge of developing cancer biomarkers, Genome Res, vol.22, pp.183-187, 2012.

C. L. Sawyers, The cancer biomarker problem, Nature, vol.452, pp.548-552, 2008.

B. G. Blair, A. Bardelli, and B. H. Park, Somatic alterations as the basis for resistance to targeted therapies, J. Pathol, vol.232, pp.244-254, 2014.

M. Martini, L. Vecchione, S. Siena, S. Tejpar, and A. Bardelli, Targeted therapies: how personal should we go?, Nat. Rev. Clin. Oncol, vol.9, pp.87-97, 2012.

T. Lecomte, A. Berger, F. Zinzindohoue, S. Micard, B. Landi et al., Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis, Int. J. Cancer, vol.100, pp.542-548, 2002.

R. Williams, S. G. Peisajovich, O. J. Miller, S. Magdassi, D. S. Tawfik et al., Amplification of complex gene libraries by emulsion PCR, Nat. Methods, vol.3, pp.545-550, 2006.

F. Diehl and L. A. Diaz, Digital quantification of mutant DNA in cancer patients, Curr. Opin. Oncol, vol.19, pp.36-42, 2007.

J. Shuga, Y. Zeng, R. Novak, R. A. Mathies, P. Hainaut et al., Selected technologies for measuring acquired genetic damage in humans, Environ. Mol. Mutagen, vol.51, pp.851-870, 2010.

B. Vogelstein and K. W. Kinzler, Digital PCR, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.9236-9241, 1999.

K. Perez-toralla, D. Pekin, J. F. Bartolo, F. Garlan, P. Nizard et al., Digital PCR compartmentalization I. Single-molecule detection of rare mutations, Med. Sci, pp.84-92, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02299576

A. Lievre, J. B. Bachet, V. Boige, A. Cayre, D. Le-corre et al., KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab, J. Clin. Oncol, vol.26, pp.374-379, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00363737

L. Simi, N. Pratesi, M. Vignoli, R. Sestini, F. Cianchi et al., High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer, Am. J. Clin. Pathol, vol.130, pp.247-253, 2008.

W. Weichert, C. Schewe, A. Lehmann, C. Sers, C. Denkert et al., KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology, J. Mol. Diagn, vol.12, pp.35-42, 2010.

V. Taly, D. Pekin, A. E. Abed, and P. Laurent-puig, Detecting biomarkers with microdroplet technology, Trends Mol. Med, vol.18, pp.405-416, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02299585

O. Caen, P. Nizard, S. Garrigou, K. Perez-toralla, E. Zonta et al., Digital PCR compartmentalization II. Contribution for the quantitative detection of circulating tumor DNA, Med. Sci, pp.180-186, 2015.

M. Baker, Digital PCR hits its stride, vol.9, pp.541-544, 2012.

P. J. Sykes, S. H. Neoh, M. J. Brisco, E. Hughes, J. Condon et al., Quantitation of targets for PCR by use of limiting dilution, Biotechniques, vol.13, pp.444-449, 1992.

P. Simmonds, P. Balfe, J. F. Peutherer, C. A. Ludlam, J. O. Bishop et al., Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers, J. Virol, vol.64, pp.864-872, 1990.

Y. Liu, A. M. Hernandez, D. Shibata, and G. A. Cortopassi, BCL2 translocation frequency rises with age in humans, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.8910-8914, 1994.

M. Trippler, K. H. Meyer-zum-buschenfelde, and G. Gerken, HBV viral load within subpopulations of peripheral blood mononuclear cells in HBV infection using limiting dilution PCR, J. Virol. Methods, vol.78, pp.129-147, 1999.

A. G. Rodrigo, P. C. Goracke, K. Rowhanian, and J. I. Mullins, Quantitation of target molecules from polymerase chain reaction-based limiting dilution assays, AIDS Res. Hum. Retroviruses, vol.13, pp.737-742, 1997.

G. Traverso, A. Shuber, L. Olsson, B. Levin, C. Johnson et al., Detection of proximal colorectal cancers through analysis of faecal DNA, Lancet, vol.359, pp.403-404, 2002.

G. Pohl and M. Shih-ie, Principle and applications of digital PCR, Expert Rev. Mol. Diagn, vol.4, pp.41-47, 2004.

I. M. Shih, W. Zhou, S. N. Goodman, C. Lengauer, K. W. Kinzler et al., Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis, Cancer Res, vol.61, pp.818-822, 2001.

W. Zhou, G. Galizia, E. Lieto, S. N. Goodman, K. E. Romans et al., Counting alleles reveals a connection between chromosome 18q loss and vascular invasion, Nat. Biotechnol, vol.19, pp.78-81, 2001.

W. Zhou, S. N. Goodman, G. Galizia, E. Lieto, F. Ferraraccio et al., Counting alleles to predict recurrence of early-stage colorectal cancers, Lancet, vol.359, pp.219-225, 2002.

G. Singer, R. J. Kurman, H. W. Chang, S. K. Cho, and M. Shih-ie, Diverse tumorigenic pathways in ovarian serous carcinoma, Am. J. Pathol, vol.160, pp.1223-1228, 2002.

G. Singer, R. Oldt-3rd, Y. Cohen, B. G. Wang, D. Sidransky et al., Shih Ie, Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma, J. Natl. Cancer Inst, vol.95, pp.484-486, 2003.

I. M. Shih, T. L. Wang, G. Traverso, K. Romans, S. R. Hamilton et al., Top-down morphogenesis of colorectal tumors, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.2640-2645, 2001.

H. Yan, Z. Dobbie, S. B. Gruber, S. Markowitz, K. Romans et al., Small changes in expression affect predisposition to tumorigenesis, Nat. Genet, vol.30, pp.25-26, 2002.

H. W. Chang, S. M. Lee, S. N. Goodman, G. Singer, S. K. Cho et al., Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer, J. Natl. Cancer Inst, vol.94, pp.1697-1703, 2002.

H. W. Chang, S. Z. Ali, S. K. Cho, R. J. Kurman, and M. Shih-ie, Detection of allelic imbalance in ascitic supernatant by digital single nucleotide polymorphism analysis, Clin. Cancer Res, vol.8, pp.2580-2585, 2002.

R. J. Davies, R. Miller, and N. Coleman, Colorectal cancer screening: prospects for molecular stool analysis, Nat. Rev. Cancer, vol.5, pp.199-209, 2005.

L. Benhaim, K. Maley, D. Le-corre, H. Blons, V. Taly et al., KRAS mutation detection trap, J. Clin. Oncol, vol.29, pp.208-209, 2011.

D. Santini, S. Galluzzo, L. Gaeta, A. Zoccoli, E. Riva et al., Should oncologists be aware in their clinical practice of K-ras molecular analysis?, J. Clin. Oncol, vol.29, pp.206-207, 2011.

J. C. Baret, V. Taly, M. Ryckelynck, C. A. Merten, and A. D. Griffiths, Droplets and emulsions: very high-throughput screening in biology, Med. Sci, pp.627-632, 2009.

A. Dove, Drug screening-beyond the bottleneck, Nat. Biotechnol, vol.17, pp.859-863, 1999.

J. Baret and V. Taly, Unravelling More of Cell Genomics: Let's Use the Micro and Nanotools!, pp.261-284, 2010.

C. Zhang and D. Xing, Single-molecule DNA amplification and analysis using microfluidics, Chem. Rev, vol.110, pp.4910-4947, 2010.

T. Morrison, J. Hurley, J. Garcia, K. Yoder, A. Katz et al., Nanoliter high throughput quantitative PCR, vol.34, p.123, 2006.

F. Shen, W. B. Du, E. K. Davydova, M. A. Karymov, J. Pandey et al., Nanoliter multiplex PCR arrays on a SlipChip, vol.82, pp.4606-4612, 2010.

J. H. Leamon, W. L. Lee, K. R. Tartaro, J. R. Lanza, G. J. Sarkis et al., A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions, Electrophoresis, vol.24, pp.3769-3777, 2003.

B. T. Kelly, J. C. Baret, V. Taly, and A. D. Griffiths, Miniaturizing chemistry and biology in microdroplets, Chem. Commun. (Camb.), vol.14, pp.1773-1788, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02148777

V. Taly, B. T. Kelly, and A. D. Griffiths, Droplets as microreactors for high-throughput biology, Chembiochem, vol.8, pp.263-272, 2007.

H. V. Chetverina and A. B. Chetverin, Cloning of RNA molecules in vitro, Nucleic Acids Res, vol.21, pp.2349-2353, 1993.

R. D. Mitra and G. M. Church, In situ localized amplification and contact replication of many individual DNA molecules, Nucleic Acids Res, p.27, 1999.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic large-scale integration, Science, vol.298, pp.580-584, 2002.

L. Warren, D. Bryder, I. L. Weissman, and S. R. Quake, Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.17807-17812, 2006.

T. K. Yung, K. C. Chan, T. S. Mok, J. Tong, K. F. To et al., Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients, Clin. Cancer Res, vol.15, pp.2076-2084, 2009.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg et al., Single-cell dissection of transcriptional heterogeneity in human colon tumors, Nat. Biotechnol, vol.29, pp.1120-1127, 2011.

M. Ennen, C. Keime, D. Kobi, G. Mengus, D. Lipsker et al., Single-cell gene expression signatures reveal melanoma cell heterogeneity, Oncogene, vol.34, pp.3251-3263, 2015.

L. A. Henriquez-hernandez, A. Valenciano, E. Herrera-ramos, M. Lloret, A. Riveros-perez et al., High-throughput genotyping system as a robust and useful tool in oncology: experience from a single institution, Biologicals, vol.41, pp.424-429, 2013.

J. Hudson, E. Duncavage, A. Tamburrino, P. Salerno, L. Xi et al., Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma, Exp. Mol. Pathol, vol.95, pp.62-67, 2013.

F. Shen, W. Du, J. E. Kreutz, A. Fok, and R. F. Ismagilov, Digital PCR on a SlipChip, vol.10, pp.2666-2672, 2010.

D. S. Tawfik and A. D. Griffiths, Man-made cell-like compartments for molecular evolution, Nat. Biotechnol, vol.16, pp.652-656, 1998.

J. Lederberg, A simple method for isolating individual microbes, J. Bacteriol, vol.68, pp.258-259, 1954.

B. Rotman, Measurement of activity of single molecules of beta-D-galactosidase, Proc. Natl. Acad. Sci. U.S.A, vol.47, pp.1981-1991, 1961.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, Droplet microfluidics for highthroughput biological assays, Lab Chip, vol.12, pp.2146-2155, 2012.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell et al., Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew. Chem. Int. Ed. Engl, vol.49, pp.5846-5868, 2010.

S. Vyawahare, A. D. Griffiths, C. A. Merten-;-r.-dangla, S. C. Kayi, and C. N. Baroud, Miniaturization and parallelization of biological and chemical assays in microfluidic devices, Proc Natl Acad Sci, vol.17, pp.853-858, 2010.

J. Madic, A. Zocevic, V. Senlis, E. Fradet, B. Andre et al., Three-color crystal digital PCR, Biomol. Detect. Quantif, 2016.

M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader et al., Genome sequencing in microfabricated high-density picolitre reactors, vol.437, pp.376-380, 2005.

J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. Mccutcheon et al., Accurate multiplex polony sequencing of an evolved bacterial genome, Science, vol.309, pp.1728-1732, 2005.

J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski et al., An integrated semiconductor device enabling non-optical genome sequencing, Nature, vol.475, pp.348-352, 2011.

E. H. Turner, S. B. Ng, D. A. Nickerson, and J. Shendure, Methods for genomic partitioning, Annu. Rev. Genomics Hum. Genet, vol.10, pp.263-284, 2009.

D. Dressman, H. Yan, G. Traverso, K. W. Kinzler, and B. Vogelstein, Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.8817-8822, 2003.

M. Li, F. Diehl, D. Dressman, B. Vogelstein, and K. W. Kinzler, BEAMing up for detection and quantification of rare sequence variants, Nat. Methods, vol.3, pp.95-97, 2006.

F. Diehl, M. Li, D. Dressman, Y. He, D. Shen et al., Detection and quantification of mutations in the plasma of patients with colorectal tumors, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16368-16373, 2005.

F. Diehl, K. Schmidt, M. A. Choti, K. Romans, S. Goodman et al., Circulating mutant DNA to assess tumor dynamics, Nat. Med, vol.14, pp.985-990, 2008.

F. Diehl, K. Schmidt, K. H. Durkee, K. J. Moore, S. N. Goodman et al., Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients, Gastroenterology, vol.135, pp.489-498, 2008.

C. Bettegowda, M. Sausen, R. J. Leary, I. Kinde, Y. Wang et al., Sci. Transl. Med, vol.6, pp.224-224, 2014.

F. Janku, P. Angenendt, A. M. Tsimberidou, S. Fu, A. Naing et al., Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies, Oncotarget, vol.6, pp.12809-12821, 2015.

M. J. Higgins, D. Jelovac, E. Barnathan, B. Blair, S. A. Slater et al., Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood, Clin. Cancer Res, vol.18, pp.3462-3469, 2012.

S. Misale, R. Yaeger, S. Hobor, E. Scala, M. Janakiraman et al., Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer, Nature, vol.486, pp.532-536, 2012.

G. Siravegna, B. Mussolin, M. Buscarino, G. Corti, A. Cassingena et al., Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients, Nat. Med, vol.21, pp.795-801, 2015.

K. Taniguchi, J. Uchida, K. Nishino, T. Kumagai, T. Okuyama et al., Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas, Clin. Cancer Res, vol.17, pp.7808-7815, 2011.

M. Li, W. D. Chen, N. Papadopoulos, S. N. Goodman, N. C. Bjerregaard et al., Sensitive digital quantification of DNA methylation in clinical samples, Nat. Biotechnol, vol.27, pp.858-863, 2009.

F. Diehl, M. Li, Y. He, K. W. Kinzler, B. Vogelstein et al., BEAMing: singlemolecule PCR on microparticles in water-in-oil emulsions, Nat. Methods, vol.3, pp.551-559, 2006.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

D. Eicher and C. A. Merten, Microfluidic devices for diagnostic applications, Expert Rev. Mol. Diagn, vol.11, pp.505-519, 2011.

O. J. Dressler, R. M. Maceiczyk, S. I. Chang, and A. J. Demello, Droplet-based microfluidics: enabling impact on drug discovery, J. Biomol. Screen, vol.19, pp.483-496, 2014.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, vol.8, pp.198-220, 2008.

J. C. Baret, Surfactants in droplet-based microfluidics, Lab Chip, vol.12, pp.422-433, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148769

T. B. Morrison, J. J. Weis, and C. T. Wittwer, Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification, Biotechniques, vol.24, p.962, 1998.

P. M. Holland, R. D. Abramson, R. Watson, and D. H. Gelfand, Detection of specific polymerase chain reaction product by utilizing the 5'--3' exonuclease activity of Thermus aquaticus DNA polymerase, Proc. Natl. Acad. Sci. U.S.A, vol.88, pp.7276-7280, 1991.

Y. Schaerli and F. Hollfelder, The potential of microfluidic water-in-oil droplets in experimental biology, Mol. Biosyst, vol.5, pp.1392-1404, 2009.

H. Zec, D. J. Shin, and T. H. Wang, Novel droplet platforms for the detection of disease biomarkers, Expert Rev. Mol. Diagn, vol.14, pp.787-801, 2014.

M. G. Pollack, V. K. Pamula, V. Srinivasan, and A. E. Eckhardt, Applications of electrowetting-based digital microfluidics in clinical diagnostics, Expert Rev. Mol. Diagn, vol.11, pp.393-407, 2011.

M. M. Kiss, L. Ortoleva-donnelly, N. R. Beer, J. Warner, C. G. Bailey et al., High-throughput quantitative polymerase chain reaction in picoliter droplets, Anal. Chem, vol.80, pp.8975-8981, 2008.

Y. Schaerli, R. C. Wootton, T. Robinson, V. Stein, C. Dunsby et al., Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets, Anal. Chem, vol.81, pp.302-306, 2009.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose et al., On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal. Chem, vol.79, pp.8471-8475, 2007.

N. R. Beer, E. K. Wheeler, L. Lee-houghton, N. Watkins, S. Nasarabadi et al., On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets, Anal. Chem, vol.80, pp.1854-1858, 2008.

A. C. Hatch, J. S. Fisher, A. R. Tovar, A. T. Hsieh, R. Lin et al., 1-Million droplet array with wide-field fluorescence imaging for digital PCR, Lab Chip, vol.11, pp.3838-3845, 2011.

A. C. Hatch, J. S. Fisher, S. L. Pentoney, D. L. Yang, and A. P. Lee, Tunable 3D droplet selfassembly for ultra-high-density digital micro-reactor arrays, Lab Chip, vol.11, pp.2509-2517, 2011.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le-corre, L. Mazutis et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab Chip, vol.11, pp.2156-2166, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02148770

Q. Zhong, S. Bhattacharya, S. Kotsopoulos, J. Olson, V. Taly et al., Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR, Lab Chip, vol.11, pp.2167-2174, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02299588

M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura et al., Singlemolecule PCR using water-in-oil emulsion, J. Biotechnol, vol.102, pp.117-124, 2003.

M. Curcio and J. Roeraade, Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification, Anal. Chem, vol.75, pp.1-7, 2003.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. De-cremoux et al., Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications, Anal. Chem, vol.77, pp.3700-3704, 2005.

B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia et al., High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, vol.83, pp.8604-8610, 2011.

V. Taly, D. Pekin, L. Benhaim, S. K. Kotsopoulos, D. Le-corre et al., Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients, Clin. Chem, vol.59, pp.1722-1731, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02299581

A. Didelot, S. K. Kotsopoulos, A. Lupo, D. Pekin, X. Li et al., Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples, Clin. Chem, vol.59, pp.815-823, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02299583

P. Laurent-puig, D. Pekin, C. Normand, S. K. Kotsopoulos, P. Nizard et al., Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy, Clin. Cancer Res, vol.21, pp.1087-1097, 2015.

R. H. Sedlak, J. Kuypers, and K. R. Jerome, A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples, Diagn. Microbiol. Infect. Dis, vol.80, pp.285-286, 2014.

G. P. Mcdermott, D. Do, C. M. Litterst, D. Maar, C. M. Hindson et al., Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR, Anal. Chem, vol.85, pp.11619-11627, 2013.

L. Miotke, B. T. Lau, R. T. Rumma, and H. P. Ji, High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR, Anal. Chem, vol.86, pp.2618-2624, 2014.

J. Li and G. M. Makrigiorgos, COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing, Biochem. Soc. Trans, vol.37, pp.427-432, 2009.

J. Li, C. A. Milbury, C. Li, and G. M. Makrigiorgos, Two-round coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma, Hum. Mutat, vol.30, pp.1583-1590, 2009.

J. Li, L. Wang, H. Mamon, M. H. Kulke, R. Berbeco et al., Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing, Nat. Med, vol.14, pp.579-584, 2008.

E. Castellanos-rizaldos, C. Paweletz, C. Song, G. R. Oxnard, H. Mamon et al., Enhanced ratio of signals enables digital mutation scanning for rare allele detection, J. Mol. Diagn, vol.17, pp.284-292, 2015.

J. F. Huggett, C. A. Foy, V. Benes, K. Emslie, J. A. Garson et al., The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments, Clin. Chem, vol.59, pp.892-902, 2013.

C. A. Milbury, Q. Zhong, J. Lin, M. Williams, J. Olson et al., Determining lower limits of detection of digital PCR assays for cancer-related gene mutations, BDQ, vol.1, pp.8-22, 2014.

R. H. Sedlak and K. R. Jerome, Viral diagnostics in the era of digital polymerase chain reaction, Diagn. Microbiol. Infect. Dis, vol.75, pp.1-4, 2013.

J. F. Huggett, S. Cowen, and C. A. Foy, Considerations for digital PCR as an accurate molecular diagnostic tool, Clin. Chem, vol.61, pp.79-88, 2015.

J. F. Huggett and A. Whale, Digital PCR as a novel technology and its potential implications for molecular diagnostics, Clin. Chem, vol.59, pp.1691-1693, 2013.

I. Hudecova, Digital PCR analysis of circulating nucleic acids, Clin. Biochem, vol.48, pp.948-956, 2015.

G. J. Liao, A. M. Gronowski, and Z. Zhao, Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation, Clin. Chim. Acta, vol.428, pp.44-50, 2014.

R. Sedlak and K. R. Jerome, The potential advantages of digital PCR for clinical virology diagnostics, Expert Rev. Mol. Diagn, vol.14, pp.501-507, 2014.

W. Brugger and M. Thomas, EGFR-TKI resistant non-small cell lung cancer (NSCLC): new developments and implications for future treatment, Lung Cancer, vol.77, pp.2-8, 2012.

C. Ma, S. Wei, and Y. Song, T790M and acquired resistance of EGFR TKI: a literature review of clinical reports, J. Thorac. Dis, vol.3, pp.10-18, 2011.

J. A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science, vol.316, pp.1039-1043, 2007.

S. Kobayashi, T. J. Boggon, T. Dayaram, P. A. Janne, O. Kocher et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib, N. Engl. J. Med, vol.352, pp.786-792, 2005.

A. B. Turke, K. Zejnullahu, Y. L. Wu, Y. Song, D. Dias-santagata et al., Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC, Cancer Cell, vol.17, pp.77-88, 2010.

H. Li, H. Hu, R. Wang, Y. Pan, L. Wang et al., Primary concomitant EGFR T790M mutation predicted worse prognosis in non-small cell lung cancer patients, Onco. Targets Ther, vol.7, pp.513-524, 2014.

H. A. Yu, M. E. Arcila, M. D. Hellmann, M. G. Kris, M. Ladanyi et al., Poor response to erlotinib in patients with tumors containing baseline EGFR T790M mutations found by routine clinical molecular testing, Ann. Oncol, vol.25, pp.423-428, 2014.

Y. Fujita, K. Suda, H. Kimura, K. Matsumoto, T. Arao et al., Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation, J. Thorac. Oncol, vol.7, pp.1640-1644, 2012.

R. Rosell, M. A. Molina, C. Costa, S. Simonetti, A. Gimenez-capitan et al., Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations, Clin. Cancer Res, vol.17, pp.1160-1168, 2011.

M. Watanabe, T. Kawaguchi, S. I. Isa, M. Ando, A. Tamiya et al., Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR, Clin. Cancer Res, vol.21, pp.3552-3560, 2015.

A. A. Tone, M. K. Mcconechy, W. Yang, J. Ding, S. Yip et al., Intratumoral heterogeneity in a minority of ovarian low-grade serous carcinomas, BMC Cancer, vol.14, p.982, 2014.

M. C. Ravnan and M. S. Matalka, Vemurafenib in patients with BRAF V600E mutationpositive advanced melanoma, Clin. Ther, vol.34, pp.1474-1486, 2012.

P. B. Chapman, A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation, vol.364, pp.2507-2516, 2011.

G. A. Mcarthur, P. B. Chapman, C. Robert, J. Larkin, J. B. Haanen et al., Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study, Lancet Oncol, vol.15, pp.323-332, 2014.

P. Lamy, F. Castan, N. Lozano, C. Montelion, P. Audran et al., Next-generation genotyping by digital PCR to detect and quantify the BRAF V600E mutation in melanoma biopsies, J. Mol. Diagn, vol.17, pp.366-373, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02287121

D. J. Eastburn, A. Sciambi, and A. R. Abate, Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops, Anal. Chem, vol.85, pp.8016-8021, 2013.

J. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El-harrak et al., Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity, Lab Chip, vol.9, pp.1850-1858, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148757

D. J. Eastburn, A. Sciambi, and A. R. Abate, Identification and genetic analysis of cancer cells with PCR-activated cell sorting, Nucleic Acids Res, vol.42, p.128, 2014.

E. Crowley, F. D. Nicolantonio, F. Loupakis, and A. Bardelli, Liquid biopsy: monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol, vol.10, pp.472-484, 2013.

M. Van-der, P. J. Vaart, and . Pretorius, Is the role of circulating DNA as a biomarker of cancer being prematurely overrated?, Clin. Biochem, vol.43, pp.26-36, 2010.

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance, Mutat. Res, vol.635, pp.105-117, 2007.

S. Jahr, H. Hentze, S. Englisch, D. Hardt, F. O. Fackelmayer et al., DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells, Cancer Res, vol.61, pp.1659-1665, 2001.

H. Schwarzenbach, D. S. Hoon, and K. Pantel, Cell-free nucleic acids as biomarkers in cancer patients, Nat. Rev. Cancer, vol.11, pp.426-437, 2011.

A. Bardelli, S. Corso, A. Bertotti, S. Hobor, E. Valtorta et al., Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer, Cancer Discov, vol.3, pp.658-673, 2013.

D. L. Robertson and G. F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, vol.344, pp.467-468, 1990.

P. L. Bedard, A. R. Hansen, M. J. Ratain, and L. L. Siu, Tumour heterogeneity in the clinic, Nature, vol.501, pp.355-364, 2013.

M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, N. Engl. J. Med, vol.366, pp.883-892, 2012.

G. R. Oxnard, C. P. Paweletz, Y. Kuang, S. L. Mach, A. O'connell et al., Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative nextgeneration genotyping of cell-free plasma DNA, Clin. Cancer Res, vol.20, pp.1698-1705, 2014.

S. J. Dawson, D. W. Tsui, M. Murtaza, H. Biggs, O. M. Rueda et al., Analysis of circulating tumor DNA to monitor metastatic breast cancer, N. Engl. J. Med, vol.368, pp.1199-1209, 2013.

H. Gevensleben, I. Garcia-murillas, M. K. Graeser, G. Schiavon, P. Osin et al., Noninvasive detection of HER2 amplification with plasma DNA digital PCR, Clin. Cancer Res, vol.19, pp.3276-3284, 2013.

T. Reinert, L. V. Scholer, R. Thomsen, H. Tobiasen, S. Vang et al., Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery, Gut, vol.65, pp.625-634, 2015.

S. , C. Tsao, J. Weiss, C. Hudson, C. Christophi et al., Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations, Sci. Rep, vol.5, p.11198, 2015.

M. F. Sanmamed, S. Fernandez-landazuri, C. Rodriguez, R. Zarate, M. D. Lozano et al., Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the followup of patients with melanoma being treated with BRAF inhibitors, Clin. Chem, vol.61, pp.297-304, 2015.

A. L. Reid, J. B. Freeman, M. Millward, M. Ziman, and E. S. Gray, Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR, Clin. Biochem, vol.48, pp.999-1002, 2015.

M. Versluis, M. J. De-lange, S. I. Van-pelt, C. A. Ruivenkamp, W. G. Kroes et al., Digital PCR validates 8q dosage as prognostic tool in uveal melanoma, vol.10, p.116371, 2015.

H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins et al., Mutations of the BRAF gene in human cancer, vol.417, pp.949-954, 2002.

E. S. Gray, H. Rizos, A. L. Reid, S. C. Boyd, M. R. Pereira et al., Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma, Oncotarget, vol.6, pp.42008-42018, 2015.

J. A. Beaver, D. Jelovac, S. Balukrishna, R. L. Cochran, S. Croessmann et al., Detection of cancer DNA in plasma of patients with early-stage breast cancer, Clin. Cancer Res, vol.20, pp.2643-2650, 2014.

E. Olsson, C. Winter, A. George, Y. Chen, J. Howlin et al., Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease, EMBO Mol. Med, vol.7, pp.1034-1047, 2015.

J. F. Emile, E. L. Diamond, Z. Helias-rodzewicz, F. Cohen-aubart, F. Charlotte et al., Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease, vol.124, pp.3016-3019, 2014.

B. Hervier, J. Haroche, L. Arnaud, F. Charlotte, J. Donadieu et al., Histiocytoses Study, Association of both Langerhans cell histiocytosis and ErdheimChester disease linked to the BRAFV600E mutation, Blood, vol.124, pp.1119-1126, 2014.

D. M. Hyman, E. L. Diamond, C. R. Vibat, L. Hassaine, J. C. Poole et al., Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders, Cancer Discov, vol.5, pp.64-71, 2015.

F. Janku, C. R. Vibat, K. Kosco, V. R. Holley, G. Cabrilo et al., BRAF V600E mutations in urine and plasma cell-free DNA from patients with Erdheim-Chester disease, Oncotarget, vol.5, pp.3607-3610, 2014.

E. L. Kwak, L. G. Ahronian, G. Siravegna, B. Mussolin, J. T. Godfrey et al., Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-amplified esophagogastric cancer, Cancer Discov, vol.5, pp.1271-1281, 2015.

C. M. Croce, Causes and consequences of microRNA dysregulation in cancer, Nat. Rev. Genet, vol.10, pp.704-714, 2009.

V. and A. , microRNAs: tiny regulators with great potential, vol.107, pp.823-826, 2001.

H. Corte, G. Manceau, H. Blons, and P. Laurent-puig, MicroRNA and colorectal cancer, Dig. Liver Dis, vol.44, pp.195-200, 2012.

A. W. Wark, H. J. Lee, and R. M. Corn, Multiplexed detection methods for profiling microRNA expression in biological samples, Angew. Chem. Int. Ed. Engl, vol.47, pp.644-652, 2008.

K. Zen and C. Y. Zhang, Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers, Med. Res. Rev, vol.32, pp.326-348, 2012.

E. Miotto, E. Saccenti, L. Lupini, E. Callegari, M. Negrini et al., Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen-and TaqMan-based chemistries, Cancer Epidemiol. Biomarkers Prev, vol.23, pp.2638-2642, 2014.

A. Mangolini, M. Ferracin, M. V. Zanzi, E. Saccenti, S. O. Ebnaof et al., Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR, Biomark. Res, vol.3, p.12, 2015.

M. Ferracin, L. Lupini, I. Salamon, E. Saccenti, M. V. Zanzi et al., Absolute quantification of cell-free microRNAs in cancer patients, Oncotarget, vol.6, pp.14545-14555, 2015.

N. Li, J. Ma, M. A. Guarnera, H. Fang, L. Cai et al., Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer, J. Cancer Res. Clin. Oncol, vol.140, pp.145-150, 2014.

J. Ma, N. Li, M. Guarnera, and F. Jiang, Quantification of plasma miRNAs by digital PCR for cancer diagnosis, Biomark. Insights, vol.8, pp.127-136, 2013.

P. Wang, F. Jing, G. Li, Z. Wu, Z. Cheng et al., Absolute quantification of lung cancer related microRNA by droplet digital PCR, Biosens. Bioelectron, vol.74, pp.836-842, 2015.

K. Zhang, D. Kang, M. M. Ali, L. Liu, L. Labanieh et al., Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection, Lab Chip, vol.15, pp.4217-4226, 2015.

S. Jia, D. Zocco, M. L. Samuels, M. F. Chou, R. Chammas et al., Emerging technologies in extracellular vesicle-based molecular diagnostics, Expert Rev. Mol. Diagn, vol.14, pp.307-321, 2014.

W. W. Chen, L. Balaj, L. M. Liau, M. L. Samuels, S. K. Kotsopoulos et al., BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles, Mol. Ther. Nucleic Acids, vol.2, 2013.

D. A. Armstrong, B. B. Green, J. D. Seigne, A. R. Schned, and C. J. Marsit, MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer, Mol. Cancer, vol.14, p.194, 2015.

T. Wittenberger, S. Sleigh, D. Reisel, M. Zikan, B. Wahl et al., DNA methylation markers for early detection of women's cancer: promise and challenges, Epigenomics, vol.6, pp.311-327, 2014.

L. Barault, A. Amatu, F. E. Bleeker, C. Moutinho, C. Falcomata et al., Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer, Ann. Oncol, vol.26, pp.1994-1999, 2015.

E. Zonta, P. Nizard, and V. Taly, Assessment of DNA integrity, applications for cancer research, Advances in Clinical Chemistry, vol.70, pp.197-246, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02299567

, RainDance Technologies, 2015.

H. Alakus, M. L. Babicky, P. Ghosh, S. Yost, K. Jepsen et al., Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin, Genome Med, vol.6, p.43, 2014.

I. Kinde, J. Wu, N. Papadopoulos, K. W. Kinzler, and B. Vogelstein, Detection and quantification of rare mutations with massively parallel sequencing, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.9530-9535, 2011.

A. M. Newman, S. V. Bratman, J. To, J. F. Wynne, N. C. Eclov et al., An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage, Nat. Med, vol.20, pp.548-554, 2014.

R. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova et al., Microdroplet-based PCR enrichment for large-scale targeted sequencing, Nat. Biotechnol, vol.27, pp.1025-1031, 2009.

O. Harismendy, R. B. Schwab, L. Bao, J. Olson, S. Rozenzhak et al., Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing, Genome Biol, vol.12, p.124, 2011.

L. E. Minion, J. S. Dolinsky, D. M. Chase, C. L. Dunlop, E. C. Chao et al., Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2, Gynecol. Oncol, vol.137, pp.86-92, 2015.

N. Tung, C. Battelli, B. Allen, R. Kaldate, S. Bhatnagar et al., Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel, Cancer, vol.121, pp.25-33, 2015.

H. K. Chong, T. Wang, H. M. Lu, S. Seidler, H. Lu et al., The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay, PLoS One, vol.9, p.97408, 2014.

J. D. Holbrook, J. S. Parker, K. T. Gallagher, W. S. Halsey, A. M. Hughes et al., Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine, J. Transl. Med, vol.9, p.119, 2011.

C. M. Robbins, W. A. Tembe, A. Baker, S. Sinari, T. Y. Moses et al., Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors, Genome Res, vol.21, pp.47-55, 2011.

D. S. Paul, P. Guilhamon, A. Karpathakis, L. M. Butcher, C. Thirlwell et al., Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing, Epigenetics, vol.9, pp.678-684, 2014.

M. Murtaza, S. J. Dawson, K. Pogrebniak, O. M. Rueda, E. Provenzano et al., Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer, Nat. Commun, vol.6, p.8760, 2015.