A. Kaser, S. Zeissig, and R. S. Blumberg, Inflammatory bowel disease, Annu. Rev. Immunol, vol.28, pp.573-621, 2010.

R. Sabat, W. Ouyang, and K. Wolk, Therapeutic opportunities of the IL-22-IL-22R1 system, Nat. Rev. Drug. Discov, vol.13, pp.21-38, 2013.

A. Andoh, Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts, Gastroenterology, vol.129, pp.969-984, 2005.

S. Brand, IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration, Am. J. Physiol. Gastrointest. Liver Physiol, vol.290, pp.827-838, 2006.

S. Schmechel, Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status, Inflamm. Bowel. Dis, vol.14, pp.204-212, 2008.

K. Sugimoto, IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis, J Clin Invest, vol.118, pp.534-544, 2008.

B. Pariente, Activation of the receptor NKG2D leads to production of Th17 cytokines in CD4 þ T cells of patients with Crohn's disease, Gastroenterology, vol.141, pp.217-226, 2011.

A. Geremia, IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease, J. Exp. Med, vol.208, pp.1127-1133, 2011.

L. A. Zenewicz, Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease, Immunity, vol.29, pp.947-957, 2008.

G. Pickert, STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, J. Exp. Med, vol.206, pp.1465-1472, 2009.

I. Monteleone, Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract, Gastroenterology, vol.141, pp.237-248, 2011.

C. L. Zindl, IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis, Proc. Natl Acad. Sci. USA, vol.110, pp.12768-12773, 2013.

L. A. Mielke, Retinoic acid expression associates with enhanced IL-22 production by gd T cells and innate lymphoid cells and attenuation of intestinal inflammation, J. Exp. Med, vol.210, pp.1117-1124, 2013.

W. Xu, A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist, Proc. Natl Acad. Sci. USA, vol.98, pp.9511-9516, 2001.

N. J. Logsdon, B. C. Jones, K. Josephson, J. Cook, and M. R. Walter, Comparison of interleukin-22 and interleukin-10 soluble receptor complexes, J. Interferon Cytokine Res, vol.22, pp.1099-1112, 2002.

S. Huber, IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature, vol.491, pp.259-263, 2012.

J. C. Martin, Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid, Mucosal Immunol, vol.7, pp.101-113, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02167741

P. B. Watchmaker, Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice, Nat. Immunol, vol.15, pp.98-108, 2014.

Y. Jung and M. E. Rothenberg, Roles and regulation of gastrointestinal eosinophils in immunity and disease, J. Immunol, vol.193, pp.999-1005, 2014.

L. Dumoutier, D. Lejeune, D. Colau, and J. C. Renauld, Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22, J. Immunol, vol.166, pp.7090-7095, 2001.

S. P. Hogan, A. Waddell, and P. C. Fulkerson, Eosinophils in infection and intestinal immunity, Curr. Opin. Gastroenterol, vol.29, pp.7-14, 2013.

E. Gaudio, Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects, Dig. Dis Sci, vol.44, pp.1458-1475, 1999.

L. A. Zenewicz, IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic, J. Immunol, vol.190, pp.2306-2312, 2013.

G. F. Sonnenberg, Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria, Science, vol.336, pp.1321-1325, 2012.

M. A. Kleinschek, Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation, J. Exp. Med, vol.206, pp.525-534, 2009.

R. Ramesh, Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids, J. Exp. Med, vol.211, pp.89-104, 2014.

R. S. Longman, CX3CR1 þ mononuclear phagocytes support colitisassociated innate lymphoid cell production of IL-22, J. Exp. Med, vol.211, pp.1571-1583, 2014.

N. Kamada, Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis, J. Clin. Invest, vol.118, pp.2269-2280, 2008.

B. Begue, Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease, Am. J. Gastroenterol, vol.106, pp.1544-1555, 2011.

T. Nakajima, Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells, Blood, vol.98, pp.1127-1134, 2001.

A. J. Macpherson and K. D. Mccoy, Standardised animal models of host microbial mutualism, Mucosal Immunol, vol.8, pp.476-486, 2014.

I. I. Ivanov, Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell, vol.139, pp.485-498, 2009.

V. Gaboriau-routhiau, The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity, vol.31, pp.677-689, 2009.

S. P. Spencer, Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity, Science, vol.343, pp.432-437, 2014.

S. Ueki, Retinoic acids up-regulate functional eosinophil-driving receptor CCR3, Allergy, vol.68, pp.953-956, 2013.

J. J. Lee, Human versus mouse eosinophils: 'that which we call an eosinophil, by any other name would stain as red, J. Allergy Clin. Immunol, vol.130, pp.572-584, 2012.

V. T. Chu, Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis, Immunity, vol.40, pp.582-593, 2014.

Y. Goto, Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation, Immunity, vol.40, pp.594-607, 2014.

N. Kamada, S. Seo, G. Y. Chen, and G. Nú-Ñ-ez, Role of the gut microbiota in immunity and inflammatory disease, Nat. Rev. Immunol, vol.13, pp.321-335, 2013.

I. Kryczek, IL-22( þ )CD4( þ ) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L, Immunity, vol.40, pp.772-784, 2014.

M. Kamanaka, Memory/effector (CD45RB(lo)) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology, J. Exp. Med, vol.208, pp.1027-1040, 2011.
DOI : 10.1084/jem.20102149

URL : http://jem.rupress.org/content/208/5/1027.full.pdf

A. Eken, A. K. Singh, P. M. Treuting, and M. Oukka, IL-23R þ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism, Mucosal Immunol, vol.7, pp.143-154, 2014.
DOI : 10.1038/mi.2013.33

URL : https://www.nature.com/articles/mi201333.pdf

C. Vonarbourg, Regulated expression of nuclear receptor RORgt confers distinct functional fates to NK cell receptor-expressing RORgt( þ ) innate lymphocytes, Immunity, vol.33, pp.736-751, 2010.

Y. Zheng, Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nat. Med, vol.14, pp.282-289, 2008.
DOI : 10.1038/nm1720

K. Moriwaki, The Necroptosis Adaptor RIPK3 Promotes InjuryInduced Cytokine Expression and Tissue Repair, Immunity, vol.41, pp.567-578, 2014.
DOI : 10.1016/j.immuni.2014.09.016

URL : https://doi.org/10.1016/j.immuni.2014.09.016

T. Zelante, Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22, Immunity, vol.39, pp.372-385, 2013.
DOI : 10.1016/j.immuni.2013.08.003

URL : https://doi.org/10.1016/j.immuni.2013.08.003

A. M. Geurts, Knockout rats via embryo microinjection of zinc-finger nucleases, Science, vol.325, p.433, 2009.

J. R. Maxwell, W. A. Brown, C. L. Smith, F. R. Byrne, and J. L. Viney, Methods of inducing inflammatory bowel disease in mice, Curr. Protoc. Pharmacol., Chapter, p.58, 2009.

A. Jarry, Mucosal IL-10 and TGF-beta play crucial roles in preventing LPS-driven, IFN-gamma-mediated epithelial damage in human colon explants, J. Clin. Invest, vol.118, pp.1132-1142, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277246