J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of dendritic cells, Annu. Rev. Immunol, vol.18, pp.767-811, 2000.

R. M. Steinman and Z. A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution, J. Exp. Med, vol.137, pp.1142-1162, 1973.

M. Cella, A. Engering, V. Pinet, J. Pieters, and A. Lanzavecchia, Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells, Nature, vol.388, pp.782-787, 1997.

M. Dalod, R. Chelbi, B. Malissen, and T. Lawrence, Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming, EMBO J, vol.33, pp.1104-1116, 2014.

I. Mellman and R. M. Steinman, Dendritic cells: specialized and regulated antigen processing machines, Cell, vol.106, pp.255-258, 2001.

G. Basha, G. Lizee, A. T. Reinicke, R. P. Seipp, K. D. Omilusik et al., MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells, PLoS One, vol.3, p.3247, 2008.

G. Basha, K. Omilusik, A. Chavez-steenbock, A. T. Reinicke, N. Lack et al., A CD74-dependent MHC class I endolysosomal cross-presentation pathway, Nat. Immunol, vol.13, pp.237-245, 2012.

S. J. Kim and B. Diamond, Modulation of tolerogenic dendritic cells and autoimmunity, Semin. Cell Dev. Biol, vol.41, pp.49-58, 2014.

B. R. Rosborough, D. Raich-regue, H. R. Turnquist, and A. W. Thomson, Regulatory myeloid cells in transplantation, Transplantation, vol.97, pp.367-379, 2014.

C. Llanos, J. P. Mackern-oberti, F. Vega, S. H. Jacobelli, and A. M. Kalergis, Tolerogenic dendritic cells as a therapy for treating lupus, Clin. Immunol, vol.148, pp.237-245, 2013.

J. P. Mackern-oberti, C. Llanos, F. Vega, F. Salazar-onfray, C. A. Riedel et al., Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases
URL : https://hal.archives-ouvertes.fr/inserm-02146510

, Autoimmun. Rev, vol.14, pp.127-139, 2015.

J. P. Mackern-oberti, F. Vega, C. Llanos, S. M. Bueno, and A. M. Kalergis, Targeting dendritic cell function during systemic autoimmunity to restore tolerance, Int. J. Mol. Sci, vol.15, pp.16381-16417, 2014.

J. K. Tan and H. C. Neill, Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity, J. Leukoc. Biol, vol.78, pp.319-324, 2005.

B. D. Rudd, J. D. Brien, M. P. Davenport, and J. Nikolich-zugich, Cutting edge: TLR ligands increase TCR triggering by slowing peptide-MHC class I decay rates, J. Immunol, vol.181, pp.5199-5203, 2008.

C. J. Henry, D. A. Ornelles, L. M. Mitchell, K. L. Brzoza-lewis, and E. M. Hiltbold, IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17

, J. Immunol, vol.181, pp.8576-8584, 2008.

L. Guery and S. Hugues, Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol, vol.4, p.59, 2013.

I. R. Ferrer, J. Hester, A. Bushell, and K. J. Wood, Induction of transplantation tolerance through regulatory cells: from mice to men

, Immunol. Rev, vol.258, pp.102-116, 2014.

P. Blancou, V. Tardif, T. Simon, S. Remy, L. Carreno et al., Immunoregulatory properties of heme oxygenase-1, Methods Mol. Biol, vol.677, pp.247-268, 2011.

S. Remy, P. Blancou, L. Tesson, V. Tardif, R. Brion et al., Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity, J. Immunol, vol.182, pp.1877-1884, 2009.

, Eur. J. Immunol, vol.45, pp.3269-3288, 2015.

T. Simon, S. Pogu, V. Tardif, K. Rigaud, S. Remy et al., Carbon monoxide-treated dendritic cells decrease beta1-integrin induction on CD8(+) T cells and protect from type 1 diabetes

, Eur. J. Immunol, vol.43, pp.209-218, 2013.

V. Tardif, S. A. Riquelme, S. Remy, L. J. Carreno, C. M. Cortes et al., Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells, Eur. J. Immunol, vol.43, pp.2832-2844, 2013.

C. Chauveau, D. Bouchet, J. C. Roussel, P. Mathieu, C. Braudeau et al., Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection, Am. J. Transplant, vol.2, pp.581-592, 2002.

A. P. West, I. E. Brodsky, C. Rahner, D. K. Woo, H. Erdjument-bromage et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS, Nature, vol.472, pp.476-480, 2011.

E. Kasahara, A. Sekiyama, M. Hori, K. Hara, N. Takahashi et al., Mitochondrial density contributes to the immune response of macrophages to lipopolysaccharide via the MAPK pathway, FEBS Lett, vol.585, pp.2263-2268, 2011.

J. Tschopp, Mitochondria: sovereign of inflammation?, Eur. J. Immunol, vol.41, pp.1196-1202, 2011.

Y. Emre, C. Hurtaud, T. Nubel, F. Criscuolo, D. Ricquier et al., Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages, Biochem. J, vol.402, pp.271-278, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478667

T. Misawa, M. Takahama, T. Kozaki, H. Lee, J. Zou et al., Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome, Nat. Immunol, vol.14, pp.454-460, 2013.

W. J. Van-zuylen, P. Doyon, J. F. Clement, K. A. Khan, L. M. D'ambrosio et al., Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity, PLoS Pathog, vol.8, p.1002747, 2012.

T. Akiyama, T. Shiraishi, J. Qin, H. Konno, N. Akiyama et al., Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN, PLoS One, vol.9, p.95992, 2014.

X. Y. Liu, B. Wei, H. X. Shi, Y. F. Shan, and C. Wang, Tom70 mediates activation of interferon regulatory factor 3 on mitochondria, Cell Res, vol.20, pp.994-1011, 2010.

R. Long, I. Salouage, A. Berdeaux, R. Motterlini, and D. Morin, CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier, Biochim. Biophys. Acta, vol.1837, pp.201-209, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00920555

R. Foresti, C. Shurey, T. Ansari, P. Sibbons, B. E. Mann et al., Reviewing the use of carbon monoxidereleasing molecules (CO-RMs) in biology: implications in endotoxinmediated vascular dysfunction, Cell Mol. Biol, vol.51, pp.409-423, 2005.

R. Motterlini, B. E. Mann, and R. Foresti, Therapeutic applications of carbon monoxide-releasing molecules, Expert. Opin. Investig. Drugs, vol.14, pp.1305-1318, 2005.

K. Malhotra, M. Sathappa, J. S. Landin, A. E. Johnson, and N. N. Alder, Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force, Nat. Struct. Mol. Biol, vol.20, pp.965-972, 2013.

W. X. Ding, F. Guo, H. M. Ni, A. Bockus, S. Manley et al., Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation, J. Biol. Chem, vol.287, pp.42379-42388, 2012.

W. X. Ding, H. M. Ni, M. Li, Y. Liao, X. Chen et al., Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkinubiquitin-p62-mediated mitochondrial priming, J. Biol. Chem, vol.285, pp.27879-27890, 2010.

S. Geisler, K. M. Holmstrom, D. Skujat, F. C. Fiesel, O. C. Rothfuss et al., PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol, vol.12, pp.119-131, 2010.

H. Liu, Y. P. Hu, N. Savaraj, W. Priebe, and T. J. Lampidis, Hypersensitization of tumor cells to glycolytic inhibitors, Biochemistry, vol.40, pp.5542-5547, 2001.

L. Lo-iacono, J. Boczkowski, R. Zini, I. Salouage, A. Berdeaux et al.,

, uncouples mitochondrial respiration and modulates the production of reactive oxygen species. Free Radic, Biol. Med, vol.50, pp.1556-1564, 2011.

E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman, Activation of lysosomal function during dendritic cell maturation, Science, vol.299, pp.1400-1403, 2003.

Z. Zeng, C. H. Tung, and Y. Zu, A cancer cell-activatable aptamerreporter system for one-step assay of circulating tumor cells, Mol. Ther. Nucleic Acids, vol.3, p.184, 2014.

W. Wu, W. Li, Y. Zhou, and C. Zhang, Inhibition of beclin1 affects the chemotherapeutic sensitivity of osteosarcoma, Int. J. Clin. Exp. Pathol, vol.7, pp.7114-7122, 2014.

C. L. Oeste, E. Seco, W. F. Patton, P. Boya, and D. Perez-sala, Interactions between autophagic and endo-lysosomal markers in endothelial cells, Histochem. Cell Biol, vol.139, pp.659-670, 2013.

G. L. Lukacs, O. D. Rotstein, and S. Grinstein, Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages, J. Biol. Chem, vol.265, pp.21099-21107, 1990.

C. Kurts, R. M. Sutherland, G. Davey, M. Li, A. M. Lew et al., CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose, Proc. Natl. Acad. Sci, vol.96, pp.12703-12707, 1999.

M. E. Keir, G. J. Freeman, and A. H. Sharpe, PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues, J. Immunol, vol.179, pp.5064-5070, 2007.

E. Granger, G. Mcnee, V. Allan, and P. Woodman, The role of the cytoskeleton and molecular motors in endosomal dynamics, Semin. Cell Dev. Biol, vol.31, pp.20-29, 2014.

W. Halangk, R. Bohnensack, and W. Kunz, Interdependence of mitochondrial ATP production and extramitochondrial ATP utilization in intact spermatozoa, Biochim. Biophys. Acta, vol.808, pp.316-322, 1985.

M. J. Clague, S. Urbe, F. Aniento, and J. Gruenberg, Vacuolar ATPase activity is required for endosomal carrier vesicle formation, J. Biol. Chem, vol.269, pp.21-24, 1994.

G. H. Sun-wada, Y. Wada, and M. Futai, Lysosome and lysosomerelated organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase, Cell Struct. Funct, vol.28, pp.455-463, 2003.

S. Burgdorf, A. Kautz, V. Bohnert, P. A. Knolle, and C. Kurts, Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation, Science, vol.316, pp.612-616, 2007.

C. V. Harding and H. J. Geuze, Immunogenic peptides bind to class II MHC molecules in an early lysosomal compartment, J. Immunol, vol.151, pp.3988-3998, 1993.

J. C. Maher, A. Krishan, and T. J. Lampidis, Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs. aerobic conditions, Cancer Chemother. Pharmacol, vol.53, pp.116-122, 2004.

C. M. Krawczyk, T. Holowka, J. Sun, J. Blagih, E. Amiel et al., Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation, Blood, vol.115, pp.4742-4749, 2010.

B. Everts, E. Amiel, S. C. Huang, A. M. Smith, C. H. Chang et al., TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation, Nat. Immunol, vol.15, pp.323-332, 2014.

J. D. Colbert, S. P. Matthews, G. Miller, and C. Watts, Diverse regulatory roles for lysosomal proteases in the immune response, Eur. J. Immunol, vol.39, pp.2955-2965, 2009.

H. P. Kohio and A. L. Adamson, Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virology, vol.444, pp.301-309, 2013.

M. Lu, Y. Y. Sautin, L. S. Holliday, and S. L. Gluck, The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase, J. Biol. Chem, vol.279, pp.8732-8739, 2004.

R. A. Hegazi, K. N. Rao, A. Mayle, A. R. Sepulveda, L. E. Otterbein et al., Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway, J. Exp. Med, vol.202, pp.1703-1713, 2005.

Z. G. Dobreva, S. A. Stanilova, and L. D. Miteva, Differences in the inducible gene expression and protein production of IL-12p40, IL-12p70 and IL-23: involvement of p38 and JNK kinase pathways, Cytokine, vol.43, pp.76-82, 2008.

Z. G. Dobreva, L. D. Miteva, and S. A. Stanilova, The inhibition of JNK and p38 MAPKs downregulates IL-10 and differentially affects c-Jun gene expression in human monocytes, Immunopharmacol. Immunotoxicol, vol.31, pp.195-201, 2009.

C. Veiopoulou, O. Kogopoulou, E. Tzakos, G. Mavrothalassitis, D. Mitsias et al., IL-2 and IL-10 production by human CD4+T cells is differentially regulated by p38: mode of stimulation-dependent regulation of IL-2. Neuroimmunomodulation, vol.11, pp.199-208, 2004.

F. Amersi, X. D. Shen, D. Anselmo, J. Melinek, S. Iyer et al., Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway, Hepatology, vol.35, pp.815-823, 2002.

Y. Drechsler, A. Dolganiuc, O. Norkina, L. Romics, W. Li et al., Heme oxygenase-1 mediates the anti-inflammatory effects of acute alcohol on IL-10 induction involving p38 MAPK activation in monocytes, J. Immunol, vol.177, pp.2592-2600, 2006.

J. Kohmoto, A. Nakao, D. B. Stolz, T. Kaizu, A. Tsung et al., Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway, Am. J. Transplant, vol.7, pp.2279-2290, 2007.

H. P. Kim, X. Wang, J. Zhang, G. Y. Suh, I. J. Benjamin et al., Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1, J. Immunol, vol.175, pp.2622-2629, 2005.

S. J. Keppler and P. Aichele, Signal 3 requirement for memory CD8+ Tcell activation is determined by the infectious pathogen, Eur. J. Immunol, vol.41, pp.3176-3186, 2011.

S. J. Keppler, K. Rosenits, T. Koegl, S. Vucikuja, and P. Aichele, Signal 3 cytokines as modulators of primary immune responses during infections: the interplay of type I IFN and IL-12 in CD8 T cell responses, PLoS One, vol.7, p.40865, 2012.

S. J. Keppler, K. Theil, S. Vucikuja, and P. Aichele, Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8(+) T cells, Eur. J. Immunol, vol.39, pp.1774-1783, 2009.

J. M. Curtsinger, D. C. Lins, and M. F. Mescher, Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function, J. Exp. Med, vol.197, pp.1141-1151, 2003.

J. P. Mackern-oberti, S. A. Riquelme, C. Llanos, C. B. Schmidt, T. Simon et al., Heme oxygenase-1 as a target for the design of gene and pharmaceutical therapies for autoimmune diseases

, Gene Ther, vol.14, pp.218-235, 2014.

T. Yoshida and G. Kikuchi, Purification and properties of heme oxygenase from rat liver microsomes, J. Biol. Chem, vol.254, pp.4487-4491, 1979.

P. X. Zhang, T. S. Murray, V. R. Villella, E. Ferrari, S. Esposito et al., Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator, J. Immunol, vol.190, pp.5196-5206, 2013.

Q. Lin, S. Weis, G. Yang, Y. H. Weng, R. Helston et al., Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress, J. Biol. Chem, vol.282, pp.20621-20633, 2007.

C. Biswas, N. Shah, M. Muthu, P. La, A. P. Fernando et al., Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses, J. Biol. Chem, vol.289, pp.26882-26894, 2014.

F. F. Hsu, C. T. Yeh, Y. J. Sun, M. T. Chiang, W. M. Lan et al., Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity, Oncogene, vol.34, pp.2410-2411, 2015.

M. Desmard, J. Boczkowski, J. Poderoso, and R. Motterlini, Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system, Antioxid. Redox Signal, vol.9, pp.2139-2155, 2007.

A. Carriere, M. C. Carmona, Y. Fernandez, M. Rigoulet, R. H. Wenger et al., Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect, J. Biol. Chem, vol.279, pp.40462-40469, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00409056

S. Goda, A. C. Quale, M. L. Woods, A. Felthauser, and Y. Shimizu, Control of TCR-mediated activation of beta 1 integrins by the ZAP-70

, tyrosine kinase interdomain B region and the linker for activation of T cells adapter protein, J. Immunol, vol.172, pp.5379-5387, 2004.

M. L. Woods and Y. Shimizu, Signaling networks regulating beta1 integrin-mediated adhesion of T lymphocytes to extracellular matrix, J. Leukoc. Biol, vol.69, pp.874-880, 2001.

P. A. Gonzalez, L. J. Carreno, D. Coombs, J. E. Mora, E. Palmieri et al., T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell, Proc. Natl. Acad. Sci, vol.102, pp.4824-4829, 2005.

B. Wegiel, R. Larsen, D. Gallo, B. Y. Chin, C. Harris et al., Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation, J. Clin. Invest, vol.124, pp.4926-4940, 2014.

A. Mant, F. Chinnery, T. Elliott, and A. P. Williams, The pathway of cross-presentation is influenced by the particle size of phagocytosed antigen, Immunology, vol.136, pp.163-175, 2012.

, Eur. J. Immunol, vol.45, pp.3269-3288, 2015.

A. Savina, C. Jancic, S. Hugues, P. Guermonprez, P. Vargas et al., NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells, Cell, vol.126, pp.205-218, 2006.

M. Houde, S. Bertholet, E. Gagnon, S. Brunet, G. Goyette et al., Phagosomes are competent organelles for antigen cross-presentation, Nature, vol.425, pp.402-406, 2003.

Y. Wan, Y. Wu, J. Zhou, L. Zou, Y. Liang et al., Crosspresentation of phage particle antigen in MHC class II and endoplasmic reticulum marker-positive compartments, Eur. J. Immunol, vol.35, pp.2041-2050, 2005.

P. Guermonprez and S. Amigorena, Pathways for antigen cross presentation, Springer Semin. Immunopathol, vol.26, pp.257-271, 2005.

P. Guermonprez, L. Saveanu, M. Kleijmeer, J. Davoust, P. Van-endert et al., ER-phagosome fusion defines an MHC class I crosspresentation compartment in dendritic cells, Nature, vol.425, pp.397-402, 2003.

E. Gagnon, S. Duclos, C. Rondeau, E. Chevet, P. H. Cameron et al., Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages, Cell, vol.110, pp.119-131, 2002.

E. Gagnon, J. J. Bergeron, and M. Desjardins, ER-mediated phagocytosis: myth or reality?, J. Leukoc. Biol, vol.77, pp.843-845, 2005.

M. Desjardins, ER-mediated phagocytosis: a new membrane for new functions, Nat. Rev. Immunol, vol.3, pp.280-291, 2003.

P. Nair-gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation, Cell, vol.158, pp.506-521, 2014.

R. M. Yates and D. G. Russell, Phagosome maturation proceeds independently of stimulation of Toll-like receptors 2 and 4, Immunity, vol.23, pp.409-417, 2005.

K. K. Tran and H. Shen, The role of phagosomal pH on the sizedependent efficiency of cross-presentation by dendritic cells. Biomaterials 2009, vol.30, pp.1356-1362

L. Hicke, Protein regulation by monoubiquitin, Nat. Rev. Mol. Cell Biol, vol.2, pp.195-201, 2001.

L. Hicke and R. Dunn, Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins, Annu. Rev. Cell Dev. Biol, vol.19, pp.141-172, 2003.

H. Husebye, O. Halaas, H. Stenmark, G. Tunheim, O. Sandanger et al., Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity, EMBO J, vol.25, pp.683-692, 2006.

A. F. Mcgettrick and L. A. Neill, Localisation and trafficking of Tolllike receptors: an important mode of regulation, Curr. Opin. Immunol, vol.22, pp.20-27, 2010.

T. H. Chuang and R. J. Ulevitch, Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors, Nat. Immunol, vol.5, pp.495-502, 2004.

Y. Q. Gao, A simple theoretical model explains dynein's response to load, Biophys. J, vol.90, pp.811-821, 2006.

L. S. Goldstein and Z. Yang, Microtubule-based transport systems in neurons: the roles of kinesins and dyneins, Annu. Rev. Neurosci, vol.23, pp.39-71, 2000.

R. Mallik, B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross, Cytoplasmic dynein functions as a gear in response to load, Nature, vol.427, pp.649-652, 2004.

J. W. Murray, E. Bananis, and A. W. Wolkoff, Reconstitution of ATP-dependent movement of endocytic vesicles along microtubules in vitro: an oscillatory bidirectional process, Mol. Biol. Cell, vol.11, pp.419-433, 2000.

K. Kawauchi, K. Araki, K. Tobiume, and N. Tanaka, p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation, Nat. Cell Biol, vol.10, pp.611-618, 2008.

A. Salminen and K. Kaarniranta, Glycolysis links p53 function with NF-kappaB signaling: impact on cancer and aging process, J. Cell Physiol, vol.224, pp.1-6, 2010.

H. Huang, X. Zhang, S. Li, N. Liu, W. Lian et al., Physiological levels of ATP negatively regulate proteasome function, Cell Res, vol.20, pp.1372-1385, 2010.

S. R. Powell, K. J. Davies, and A. Divald, Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations, J. Mol. Cell Cardiol, vol.42, pp.265-269, 2007.

Q. Geng, J. Romero, V. Saini, T. A. Baker, M. M. Picken et al., A subset of 26S proteasomes is activated at critically low ATP concentrations and contributes to myocardial injury during cold ischemia, Biochem. Biophys. Res. Commun, vol.390, pp.1136-1141, 2009.

U. Lundberg, U. Vinatzer, D. Berdnik, A. Von-gabain, and M. Baccarini, Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes, J. Bacteriol, vol.181, pp.3433-3437, 1999.

S. A. Riquelme, S. M. Bueno, and A. M. Kalergis, IgG keeps virulent Salmonella from evading dendritic cell uptake, Immunology, vol.136, pp.291-305, 2012.

, Abbreviations: ANT: adenine nucleotide translocator · CCCP: carbonyl cyanide m-chlorophenyl hydrazone · CO: carbon monoxide, vol.2

·. Mtfc, microtubule forming center · UCP: uncoupling protein