J. M. Andrews, Determination of minimum inhibitory concentrations, The Journal of antimicrobial chemotherapy, vol.48, issue.1, p.11420333, 2001.

W. A. Craig, Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men, Clin Infect Dis, vol.26, issue.1, p.9455502, 1998.

D. Czock and F. Keller, Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects, J Pharmacokinet Pharmacodyn, vol.34, issue.6, p.17906920, 2007.

M. Mueller, A. De-la-pena, and H. Derendorf, Issues in pharmacokinetics and pharmacodynamics of antiinfective agents: kill curves versus MIC, Antimicrobial agents and chemotherapy, vol.48, issue.2, p.14742182, 2004.

P. Chung, P. J. Mcnamara, J. J. Campion, and M. E. Evans, Mechanism-based pharmacodynamic models of fluoroquinolone resistance in Staphylococcus aureus, Antimicrob Agents Chemother, vol.50, issue.9, p.16940088, 2006.

N. Gregoire, S. Raherison, C. Grignon, E. Comets, M. Marliat et al., Semimechanistic pharmacokinetic-pharmacodynamic model with adaptation development for time-kill experiments of ciprofloxacin against Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.54, issue.6, pp.2379-84, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00533219

J. B. Bulitta, C. B. Landersdorfer, A. Forrest, S. V. Brown, M. N. Neely et al., Relevance of pharmacokinetic and pharmacodynamic modeling to clinical care of critically ill patients, Current pharmaceutical biotechnology, vol.12, issue.12, pp.2044-61, 2011.

J. Li, C. R. Rayner, R. L. Nation, R. J. Owen, D. Spelman et al., Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii, Antimicrob Agents Chemother, vol.50, issue.9, p.16940086, 2006.

B. Moya, A. Dotsch, C. Juan, J. Blazquez, L. Zamorano et al., Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein, PLoS pathogens, vol.5, issue.3, 2009.

E. I. Nielsen, A. Viberg, E. Lowdin, O. Cars, M. O. Karlsson et al., Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments, Antimicrob Agents Chemother, vol.51, issue.1, pp.128-164, 2007.

J. W. Mouton, M. N. Dudley, O. Cars, H. Derendorf, and G. L. Drusano, Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update, J Antimicrob Chemother, vol.55, issue.5, p.15772142, 2005.

W. A. Craig, Choosing an antibiotic on the basis of pharmacodynamics, Ear, nose, & throat journal, vol.77, issue.6, pp.7-11, 1998.

J. Gloede, C. Scheerans, H. Derendorf, and C. Kloft, In vitro pharmacodynamic models to determine the effect of antibacterial drugs, The Journal of antimicrobial chemotherapy, vol.65, issue.2, pp.186-201, 2010.

J. B. Bulitta, J. C. Yang, L. Yohonn, N. S. Ly, S. V. Brown et al., Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism-based population pharmacodynamic model, Epub 2010/03/ 10, vol.54, pp.2051-62, 2010.

S. Schmidt, K. Rock, M. Sahre, O. Burkhardt, M. Brunner et al., Effect of protein binding on the pharmacological activity of highly bound antibiotics, Antimicrobial agents and chemotherapy, vol.52, issue.11, pp.3994-4000, 2008.

Y. Yano, T. Oguma, H. Nagata, and S. Sasaki, Application of logistic growth model to pharmacodynamic analysis of in vitro bactericidal kinetics, J Pharm Sci, vol.87, issue.10, p.9758673, 1998.

J. B. Bulitta, N. S. Ly, C. B. Landersdorfer, N. A. Wanigaratne, T. Velkov et al., Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling, Antimicrob Agents Chemother, vol.59, issue.4, pp.2315-2342, 2015.

J. J. Campion, P. J. Mcnamara, and M. E. Evans, Pharmacodynamic modeling of ciprofloxacin resistance in Staphylococcus aureus, Antimicrob Agents Chemother, vol.49, issue.1, p.15616298, 2005.

T. Katsube, Y. Yano, Y. Yamano, T. Munekage, N. Kuroda et al., Pharmacokinetic-pharmacodynamic modeling and simulation for bactericidal effect in an in vitro dynamic model, J Pharm Sci, vol.97, issue.9, pp.4108-4125, 2008.

A. K. Meagher, A. Forrest, A. Dalhoff, H. Stass, and J. J. Schentag, Novel pharmacokinetic-pharmacodynamic model for prediction of outcomes with an extended-release formulation of ciprofloxacin, Antimicrob Agents Chemother, vol.48, issue.6, pp.2061-2069, 2004.

E. I. Nielsen, O. Cars, and L. E. Friberg, Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model, Antimicrob Agents Chemother, vol.55, issue.4, pp.1571-1580, 2011.

S. Schmidt, S. N. Sabarinath, A. Barbour, D. Abbanat, P. Manitpisitkul et al., Pharmacokinetic-pharmacodynamic modeling of the in vitro activities of oxazolidinone antimicrobial agents against methicillin-resistant Staphylococcus aureus, Antimicrob Agents Chemother, vol.53, issue.12, pp.5039-5084, 2009.

P. Liu, K. H. Rand, B. Obermann, and H. Derendorf, Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models, Int J Antimicrob Agents, vol.25, issue.2, pp.120-129, 2005.

J. W. Mouton and A. A. Vinks, Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration, Clin Pharmacokinet, vol.44, issue.2, p.15656698, 2005.

I. H. Spicknall, B. Foxman, C. F. Marrs, and J. N. Eisenberg, A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization, American journal of epidemiology, vol.178, issue.4, 2013.

J. G. Zhi, C. H. Nightingale, and R. Quintiliani, Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa, Journal of pharmacokinetics and biopharmaceutics, vol.16, issue.4, p.3193364, 1988.

J. W. Mouton, A. A. Vinks, and N. C. Punt, Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion, Antimicrob Agents Chemother, vol.41, issue.4, p.9087479, 1997.

N. Jumbe, A. Louie, R. Leary, W. Liu, M. R. Deziel et al., Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy, J Clin Invest, vol.112, issue.2, pp.275-85, 2003.

T. Gumbo, A. Louie, M. R. Deziel, L. M. Parsons, M. Salfinger et al., Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling, J Infect Dis, vol.190, issue.9, p.15478070, 2004.

W. Jusko, A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents, vol.1, pp.175-200, 1973.

V. H. Tam, S. Kabbara, G. Vo, A. N. Schilling, and E. A. Coyle, Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.50, issue.8, p.16870751, 2006.

D. Hocquet, C. Vogne, E. Garch, F. Vejux, A. Gotoh et al., MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrobial agents and chemotherapy, vol.47, issue.4, pp.1371-1376, 2003.

R. Yadav, C. B. Landersdorfer, R. L. Nation, J. D. Boyce, and J. B. Bulitta, Novel approach to optimize synergistic carbapenem-aminoglycoside combinations against carbapenem-resistant Acinetobacter baumannii, Antimicrob Agents Chemother, vol.59, issue.4, 2015.
DOI : 10.1128/aac.04379-14

URL : https://aac.asm.org/content/59/4/2286.full.pdf

A. De-la-pena, A. Grabe, K. H. Rand, E. Rehak, J. Gross et al., PK-PD modelling of the effect of cefaclor on four different bacterial strains, Int J Antimicrob Agents, vol.23, issue.3, p.15164961, 2004.

W. Treyaprasert, S. Schmidt, K. H. Rand, U. Suvanakoot, and H. Derendorf, Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains, Int J Antimicrob Agents, vol.29, issue.3, p.17194570, 2007.

M. Nikolaou and V. H. Tam, A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations, Journal of mathematical biology, vol.52, issue.2, p.16195922, 2006.

J. B. Bulitta, N. S. Ly, J. C. Yang, A. Forrest, W. J. Jusko et al., Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.53, issue.1, pp.46-56, 2008.

R. J. Bauer, S. Guzy, and C. Ng, A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples, AAPS J, vol.9, issue.1, p.17408237, 2007.

J. B. Bulitta and C. B. Landersdorfer, Performance and robustness of the Monte Carlo importance sampling algorithm using parallelized S-ADAPT for basic and complex mechanistic models, AAPS J, vol.13, issue.2, p.21374103, 2011.

J. B. Bulitta, A. Bingolbali, B. S. Shin, and C. B. Landersdorfer, Development of a new pre-and post-processing tool (SADAPT-TRAN) for nonlinear mixed-effects modeling in S-ADAPT, Aaps J, vol.13, issue.2, p.21369876, 2011.

S. L. Beal, Ways to fit a PK model with some data below the quantification limit, J Pharmacokinet Pharmacodyn, vol.28, issue.5, p.11768292, 2001.

E. I. Nielsen and L. E. Friberg, Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs, Pharmacological reviews, vol.65, issue.3, p.23803529, 2013.
DOI : 10.1124/pr.111.005769

G. L. Drusano, W. Liu, D. L. Brown, L. B. Rice, and A. Louie, Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus aureus, J Infect Dis, vol.199, issue.2, pp.219-245, 2008.

N. S. Ly, J. B. Bulitta, G. G. Rao, C. B. Landersdorfer, P. N. Holden et al., Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance, J Antimicrob Chemother, vol.70, issue.5, pp.1434-1476, 2015.

A. Louie, H. S. Heine, K. Kim, D. L. Brown, B. Vanscoy et al., Use of an in vitro pharmacodynamic model to derive a linezolid regimen that optimizes bacterial kill and prevents emergence of resistance in Bacillus anthracis, Antimicrobial agents and chemotherapy, vol.52, issue.7, pp.2486-96, 2008.

J. Blaser, B. B. Stone, and S. H. Zinner, Two compartment kinetic model with multiple artificial capillary units, The Journal of antimicrobial chemotherapy, vol.15, p.3980324, 1985.
DOI : 10.1093/jac/15.suppl_a.131