R. Siegel, E. Ward, and O. Brawley, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths, Jemal A Cancer statistics, vol.61, p.21685461

N. Reymond, D. 'água, B. B. Ridley, and A. J. , Crossing the endothelial barrier during metastasis, Nat Rev Cancer, vol.13, pp.858-870, 2013.

F. Van-zijl, G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration, Mutat Res, vol.728, p.21605699, 2011.

S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, A molecular signature of metastasis in primary solid tumors, Nat Genet, vol.33, pp.49-54, 2003.

K. Podsypanina, Y. Du, M. Jechlinger, L. J. Beverly, and D. Hambardzumyan, Seeding and propagation of untransformed mouse mammary cells in the lung, Science, vol.321, pp.1841-1844, 2008.

V. Conteduca, R. Zamarchi, E. Rossi, V. Condelli, and L. Troiani, Circulating tumor cells: utopia or reality?, Future Oncol, vol.9, pp.1337-1352, 2013.

J. P. Thiery, H. Acloque, R. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

C. Foroni, M. Broggini, D. Generali, and G. Damia, Epithelial-mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact, Cancer Treat Rev, vol.38, pp.689-697, 2012.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest, vol.119, pp.1420-1428, 2009.

M. Zeisberg and E. G. Neilson, Biomarkers for epithelial-mesenchymal transitions, J Clin Invest, vol.119, pp.1429-1437, 2009.

E. Sánchez-tilló, Y. Liu, O. De-barrios, L. Siles, and L. Fanlo, EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness, Cell Mol Life Sci, vol.69, pp.3429-3456, 2012.

M. A. Nieto, The ins and outs of the epithelial to mesenchymal transition in health and disease, Annu Rev Cell Dev Biol, vol.27, pp.347-376, 2011.

T. R. Geiger and D. S. Peeper, Metastasis mechanisms, Biochim Biophys Acta, vol.1796, pp.293-308, 2009.

K. Polyak and R. A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits, Nat Rev Cancer, vol.9, pp.265-273, 2009.

J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat Rev Mol Cell Biol, vol.7, pp.131-142, 2006.

S. Wang, W. Wang, Y. Chang, C. Wu, and Y. Chao, controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug, Nat Cell Biol, vol.11, pp.694-704, 2009.

J. Jonkers, R. Meuwissen, H. Van-der-gulden, H. Peterse, and M. Van-der-valk, Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer, Nat Genet, vol.29, pp.418-425, 2001.

B. P. Wijnhoven, W. N. Dinjens, and M. Pignatelli, E-cadherin-catenin cell-cell adhesion complex and human cancer, Br J Surg, vol.87, pp.992-1005, 2000.

L. Bras, G. F. Taubenslag, K. J. Andl, and C. D. , The regulation of cell-cell adhesion during epithelialmesenchymal transition, motility and tumor progression, Cell Adh Migr, vol.6, pp.365-373, 2012.

J. J. Bravo-cordero, L. Hodgson, and J. Condeelis, Directed cell invasion and migration during metastasis, Curr Opin Cell Biol, vol.24, pp.277-283, 2012.

L. Wan, K. Pantel, and Y. Kang, Tumor metastasis: moving new biological insights into the clinic, Nat Med, vol.19, pp.1450-1464, 2013.

B. Bauvois, New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression, Biochim Biophys Acta, vol.1825, p.22020293, 2012.

E. Barillot, L. Calzone, P. Hupé, J. Vert, and A. Zinovyev, Computational Systems Biology of Cancer, vol.461, 2012.

A. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, vol.127, pp.905-915, 2006.

N. K. Martin, E. A. Gaffney, R. A. Gatenby, and P. K. Maini, Tumour-stromal interactions in acid-mediated invasion: a mathematical model, J Theor Biol, vol.267, pp.461-470, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00634001

H. Knutsdottir, E. Palsson, and L. Edelstein-keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion, J Theor Biol, 2014.

M. Lu, M. K. Jolly, H. Levine, J. N. Onuchic, B. et al., MicroRNA-based regulation of epithelialhybrid-mesenchymal fate determination, Proc Natl Acad Sci U S A, vol.110, p.24154725, 2013.

X. Tian, H. Zhang, and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF?-induced epithelial to mesenchymal transition, Biophys J, vol.105, p.23972859, 2013.

J. Zhang, X. Tian, H. Zhang, Y. Teng, and R. Li, TGF-?-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops, Sci Signal, vol.7, p.91, 2014.

S. Sethi, J. Macoska, W. Chen, and F. H. Sarkar, Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis, Am J Transl Res, vol.3, p.21139809, 2010.

M. Chanrion, I. Kuperstein, C. Barrière, E. Marjou, F. Cohen et al., Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut, Nat Commun, vol.5, p.5005, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01712223

J. H. Tsai and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis, Genes Dev, vol.27, pp.2192-2206, 2013.

, Signaling network of EMT regulation

Y. Kim, K. H. Koo, J. Y. Sung, U. Yun, and H. Kim, Anoikis resistance: an essential prerequisite for tumor metastasis, Int J Cell Biol, p.22505926, 2012.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, and B. L. Ebert, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, vol.102, pp.15545-15550, 2005.

A. H. Bild, G. Yao, J. T. Chang, Q. Wang, and A. Potti, Oncogenic pathway signatures in human cancers as a guide to targeted therapies, Nature, vol.439, pp.353-357, 2006.

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, The KEGG resource for deciphering the genome, Nucleic Acids Res, vol.32, 2004.

, Comprehensive molecular characterization of human colon and rectal cancer, The Henome Cancer Atlas Network, vol.487, p.22810696, 2012.

M. A. Sartor, V. Mahavisno, V. G. Keshamouni, J. Cavalcoli, and Z. Wright, ConceptGen: a gene set enrichment and gene set relation mapping tool, Bioinformatics, vol.26, pp.456-463, 2010.

H. Qin, M. Chan, S. Liyanarachchi, C. Balch, and D. Potter, An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules, BMC Syst Biol, vol.3, p.73, 2009.

C. Müssel, M. Hopfensitz, and H. A. Kestler, BoolNet-an R package for generation, reconstruction and analysis of Boolean networks, Bioinformatics, vol.26, pp.1378-1380, 2010.

A. Gorban, B. Kegl, D. Wunch, and A. Zinovyev, Principal Manifolds for Data Visualisation and Dimension Reduction, vol.58, 2008.

A. N. Gorban and A. Zinovyev, Principal manifolds and graphs in practice: from molecular biology to dynamical systems, Int J Neural Syst, vol.20, pp.219-232, 2010.

A. Gorban, A. Pitenko, and A. Zinovyev, ViDaExpert: user-friendly tool for nonlinear visualization and analysis of multidimensional vectorial data, 2014.

D. J. Drasin, T. P. Robin, and H. L. Ford, Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity, Breast Cancer Res, vol.13, p.226, 2011.

G. Moreno-bueno, E. Cubillo, D. Sarrió, H. Peinado, and S. M. Rodríguez-pinilla, Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition, Cancer Res, vol.66, pp.9543-9556, 2006.

M. Conacci-sorrell, I. Simcha, T. Ben-yedidia, J. Blechman, and P. Savagner, Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK, J Cell Biol, vol.163, pp.847-857, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00148047

J. Yang, S. A. Mani, J. L. Donaher, S. Ramaswamy, and R. A. Itzykson, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, Cell, vol.117, pp.927-939, 2004.

Y. Liu, S. El-naggar, D. S. Darling, Y. Higashi, and D. C. Dean, Zeb1 links epithelial-mesenchymal transition and cellular senescence, Development, vol.135, pp.579-588, 2008.

J. Comijn, G. Berx, P. Vermassen, K. Verschueren, and L. Van-grunsven, The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion, Mol Cell, vol.7, p.11430829, 2001.

Y. Katsuno, S. Lamouille, and R. Derynck, TGF-? signaling and epithelial-mesenchymal transition in cancer progression, Curr Opin Oncol, vol.25, p.23197193, 2013.

Y. Mao, J. Xu, Z. Li, N. Zhang, and H. Yin, The role of nuclear ?-catenin accumulation in the Twist2-induced ovarian cancer EMT, PLoS One, vol.8, p.78200, 2013.

I. Espinoza and L. Miele, Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells, Cancer Lett, 2013.

L. A. Timmerman, J. Grego-bessa, A. Raya, E. Bertrán, and J. M. Pérez-pomares, Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation, Genes Dev, vol.18, pp.99-115, 2004.

S. J. Grille, A. Bellacosa, J. Upson, A. J. Klein-szanto, and F. Van-roy, The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines, Cancer Res, vol.63, p.12727836, 2003.

S. Suman, V. Kurisetty, T. P. Das, A. Vadodkar, and G. Ramos, Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells, Mol Carcinog, 2013.

L. Hill, G. Browne, and E. Tulchinsky, ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer, Int J Cancer, 2012.

Y. Liu, J. J. Yin, W. Abou-kheir, P. G. Hynes, and O. M. Casey, MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms, Oncogene, 2012.

M. Moes, L. Béchec, A. Crespo, I. Laurini, C. Halavatyi et al., A Novel Network Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal Transition, PLoS One, vol.7, p.22514743, 2012.

H. Siemens, R. Jackstadt, S. Hünten, M. Kaller, and A. Menssen, ) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions, Cell Cycle, vol.10, pp.4256-4271, 2011.

L. Hao, J. R. Ha, P. Kuzel, E. Garcia, and S. Persad, Cadherin switch from E-to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail, Br J Dermatol, vol.166, p.22332917, 2012.

D. J. Mckenna, S. S. Mcdade, D. Patel, and D. J. Mccance, MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6, J Virol, vol.84, pp.10644-10652, 2010.

V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, and A. Epanchintsev, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest, Cell Cycle, vol.6, p.17554199, 2007.

N. H. Kim, H. S. Kim, X. Li, I. Lee, and H. Choi, A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition, J Cell Biol, vol.195, pp.417-433, 2011.

E. C. Knouf, K. Garg, J. D. Arroyo, Y. Correa, and D. Sarkar, An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription, Nucleic Acids Res, vol.40, pp.499-510, 2012.

D. Antonini, M. T. Russo, D. Rosa, L. Gorrese, M. et al., Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells, J Invest Dermatol, vol.130, pp.1249-1257, 2010.

M. Agostini, P. Tucci, J. R. Steinert, R. Shalom-feuerstein, and M. Rouleau, microRNA-34a regulates neurite outgrowth, spinal morphology, and function, Proc Natl Acad Sci U S A, vol.108, p.22160706, 2011.

S. Saini, S. Majid, S. Yamamura, L. Tabatabai, and S. O. Suh, Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis, Clin Cancer Res, vol.17, pp.5287-5298, 2011.

G. Blandino and M. Dobbelstein, and p63: why do we still need them?, Cell Cycle, vol.3, p.15254416, 2004.

V. Dötsch, F. Bernassola, D. Coutandin, C. E. Melino, and G. , p63 and p73, the ancestors of p53, Cold Spring Harb Perspect Biol, vol.2, p.4887, 2010.

N. Allocati, D. Ilio, C. , D. Laurenzi, and V. , ) p63/p73 in the control of cell cycle and cell death, Exp Cell Res, vol.318, 2012.

G. P. Dotto, Crosstalk of Notch with p53 and p63 in cancer growth control, Nat Rev Cancer, vol.9, pp.587-595, 2009.

L. Moro, A. A. Arbini, J. L. Yao, P. A. Di-sant'agnese, and E. Marra, Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2, Cell Death Differ, vol.16, pp.571-583, 2009.

N. Forster and L. W. Ellisen, Notch signaling mediates p63-induced quiescence: a new facet of p63/ Notch crosstalk, Cell Cycle, vol.10, p.22041817, 2011.

M. Zdzalik, K. Pustelny, S. Kedracka-krok, K. Huben, and A. Pecak, Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73, Cell Cycle, vol.9, p.21088494, 2010.

Z. Feng and A. J. Levine, The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein, Trends Cell Biol, vol.20, pp.427-434, 2010.

N. Kubo, R. Okoshi, K. Nakashima, O. Shimozato, and A. Nakagawara, MDM2 promotes the proteasomal degradation of p73 through the interaction with Itch in HeLa cells, Biochem Biophys Res Commun, vol.403, pp.405-411, 2010.

X. Zhang, N. Tang, T. J. Hadden, and A. K. Rishi, Akt, FoxO and regulation of apoptosis, Biochim Biophys Acta, vol.1813, p.21440011, 2011.

J. Xu, J. Zhou, W. Wei, and G. S. Wu, Activation of the Akt survival pathway contributes to TRAIL resistance in cancer cells, PLoS One, vol.5, p.20419107, 2010.

Y. Li, D. Dowbenko, and L. A. Lasky, AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival, J Biol Chem, vol.277, pp.11352-11361, 2002.

D. Iliopoulos, C. Polytarchou, M. Hatziapostolou, F. Kottakis, and I. G. Maroulakou, MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells, Sci Signal, vol.2, p.62, 2009.

Y. R. Chin and A. Toker, The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration, Mol Cell, vol.38, pp.333-344, 2010.

Y. R. Chin and A. Toker, Akt isoform-specific signaling in breast cancer: uncovering an anti-migratory role for palladin, Cell Adh Migr, vol.5, p.21519185, 2011.

H. Liu, D. C. Radisky, C. M. Nelson, H. Zhang, and J. E. Fata, Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2, Proc Natl Acad Sci U S A, vol.103, pp.4134-4139, 2006.

L. Héron-milhavet, C. Franckhauser, R. V. Berthenet, C. Fisher, and D. , Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding, Mol Cell Biol, vol.26, pp.8267-8280, 2006.

L. Heron-milhavet, C. Franckhauser, A. Fernandez, and N. J. Lamb, Characterization of the Akt2 domain essential for binding nuclear p21cip1 to promote cell cycle arrest during myogenic differentiation, PLoS One, vol.8, p.76987, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00906356

Y. Liao and M. Hung, Physiological regulation of Akt activity and stability, Am J Transl Res, vol.2, p.20182580, 2010.

S. Talapatra and C. B. Thompson, Growth factor signaling in cell survival: implications for cancer treatment, J Pharmacol Exp Ther, vol.298, p.11504779, 2001.

C. Cabello-verrugio and E. Brandan, A novel modulatory mechanism of transforming growth factorbeta signaling through decorin and LRP-1, J Biol Chem, vol.282, p.17485468, 2007.

Y. Takeuchi, Y. Kodama, and T. Matsumoto, Bone matrix decorin binds transforming growth factorbeta and enhances its bioactivity, J Biol Chem, vol.269, p.7798269, 1994.

O. Okamoto, S. Fujiwara, M. Abe, and Y. Sato, Dermatopontin interacts with transforming growth factor beta and enhances its biological activity, Biochem J, vol.337, p.9895299, 1999.

R. Kopan, Notch signaling, Cold Spring Harb Perspect Biol, vol.4, 2012.

F. Wu, A. Stutzman, and Y. Mo, Notch signaling and its role in breast cancer, Front Biosci, vol.12, p.17485381, 2007.

A. G. Gonzalez, A. Naldi, L. Sánchez, D. Thieffry, and C. Chaouiya, GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks, Biosystems, vol.84, pp.91-100, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02263154

H. Wang, Q. Wu, Z. Liu, X. Luo, and Y. Fan, Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma, Cell Death Dis, vol.5, p.1155, 2014.

L. Zhang, Y. Teng, Y. Zhang, J. Liu, and L. Xu, C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway, Oncol Lett, vol.3, p.22740919, 2012.

Y. Zhan, S. Kim, Y. Izumi, Y. Izumiya, and T. Nakao, Role of JNK, p38, and ERK in plateletderived growth factor-induced vascular proliferation, migration, and gene expression, Arterioscler Thromb Vasc Biol, vol.23, pp.795-801, 2003.

M. D. To, C. E. Wong, A. N. Karnezis, D. Rosario, R. et al., Kras regulatory elements and exon 4A determine mutation specificity in lung cancer, Nat Genet, vol.40, pp.1240-1244, 2008.

Z. Zhang, Y. Wang, H. G. Vikis, L. Johnson, and G. Liu, Wildtype Kras2 can inhibit lung carcinogenesis in mice, Nat Genet, vol.29, pp.25-33, 2001.

H. Li, H. Cao, W. J. Li, Y. Zhu, and M. , Growth inhibitory effect of wild-type Kras2 gene on a colonic adenocarcinoma cell line, World J Gastroenterol, vol.13, p.17352027, 2007.

S. Vartanian, C. Bentley, M. J. Brauer, L. Li, and S. Shirasawa, Identification of mutant K-Rasdependent phenotypes using a panel of isogenic cell lines, J Biol Chem, vol.288, pp.2403-2413, 2013.

M. Benet, R. Y. Dulman, R. Suzme, E. De-miera, and M. E. Vega, Wild type N-ras displays antimalignant properties, in part by downregulating decorin, J Cell Physiol, vol.227, p.21809347, 2012.

J. Xu, K. M. Haigis, A. J. Firestone, M. E. Mcnerney, and Q. Li, Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation, Cancer Discov, vol.3, p.23733505, 2013.

F. Molinari and M. Frattini, Functions and Regulation of the PTEN Gene in Colorectal Cancer, Front Oncol, vol.3, p.24475377, 2013.

A. Li and G. , Genetic alterations of PTEN in human melanoma, Cell Mol Life Sci, vol.69, pp.1475-1491, 2012.

K. A. Mcdowell, G. J. Riggins, and G. L. Gallia, Targeting the AKT pathway in glioblastoma, Curr Pharm Des, vol.17, p.21827416, 2011.

Z. Sun, C. Huang, J. He, K. L. Lamb, and X. Kang, PTEN C-terminal deletion causes genomic instability and tumor development, Cell Rep, vol.6, pp.844-854, 2014.

A. Mukherjee and P. Karmakar, Attenuation of PTEN perturbs genomic stability via activation of Akt and down-regulation of Rad51 in human embryonic kidney cells, Mol Carcinog, vol.52, p.22488521, 2013.

L. He, X. Hou, G. Kanel, N. Zeng, and V. Galicia, The critical role of AKT2 in hepatic steatosis induced by PTEN loss, Am J Pathol, vol.176, p.20348245, 2010.

S. Al-saad, T. Donnem, K. Al-shibli, M. Persson, and R. M. Bremnes, Diverse prognostic roles of Akt isoforms, PTEN and PI3K in tumor epithelial cells and stromal compartment in non-small cell lung cancer, Anticancer Res, vol.29, p.19846969, 2009.

L. C. Trotman, A. Alimonti, P. P. Scaglioni, J. A. Koutcher, and C. Cordon-cardo, Identification of a tumour suppressor network opposing nuclear Akt function, Nature, vol.441, pp.523-527, 2006.

Y. Chin, X. Yuan, S. P. Balk, and A. Toker, Pten-deficient tumors depend on akt2 for maintenance and survival, Cancer Discov, 2014.

R. G. Wickremasinghe, A. G. Prentice, and A. J. Steele, and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies, Leuk Off J Leuk Soc Am Leuk Res Fund, vol.25, pp.1400-1407, 2011.

Y. Hoshino, Y. Katsuno, S. Ehata, and K. Miyazono, Autocrine TGF-? protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. J Biochem, vol.149, p.20880961, 2011.

M. Xiao, Y. G. Liu, M. C. Zou, and F. Zou, Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2, Biomed Environ Sci, vol.27, pp.197-203, 2014.

A. E. Sayan, T. R. Griffiths, R. Pal, G. J. Browne, and A. Ruddick, SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer, Proc Natl Acad Sci U S A, vol.106, pp.14884-14889, 2009.

S. H. Sahlberg, A. Gustafsson, P. N. Pendekanti, B. Glimelius, and B. Stenerlöw, The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines, Tumour Biol, vol.35, p.24338765, 2014.

M. C. Daroqui, P. Vazquez, E. Bal-de-kier-joffé, A. Bakin, and L. I. Puricelli, TGF-? autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression, Oncol Rep, vol.28, pp.567-575, 2012.

L. R. Gomes, L. F. Terra, R. A. Wailemann, L. Labriola, and M. C. Sogayar, TGF-?1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells, BMC Cancer, vol.12, p.26, 2012.

T. Z. Tan, Q. H. Miow, Y. Miki, T. Noda, and S. Mori, Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients, EMBO Mol Med, vol.6, p.25214461, 2014.

H. Zhou, T. Dong, L. Wang, B. Feng, and H. Zhao, Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition, World J Gastroenterol, vol.18, pp.2640-2648, 2012.

M. K. Wendt, M. A. Taylor, B. J. Schiemann, and W. P. Schiemann, Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer, Mol Biol Cell, vol.22, pp.2423-2435, 2011.

G. Stoll, E. Viara, E. Barillot, and L. Calzone, Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm, BMC Syst Biol, vol.6, p.116, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00762304

P. Muller, K. H. Vousden, and J. C. Norman, and its mutants in tumor cell migration and invasion, J Cell Biol, vol.192, p.21263025, 2011.

X. Q. Wang, W. M. Ongkeko, A. W. Lau, K. M. Leung, and R. Y. Poon, A possible role of p73 on the modulation of p53 level through MDM2, Cancer Res, vol.61, p.11245471, 2001.

Z. Wang, Y. Li, D. Kong, S. Banerjee, and A. Ahmad, Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway, Cancer Res, vol.69, pp.2400-2407, 2009.

I. Poon, C. D. Lucas, A. G. Rossi, and K. S. Ravichandran, Apoptotic cell clearance: basic biology and therapeutic potential, Nat Rev Immunol, vol.14, p.24481336, 2014.

E. L. Paterson, J. Kazenwadel, A. G. Bert, Y. Khew-goodall, and A. Ruszkiewicz, Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression, Neoplasia, vol.15, p.23441132, 2013.

F. El-marjou, K. Janssen, B. Chang, M. Li, and V. Hindie, Tissue-specific and inducible Cre-mediated recombination in the gut epithelium, Genesis, vol.39, pp.186-193, 2004.

L. C. Murtaugh, B. Z. Stanger, K. M. Kwan, and D. A. Melton, Notch signaling controls multiple steps of pancreatic differentiation, Proc Natl Acad Sci U S A, vol.100, p.14657333, 2003.

A. Herbst, V. Jurinovic, S. Krebs, S. E. Thieme, and H. Blum, Comprehensive analysis of ?-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/?-catenin signaling, BMC Genomics, vol.15, p.24467841, 2014.

J. Zeilstra, S. Joosten, F. M. Wensveen, M. C. Dessing, and D. M. Schütze, WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer, Biochem Biophys Res Commun, vol.406, pp.1-6, 2011.

J. R. Prosperi and K. H. Goss, A Wnt-ow of opportunity: targeting the Wnt/beta-catenin pathway in breast cancer, Curr Drug Targets, vol.11, p.20545611, 2010.

A. Buda and M. Pignatelli, E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis, Cell Commun Adhes, vol.18, pp.133-143, 2011.

K. Wu, J. Fan, L. Zhang, Z. Ning, and J. Zeng, PI3K/Akt to GSK3?/?-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription, Cell Signal, vol.24, pp.2273-2282, 2012.

A. Morán, P. Ortega, C. De-juan, T. Fernández-marcelo, and C. Frías, Differential colorectal carcinogenesis: Molecular basis and clinical relevance, World J Gastrointest Oncol, vol.2, p.21160823, 2010.

H. Yuzugullu, K. Benhaj, N. Ozturk, S. Senturk, and E. Celik, Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells, Mol Cancer, vol.8, p.90, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00622544

H. Pang, H. Lu, H. Song, Q. Meng, and Y. Zhao, Prognostic values of osteopontin-c, E-cadherin and ?-catenin in breast cancer, Cancer Epidemiol, vol.37, p.24012693, 2013.

H. Zhang, J. Liu, D. Yue, L. Gao, and D. Wang, Clinical significance of E-cadherin, ?-catenin, vimentin and S100A4 expression in completely resected squamous cell lung carcinoma, J Clin Pathol, vol.66, pp.937-945, 2013.

C. G. Chiu, S. K. Chan, Z. A. Fang, H. Masoudi, and R. Wood-baker, Beta-catenin expression is prognostic of improved non-small cell lung cancer survival, Am J Surg, vol.203, p.22402266, 2012.

N. Nozawa, S. Hashimoto, Y. Nakashima, Y. Matsuo, and T. Koga, Immunohistochemical alphaand beta-catenin and E-cadherin expression and their clinicopathological significance in human lung adenocarcinoma, Pathol Res Pract, vol.202, pp.639-650, 2006.

T. Morikawa, A. Kuchiba, M. Yamauchi, J. A. Meyerhardt, and K. Shima, Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer, JAMA, vol.305, pp.1685-1694, 2011.

T. Morikawa, A. Kuchiba, P. Lochhead, R. Nishihara, and M. Yamauchi, Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with ?-catenin (CTNNB1) status, Cancer Res, vol.73, pp.1600-1610, 2013.

J. Bruun, M. Kolberg, J. M. Nesland, A. Svindland, and A. Nesbakken, Prognostic Significance of ?-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series, Front Oncol, vol.4, p.24904831, 2014.

C. Pourreyron, L. Reilly, C. Proby, A. Panteleyev, and C. Fleming, Wnt5a is strongly expressed at the leading edge in non-melanoma skin cancer, forming active gradients, while canonical Wnt signalling is repressed, PLoS One, vol.7, p.31827, 2012.

A. J. Mikels and R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context, PLoS Biol, vol.4, p.115, 2006.

Y. Yuan, C. C. Niu, G. Deng, Z. Q. Li, and J. Pan, The Wnt5a/Ror2 noncanonical signaling pathway inhibits canonical Wnt signaling in K562 cells, Int J Mol Med, vol.27, p.21069266, 2011.

L. Wang, X. Liu, E. Gusev, C. Wang, and F. Fagotto, Regulation of the phosphorylation and nuclear import and export of ?-catenin by APC and its cancer-related truncated form, J Cell Sci, vol.127, pp.1647-1659, 2014.

H. K. Roy, B. F. Olusola, D. L. Clemens, W. J. Karolski, and A. Ratashak, AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis, Carcinogenesis, vol.23, p.11756242, 2002.

P. G. Rychahou, J. Kang, P. Gulhati, H. Q. Doan, and L. A. Chen, Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis, Proc Natl Acad Sci U S A, vol.105, pp.20315-20320, 2008.

S. N. Steinway, G. Tejeda-zañudo, J. Ding, W. Rountree, C. B. Feith et al., Network modeling of TGF? signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint Sonic hedgehog and Wnt pathway activation, Cancer Res, 2014.

H. Nakabayashi, K. Taketa, K. Miyano, T. Yamane, and J. Sato, Growth of human hepatoma cells lines with differentiated functions in chemically defined medium, Cancer Res, vol.42, p.6286115, 1982.

J. J. Alexander, E. M. Bey, E. W. Geddes, and G. Lecatsas, Establishment of a continuously growing cell line from primary carcinoma of the liver, S Afr Med J, vol.50, p.63998, 1976.

Y. Lin, C. Y. Shi, B. Li, B. H. Soo, and S. Mohammed-ali, Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma, Ann Acad Med, vol.25, p.8779541, 1996.

M. Austinat, R. Dunsch, C. Wittekind, A. Tannapfel, and R. Gebhardt, Correlation between betacatenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma, Mol Cancer, vol.7, p.21, 2008.