Y. Y. Kong, H. Yoshida, I. Sarosi, H. L. Tan, E. Timms et al., OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature, vol.397, pp.315-323, 1999.
DOI : 10.1038/16852

Y. Y. Kong, W. J. Boyle, and J. M. Penninger, Osteoprotegerin ligand: A common link between osteoclastogenesis, lymph node formation and lymphocyte development, Immunol. Cell Biol, vol.77, pp.188-193, 1999.
DOI : 10.1046/j.1440-1711.1999.00815.x

J. E. Fata, Y. Y. Kong, J. Li, T. Sasaki, J. Irie-sasaki et al., The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development, Cell, vol.103, pp.41-50, 2000.
DOI : 10.1016/s0092-8674(00)00103-3

URL : https://doi.org/10.1016/s0092-8674(00)00103-3

D. Kim, R. E. Mebius, J. D. Macmicking, S. Jung, T. Cupedo et al., Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE, J. Exp. Med, vol.192, pp.1467-1478, 2000.

N. Kim, P. R. Odgren, D. K. Kim, S. C. Marks, and Y. Choi, Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene, Proc. Natl. Acad. Sci, vol.97, pp.10905-10910, 2000.

L. Xing, E. M. Schwarz, and B. F. Boyce, Osteoclast precursors, RANKL/RANK, and immunology, Immunol. Rev, vol.208, pp.19-29, 2005.
DOI : 10.1111/j.0105-2896.2005.00336.x

M. Sugiyama, G. Nakato, T. Jinnohara, H. Akiba, K. Okumura et al., Expression pattern changes and function of RANKL during mouse lymph node microarchitecture development, Int. Immunol, vol.24, pp.369-378, 2012.
DOI : 10.1093/intimm/dxs002

URL : https://academic.oup.com/intimm/article-pdf/24/6/369/17414641/dxs002.pdf

M. C. Walsh and Y. Choi, Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front. Immunol, vol.5, 2014.

M. Habbeddine, C. Verthuy, O. Rastoin, L. Chasson, M. Bebien et al., Receptor Activator of NF-?B Orchestrates Activation of Antiviral Memory CD8 T Cells in the Spleen Marginal Zone, vol.21, pp.2515-2527, 2017.

Y. Hikosaka, T. Nitta, I. Ohigashi, K. Yano, N. Ishimaru et al., The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator, Immunity, vol.29, pp.438-450, 2008.
DOI : 10.1016/j.immuni.2008.06.018

URL : https://doi.org/10.1016/j.immuni.2008.06.018

G. E. Desanti, J. E. Cowan, S. Baik, S. M. Parnell, A. J. White et al., Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla, J. Immunol, vol.189, pp.5519-5526, 2012.

C. G. Mueller and E. Hess, Emerging Functions of RANKL in Lymphoid Tissues. Front

, J. Clin. Med, vol.7, pp.426-437, 2018.

E. Hess, V. Duheron, M. Decossas, F. Lézot, A. Berdal et al., RANKL Induces Organized Lymph Node Growth by Stromal Cell Proliferation, J. Immunol, vol.188, pp.1245-1254, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00782725

V. Duheron, E. Hess, M. Duval, M. Decossas, B. Castaneda et al., Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit, Proc. Natl. Acad. Sci, vol.108, pp.5342-5347, 2011.

A. Ohazama, J. Courtney, P. T. Sharpe, and . Opg, Rank, and Rankl in tooth development: Co-ordination of odontogenesis and osteogenesis, J. Dent. Res, vol.83, pp.241-244, 2004.

B. Castaneda, Y. Simon, J. Jacques, E. Hess, Y. Choi et al., Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-?B (RANK), J. Cell. Physiol, vol.226, pp.74-85, 2011.

N. Kim, H. Kim, B. Koo, M. Kwon, Y. Kim et al., Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2, Mol. Cell. Biol, vol.26, pp.1002-1013, 2006.

T. Tanos and C. Brisken, What signals operate in the mammary niche? Breast Dis, vol.29, pp.69-82, 2008.

V. Kartsogiannis, H. Zhou, N. J. Horwood, R. J. Thomas, D. K. Hards et al., Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues, vol.25, pp.525-534, 1999.

Y. Sakakura, E. Tsuruga, K. Irie, Y. Hosokawa, H. Nakamura et al., Immunolocalization of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) in Meckel's cartilage compared with developing endochondral bones in mice, J. Anat, vol.207, pp.325-337, 2005.

J. Xiong, M. Onal, R. L. Jilka, R. S. Weinstein, S. C. Manolagas et al., Matrix-embedded cells control osteoclast formation, Nat. Med, vol.17, pp.1235-1241, 2011.
DOI : 10.1038/nm.2448

URL : http://europepmc.org/articles/pmc3192296?pdf=render

P. R. Odgren, H. Witwicka, and P. Reyes-gutierrez, The cast of clasts: Catabolism and vascular invasion during bone growth, repair, and disease by osteoclasts, chondroclasts, and septoclasts, Connect. Tissue Res, vol.57, pp.161-174, 2016.

G. J. Atkins, P. Kostakis, B. Pan, A. Farrugia, S. Gronthos et al., RANKL expression is related to the differentiation state of human osteoblasts, J. Bone Miner. Res, vol.18, pp.1088-1098, 2003.

C. Sobacchi, A. Frattini, M. M. Guerrini, M. Abinun, A. Pangrazio et al., Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL, Nat. Genet, vol.39, pp.960-962, 2007.

R. W. Boyce, A. Varela, L. Chouinard, J. L. Bussiere, G. J. Chellman et al., Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period, vol.64, pp.314-325, 2014.

F. Lézot, J. Chesneau, B. Navet, B. Gobin, J. Amiaud et al., Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: Mouse strain disparities and synergic effect with zoledronic acid, vol.73, pp.51-59, 2015.

N. Okamatsu, N. Sakai, A. Karakawa, N. Kouyama, Y. Sato et al., Biological effects of anti-RANKL antibody administration in pregnant mice and their newborns, Biochem. Biophys. Res. Commun, vol.491, pp.614-621, 2017.

N. Klymiuk, W. Böcker, V. Schönitzer, A. Bähr, T. Radic et al., First inducible transgene expression in porcine large animal models, FASEB J, vol.26, pp.1086-1099, 2012.
DOI : 10.1096/fj.11-185041

A. Mizuno, T. Kanno, M. Hoshi, O. Shibata, K. Yano et al., Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis, J. Bone Miner. Metab, vol.20, pp.337-344, 2002.
DOI : 10.1007/s007740200049

, J. Clin. Med, vol.7, pp.426-438, 2018.

A. E. Hughes, S. H. Ralston, J. Marken, C. Bell, H. Macpherson et al., Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis, Nat. Genet, vol.24, pp.45-48, 2000.

L. Palenzuela, C. Vives-bauza, I. Fernández-cadenas, A. Meseguer, N. Font et al., Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene, J. Med. Genet, 2002.

B. Castaneda, Y. Simon, D. Ferbus, B. Robert, J. Chesneau et al., Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01538404

T. Ikeda, M. Kasai, M. Utsuyama, and K. Hirokawa, Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus, Endocrinology, vol.142, pp.1419-1426, 2001.

B. Sojod, D. Chateau, C. G. Mueller, S. Babajko, A. Berdal et al., RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model, Front. Physiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01547424

A. Leibbrandt and J. M. Penninger, RANK/RANKL: Regulators of immune responses and bone physiology, Ann. N. Y. Acad. Sci, vol.1143, pp.123-150, 2008.

L. Xing, D. Chen, and B. F. Boyce, Mice Deficient in NF-?B p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism, Bone Res, vol.1, pp.336-345, 2013.

Y. Meng, W. Zhou, L. Jin, L. Liu, K. Chang et al., RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization

M. Shaarawy, S. Zaki, A. Ramzi, M. E. Salem, and A. M. El-minawi, Feto-maternal bone remodeling in normal pregnancy and preeclampsia, J. Soc. Gynecol. Investig, vol.12, pp.343-348, 2005.

D. D. Briana, M. Boutsikou, S. Baka, D. Hassiakos, D. Gourgiotis et al., Circulating osteoprotegerin and sRANKL concentrations in the perinatal period at term. The impact of intrauterine growth restriction, Neonatology, vol.96, pp.132-136, 2009.

N. Vitoratos, I. Lambrinoudaki, D. Rizos, E. Armeni, A. Alexandrou et al., Maternal circulating osteoprotegerin and soluble RANKL in pre-eclamptic women, Eur. J. Obstet. Gynecol. Reprod. Biol, vol.154, pp.141-145, 2011.

P. Shen, Y. Gong, T. Wang, Y. Chen, J. Jia et al., Expression of osteoprotegerin in placenta and its association with preeclampsia, PLoS ONE, vol.7, 2012.

R. Tenta, I. Bourgiezi, E. Aliferis, M. Papadopoulou, A. Gounaris et al., Bone metabolism compensates for the delayed growth in small for gestational age neonates, Organogenesis, vol.9, pp.55-59, 2013.

R. Rzepka, B. Do??-egowska, D. Sa?ata, A. Rajewska, M. Budkowska et al.,

W. Miko?ajek-bedner and A. Torbé, Soluble receptors for advanced glycation end products and receptor activator of NF-?B ligand serum levels as markers of premature labor, BMC Pregnancy Childbirth, vol.15, 2015.

J. Luo, Z. Yang, Y. Ma, Z. Yue, H. Lin et al., LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption, Nat. Med, vol.22, pp.539-546, 2016.

T. Hattori, C. Müller, S. Gebhard, E. Bauer, F. Pausch et al., SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification, Dev. Camb. Engl, vol.137, pp.901-911, 2010.

C. Parada, Y. Chai, T. Mandible, and . Development, Curr. Top. Dev. Biol, vol.115, pp.31-58, 2015.

S. Orestes-cardoso, J. R. Nefussi, F. Lezot, M. Oboeuf, M. Pereira et al., Msx1 is a regulator of bone formation during development and postnatal growth: In vivo investigations in a transgenic mouse model, Connect. Tissue Res, vol.43, pp.153-160, 2002.

N. Anthwal, H. Peters, and A. S. Tucker, Species-specific modifications of mandible shape reveal independent mechanisms for growth and initiation of the coronoid, EvoDevo, vol.6, 2015.

F. Lézot, B. L. Thomas, C. Blin-wakkach, B. Castaneda, A. Bolanos et al., Dlx homeobox gene family expression in osteoclasts, J. Cell. Physiol, vol.223, pp.779-787, 2010.

R. A. Deckelbaum, A. Majithia, T. Booker, J. E. Henderson, and C. A. Loomis, The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling, Dev. Camb. Engl, vol.133, pp.63-74, 2006.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2018 by the authors. Licensee MDPI