D. Maraninchi, N. Cerf, and P. Bousquet, Rapport sur la dynamique d'évolution des taux de mortalité des principaux cancers en France INCa -Inserm, 2010.

R. Stupp, Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up, Annals of Oncology, vol.18, issue.2, pp.69-70, 2007.
DOI : 10.1093/annonc/mdn099

URL : https://academic.oup.com/annonc/article-pdf/19/suppl_2/ii83/726759/mdn099.pdf

S. Muquit, R. Parks, and S. Basu, Socio-economic characteristics of patients with glioblastoma multiforme, Journal of Neuro-Oncology, vol.105, issue.4 Suppl, pp.1-5
DOI : 10.1054/bjoc.2000.1612

R. Kenneth and . Hess-krbamlb, Adult Glioma Incidence Trends in the United States, Cancer, vol.101, issue.10, p.7, 1977.

M. Preusser, S. De-ribaupierre, and A. Wöhrer, Current concepts and management of glioblastoma, Annals of Neurology, vol.91, issue.2, pp.9-21, 2011.
DOI : 10.1007/s11060-008-9670-x

R. Stupp and F. Roila, Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up, Annals of Oncology, vol.20, issue.4, pp.126-128, 2009.
DOI : 10.1093/annonc/mdn099

URL : https://academic.oup.com/annonc/article-pdf/19/suppl_2/ii83/726759/mdn099.pdf

F. Dhermain, Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches, Chinese Journal of Cancer, vol.33, issue.1, pp.16-24, 2014.
DOI : 10.5732/cjc.013.10217

A. Sl, Chemotherapy in adult high-grade glioma: a systematic review and metaanalysis of individual patient data from 12 randomised trials. The Lancet, pp.1011-1018, 2002.

R. Stupp, W. Mason, and M. Van-den-bent, Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

V. Ho, J. Reijneveld, and R. Enting, Changing incidence and improved survival of gliomas, European Journal of Cancer, vol.50, issue.13, pp.2309-2318, 2014.
DOI : 10.1016/j.ejca.2014.05.019

M. Tetard, M. Vermandel, S. Mordon, J. Lejeune, N. Reyns et al., Experimental use of Photodynamic Therapy in high grade gliomas: a review focused on 5-aminolevulinic acid Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers in Surgery and Medicine, pp.225-234, 2013.

T. Beck, F. Kreth, and W. Beyer, Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine, pp.386-393, 2007.
DOI : 10.1002/lsm.20507

P. Muller and B. Wilson, Photodynamic therapy of brain tumors???A work in progress, Lasers in Surgery and Medicine, vol.49, issue.5, pp.384-389, 2006.
DOI : 10.1017/S0317167100030444

S. Stylli, A. Kaye, L. Macgregor, M. Howes, and P. Rajendra, Photodynamic therapy of high grade glioma ??? long term survival, Journal of Clinical Neuroscience, vol.12, issue.4, pp.389-398, 2005.
DOI : 10.1016/j.jocn.2005.01.006

D. Bechet, S. Mordon, F. Guillemin, and M. Barberi-heyob, Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies, Cancer Treatment Reviews, vol.40, issue.2, pp.229-241, 2014.
DOI : 10.1016/j.ctrv.2012.07.004

URL : https://hal.archives-ouvertes.fr/hal-00716377

W. Stummer, T. Beck, and W. Beyer, Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report, Journal of Neuro-Oncology, vol.65, issue.1, pp.103-109, 2008.
DOI : 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.290

H. Leroy, M. Vermandel, J. Lejeune, S. Mordon, and N. Reyns, Fluorescence guided resection and glioblastoma in 2015: A review, Lasers in Surgery and Medicine, vol.29, issue.Suppl 1, pp.441-451, 2015.
DOI : 10.1007/s00381-013-2159-8

URL : https://hal.archives-ouvertes.fr/hal-01182307

J. Cornelius, P. Slotty, M. Kamp, T. Schneiderhan, H. Steiger et al., Impact of 5-aminolevulinic acid fluorescence-guided surgery on the extent of resection of meningiomas ??? With special regard to high-grade tumors, Photodiagnosis and Photodynamic Therapy, vol.11, issue.4, pp.481-490, 2014.
DOI : 10.1016/j.pdpdt.2014.07.008

X. Su, Q. Huang, H. Chen, and C. J. , Fluorescence-guided resection of high-grade gliomas: A systematic review and meta-analysis, Photodiagnosis and Photodynamic Therapy, vol.11, issue.4, pp.451-458, 2014.
DOI : 10.1016/j.pdpdt.2014.08.001

M. Petterssen, S. Eljamel, and S. Eljamel, Protoporphyrin-IX fluorescence guided surgical resection in high-grade gliomas: The potential impact of human colour perception, Photodiagnosis and Photodynamic Therapy, vol.11, issue.3, pp.351-356, 2014.
DOI : 10.1016/j.pdpdt.2014.05.002

W. Stummer, U. Pichlmeier, and T. Meinel, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, The Lancet Oncology, vol.7, issue.5, pp.392-401, 2006.
DOI : 10.1016/S1470-2045(06)70665-9

P. Muller and B. Wilson, Photodynamic therapy for recurrent supratentorial gliomas, Seminars in Surgical Oncology, vol.79, issue.5, pp.346-354, 1995.
DOI : 10.1017/S0317167100035563

P. Muller and B. Wilson, Photodynamic therapy for malignant newly diagnosed supratentorial gliomas, J Clin Laser Med Surg, vol.14, issue.5, pp.263-270, 1996.
DOI : 10.1002/ssu.2980110504

P. Dwyer, W. White, R. Fabian, and R. Anderson, Optical integrating balloon device for photodynamic therapy, Lasers in Surgery and Medicine, vol.40, issue.1, pp.58-66, 2000.
DOI : 10.1001/archsurg.1989.01410010084018

H. Moseley, C. Mclean, S. Hockaday, and S. Eljamel, In vitro light distributions from intracranial PDT balloons, Photodiagnosis and Photodynamic Therapy, vol.4, issue.3, pp.213-220, 2007.
DOI : 10.1016/j.pdpdt.2007.06.003

B. Wilson, P. Muller, and J. Yanch, Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours, Physics in Medicine and Biology, vol.31, issue.2, pp.125-133, 1986.
DOI : 10.1088/0031-9155/31/2/002

G. Hennig, H. Stepp, and A. Johansson, Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy, Photodiagnosis and Photodynamic Therapy, vol.8, issue.3, pp.275-281, 2011.
DOI : 10.1016/j.pdpdt.2011.03.338

A. Rendon, J. Beck, and L. Lilge, Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy. Paper presented at: Proc. of SPIE Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, 2008.
DOI : 10.1117/12.764275

G. Shafirstein, D. Bellnier, and E. Oakley, Interstitial Photodynamic Therapy???A Focused Review, Cancers, vol.10, issue.2, p.14
DOI : 10.9738/INTSURG-D-14-00093.1

URL : http://www.mdpi.com/2072-6694/9/2/12/pdf

K. Lakouas, D. Huglo, D. Mordon, S. Vermandel, and M. , Nuclear medicine for photodynamic therapy in cancer: planning, monitoring and nuclear PDT Photodiagnosis and Photodynamic Therapy, p.17, 2017.

S. Jacques, Optical properties of biological tissues: a review, Physics in Medicine and Biology, vol.58, issue.11, pp.37-61, 2013.
DOI : 10.1088/0031-9155/58/11/R37

L. Wang, S. Jacques, and L. Zheng, MCML?Monte Carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine, pp.131-146, 1995.

C. Zhu, Q. Liu, G. Panasenko, and S. Ganesh, Review of Monte Carlo modeling of light transport in tissues Multiscale Modeling of Light Absorption in Tissues: Limitations of Classical Homogenization Approach, Journal of biomedical optics. PloS one, vol.185, issue.512, p.14350, 2010.

S. Arridge and J. Hebden, Optical imaging in medicine: II. Modelling and reconstruction, Physics in Medicine and Biology, vol.42, issue.5, p.841, 1997.
DOI : 10.1088/0031-9155/42/5/008

E. Oakley, D. Bellnier, and A. Hutson, Surface markers for guiding cylindrical diffuser fiber insertion in interstitial photodynamic therapy of head and neck cancer. Lasers in Surgery and Medicine, p.10, 2017.

A. Dimofte, J. Finlay, X. Liang, and T. Zhu, Determination of optical properties in heterogeneous turbid media using a cylindrical diffusing fiber, Physics in Medicine and Biology, vol.57, issue.19, pp.6025-6046, 2012.
DOI : 10.1088/0031-9155/57/19/6025

A. Johansson, Spectroscopic Techniques for Photodynamic Therapy Dosimetry: Lunds tekniska högskola. Division of Atomic Physics, 2007.

X. Liang, K. Wang, and T. Zhu, Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fibers for prostate PDT, Physics in Medicine and Biology, vol.58, issue.10, pp.3461-3480, 2013.
DOI : 10.1088/0031-9155/58/10/3461

J. Sandell and T. Zhu, A review of in-vivo optical properties of human tissues and its impact on PDT, Journal of Biophotonics, vol.2, issue.1, pp.11-12773, 2011.
DOI : 10.1039/b209651j

W. Star, The relationship between integrating sphere and diffusion theory calculations of fluence rate at the wall of a spherical cavity, Physics in Medicine and Biology, vol.40, issue.1, pp.1-8, 1995.
DOI : 10.1088/0031-9155/40/1/001

T. Zhu, A. Lu, and Y. Ong, An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry, Proceedings of SPIE--the International Society for Optical Engineering, p.97061, 2016.

G. Steiner and M. Kirsch, Optical spectroscopic methods for intraoperative diagnosis, Analytical and Bioanalytical Chemistry, vol.6, issue.566, pp.21-25, 2014.
DOI : 10.1002/smll.200901820

P. Valdés, D. Roberts, F. Lu, . Phd, and A. Golby, Optical technologies for intraoperative neurosurgical guidance, Neurosurgical Focus, vol.40, issue.3, p.8, 2016.
DOI : 10.3171/2015.12.FOCUS15550

Y. Zhou, C. Liu, and Y. Sun, Human brain cancer studied by resonance Raman spectroscopy, Journal of Biomedical Optics, vol.17, issue.11, p.116021, 2012.
DOI : 10.1117/1.JBO.17.11.116021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499405

R. Kast, G. Auner, and S. Yurgelevic, Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging, Journal of Neuro-Oncology, vol.76, issue.2, pp.287-295, 2015.
DOI : 10.1016/j.chemolab.2004.10.003

S. Kalkanis, R. Kast, and M. Rosenblum, Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections, Journal of Neuro-Oncology, vol.42, issue.3, pp.477-485, 2014.
DOI : 10.1080/05704920701551530

D. Roblyer, O. Sullivan, T. Warren, R. Tromberg, and B. , Feasibility of direct digital sampling for diffuse optical frequency domain spectroscopy in tissue, Measurement Science and Technology, vol.24, issue.4, p.45501, 2013.
DOI : 10.1088/0957-0233/24/4/045501

G. Yu, T. Durduran, D. Furuya, J. Greenberg, and A. Yodh, Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics, Applied Optics, vol.42, issue.16, pp.2931-2939, 2003.
DOI : 10.1364/AO.42.002931

A. Kienle, C. Wetzel, A. Bassi, D. Comelli, P. Taroni et al., Determination of the optical properties of anisotropic biological media using an isotropic diffusion model Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function, Journal of biomedical optics. Trends in Neurosciences, vol.1220, issue.5210, pp.14026-014026, 1997.

L. Hasselgren, S. Galt, and S. Hard, Diffusive optical fiber ends for photodynamic therapy: manufacture and analysis, Applied Optics, vol.29, issue.30, pp.4481-4488, 1990.
DOI : 10.1364/AO.29.004481

C. Tedford, S. Delapp, S. Jacques, and A. J. , Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers in Surgery and Medicine, p.11, 2015.

A. Dimofte, J. Finlay, and T. Zhu, A method for determination of the absorption and scattering properties interstitially in turbid media, Physics in Medicine and Biology, vol.50, issue.10, pp.2291-2311, 2005.
DOI : 10.1088/0031-9155/50/10/008

S. Jacques and B. Pogue, Tutorial on diffuse light transport, Journal of Biomedical Optics, vol.13, issue.4, p.41302, 2008.
DOI : 10.1117/1.2967535

S. Prahl, M. Keijzer, S. Jacques, and A. Welch, A Monte Carlo Model of Light Propagation in Tissue, SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology, vol.5, pp.102-111, 1989.

T. Baran and T. Foster, New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation, Journal of Biomedical Optics, vol.16, issue.8, pp.85003-085003, 2011.
DOI : 10.1117/1.3613920

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166340

S. Jacques, Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation, Photoacoustics, vol.2, issue.4, pp.137-142, 2014.
DOI : 10.1016/j.pacs.2014.09.001

URL : http://doi.org/10.1016/j.pacs.2014.09.001

X. Zhang, M. Trame, L. Lesko, and S. Schmidt, Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models, CPT: Pharmacometrics & Systems Pharmacology, vol.67, issue.2, pp.69-79, 2015.
DOI : 10.1158/0008-5472.CAN-07-0238

C. Dupont, N. Betrouni, S. Mordon, N. Reyns, and M. Vermandel, 5-ALA Photodynamic Therapy in Neurosurgery, Towards the Design of a Treatment Planning System: A Proof of Concept, IRBM, vol.38, issue.1, pp.34-41, 2017.
DOI : 10.1016/j.irbm.2016.11.002

N. Ren, J. Liang, X. Qu, J. Li, B. Lu et al., GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues Fang Q, Boas DA. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units, Optics Express. Optics Express, vol.1817, issue.6422, pp.6811-682320178, 2009.
DOI : 10.1364/oe.18.006811

E. Alerstam, T. Svensson, and S. Andersson-engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration, Journal of Biomedical Optics, vol.13, issue.6, p.60504, 2008.
DOI : 10.1117/1.3041496

J. Cassidy, V. Betz, and L. Lilge, Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte, Frontiers in Physics, vol.58, pp.1-10, 2015.
DOI : 10.1088/0031-9155/58/14/5007

N. Porz, S. Bauer, and A. Pica, Multi-Modal Glioblastoma Segmentation: Man versus Machine, PLoS ONE, vol.119, issue.5, p.96873, 2014.
DOI : 10.1371/journal.pone.0096873.s001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.652.1500

C. Dupont, N. Betrouni, N. Reyns, and M. Vermandel, On Image Segmentation Methods Applied to Glioblastoma: State of Art and New Trends, IRBM, vol.37, issue.3, 2016.
DOI : 10.1016/j.irbm.2015.12.004

URL : https://hal.archives-ouvertes.fr/hal-01325355

N. Betrouni, C. P. Puech, P. Villers, A. Mordon, and S. , An image guided treatment platform for prostate cancer photodynamic therapy, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.370-373, 2013.
DOI : 10.1109/EMBC.2013.6609514

N. Betrouni, R. Lopes, P. Puech, C. P. Mordon, and S. , A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD Soluble WST11, Physics in Medicine and Biology, vol.56, issue.15, pp.4771-4783, 2011.
DOI : 10.1088/0031-9155/56/15/009

J. Cassidy, V. Betz, and L. Lilge, Monte Carlo fluence simulation for prospective evaluation of interstitial photodynamic therapy treatment plans. Paper presented at, Proc. SPIE Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXIV2015

H. Liu, P. Dong, and L. Xing, WE-AB-209-02: A New Inverse Planning Framework with Principle-Based Modeling of Inter-Structural Dosimetric Tradeoffs, Medical Physics, vol.43, issue.6Part39, pp.3801-3801, 2016.
DOI : 10.1118/1.4957771

L. Vesselov, W. Whittington, and L. Lilge, Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications. Lasers in Surgery and Medicine, pp.348-351, 2004.

J. Finlay, T. Zhu, and A. Dimofte, of the absorption and scattering spectra of the human prostate during photodynamic therapy, Proceedings of SPIE--the International Society for Optical Engineering, pp.132-142, 2014.

T. Zhu, J. Finlay, and S. Hahn, Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy, Journal of Photochemistry and Photobiology B: Biology, vol.79, issue.3, pp.231-241, 2005.
DOI : 10.1016/j.jphotobiol.2004.09.013

A. Dimofte, J. Finlay, and A. Sharikova, Determination of tissue optical properties in PDT treated Head & Neck patients Proceedings of SPIE--the International Society for Optical Engineering Vignion Comparison of three light doses in the photodynamic treatment of actinic keratosis using mathematical modeling):58001. 78 delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy Overview of computational simulations for PDT treatments based on optimal choice of singlet oxygen, Paper presented at: Proc. of SPIE Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI2017. 80. Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Medical Physics, pp.846-8563127, 2008.

B. Li, L. Lin, H. Lin, and B. Wilson, Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy, Journal of Biophotonics, vol.19, issue.2, pp.1-12
DOI : 10.1117/1.JBO.19.2.028001

R. Saager, D. Cuccia, S. Saggese, K. Kelly, and A. Durkin, Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain, Journal of Biomedical Optics, vol.16, issue.12, p.126013, 2011.
DOI : 10.1117/1.3665440