T. Carlos and J. Harlan, Leukocyte-Endothelial Adhesion Molecules, Blood, vol.84, pp.2068-2101, 1994.

C. Mackay, Chemokines: immunology's high impact factors, Nature Immunology, vol.2, issue.2, pp.95-101, 2001.
DOI : 10.1038/84298

D. D. Wagner and P. S. Frenette, The vessel wall and its interactions, Blood, vol.111, issue.11, pp.5271-5281, 2008.
DOI : 10.1182/blood-2008-01-078204

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396724

H. F. Langer and T. Chavakis, Leukocyte - endothelial interactions in inflammation, Journal of Cellular and Molecular Medicine, vol.366, issue.7, pp.1211-1220, 2009.
DOI : 10.1111/j.1582-4934.2009.00811.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861890

T. G. Walsh, P. Metharom, and M. C. Berndt, The functional role of platelets in the regulation of angiogenesis, Platelets, vol.60, issue.3, pp.199-211, 2015.
DOI : 10.1161/01.RES.0000146674.38319.07

P. Manegold, J. Hutter, S. Pahernik, K. Messmer, and M. Dellian, Platelet-endothelial interaction in tumor angiogenesis and microcirculation, Blood, vol.101, issue.5, pp.1970-1976, 2003.
DOI : 10.1182/blood.V101.5.1970

M. Hoffman and D. Monroe, A cell-based model of hemostasis, Thromb. Haemost, vol.85, pp.958-965, 2001.

V. Henn, CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells, Nature, vol.391, pp.591-594, 1998.

H. W. Hou, Deformability based cell margination???A simple microfluidic design for malaria-infected erythrocyte separation, Lab on a Chip, vol.37, issue.19, pp.2605-2613, 2010.
DOI : 10.1039/c003873c

D. A. Fedosov and G. Gompper, White blood cell margination in microcirculation, Soft Matter, vol.306, issue.17, pp.2961-2970, 2014.
DOI : 10.1007/s10237-013-0497-9

J. W. Song and L. L. Munn, Fluid forces control endothelial sprouting, Proc. Natl. Acad. Sci. USA, pp.15342-15347, 2011.
DOI : 10.1115/1.2170118

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174629

D. Kaul, M. Fabry, and R. Nagel, Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications., Proc. Natl. Acad. Sci. USA, pp.3356-3360, 1989.
DOI : 10.1073/pnas.86.9.3356

P. Rajendran, The Vascular Endothelium and Human Diseases, International Journal of Biological Sciences, vol.9, issue.10, pp.1057-1069, 2013.
DOI : 10.7150/ijbs.7502

URL : http://doi.org/10.7150/ijbs.7502

K. H. Wong, J. M. Chan, R. D. Kamm, and J. Tien, Microfluidic Models of Vascular Functions, Annual Review of Biomedical Engineering, vol.14, issue.1, pp.205-230, 2012.
DOI : 10.1146/annurev-bioeng-071811-150052

J. Tien, Microfluidic approaches for engineering vasculature, Current Opinion in Chemical Engineering, vol.3, pp.36-41, 2014.
DOI : 10.1016/j.coche.2013.10.006

J. M. Chan, K. H. Wong, A. M. Richards, and C. L. Drum, Microengineering in cardiovascular research: new developments and translational applications, Cardiovascular Research, vol.106, issue.1, pp.9-18, 2015.
DOI : 10.1093/cvr/cvv049

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362405

B. R. Branchford, C. J. Ng, K. B. Neeves, and J. Di-paola, Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis, Thrombosis Research, vol.136, issue.1, pp.13-19, 2015.
DOI : 10.1016/j.thromres.2015.05.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910695

J. Skommer and D. Wlodkowic, Successes and future outlook for microfluidics-based cardiovascular drug discovery, Expert Opinion on Drug Discovery, vol.67, issue.80, pp.231-244, 2015.
DOI : 10.1063/1.3567888

M. Shin, Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane), Biomedical Microdevices, vol.6, issue.4, pp.269-278, 2004.
DOI : 10.1023/B:BMMD.0000048559.29932.27

K. Chrobak, D. Potter, and J. Tien, Formation of perfused, functional microvascular tubes in vitro, Microvascular Research, vol.71, issue.3, pp.185-196, 2006.
DOI : 10.1016/j.mvr.2006.02.005

J. M. Rosano, A physiologically realistic in vitro model of microvascular networks, Biomedical Microdevices, vol.163, issue.5, pp.1051-1057, 2009.
DOI : 10.1007/s10544-009-9322-8

L. K. Fiddes, A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions, Biomaterials, vol.31, issue.13, pp.3459-3464, 2010.
DOI : 10.1016/j.biomaterials.2010.01.082

S. Kim, H. Lee, M. Chung, and N. L. Jeon, Engineering of functional, perfusable 3D microvascular networks on a chip, Lab on a Chip, vol.11, issue.8, pp.1489-1500, 2013.
DOI : 10.1039/c3lc41320a

A. P. Golden and J. Tien, Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element, Lab on a Chip, vol.99, issue.6, pp.720-725, 2007.
DOI : 10.1039/b618409j

L. E. Bertassoni, Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs, Lab Chip, vol.4, issue.18, pp.2202-2211, 2014.
DOI : 10.1039/c3lc50252j

M. Tsai, In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology, Journal of Clinical Investigation, vol.122, issue.1, pp.408-418, 2012.
DOI : 10.1172/JCI58753DS1

J. P. Morgan, Formation of microvascular networks in vitro, Nature Protocols, vol.7, issue.9, pp.1820-1836, 2013.
DOI : 10.1038/488465a

Y. Zheng, In vitro microvessels for the study of angiogenesis and thrombosis, Proc. Natl. Acad. Sci. USA, pp.9342-9347, 2012.
DOI : 10.1038/nbt1109

R. G. Mannino, ???Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions???, Scientific Reports, vol.407, issue.1, 2015.
DOI : 10.1038/35025220

D. R. Myers, Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases, Journal of Visualized Experiments, issue.64, 2012.
DOI : 10.3791/3958

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471282

M. R. Rollins, B. Ahn, Y. Sakurai, and W. A. Lam, Characterizing Cellular Interactions Contributing to Vaso-Occlusion in Patients with Sickle Cell Disease Utilizing a Novel Endothelialized Microfluidic Device, Blood, vol.126, 2015.

J. C. Ciciliano, Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach, Blood, vol.126, issue.6, pp.817-824, 2015.
DOI : 10.1182/blood-2015-02-628594

Y. Zheng, J. Chen, and J. A. Lopez, Microvascular platforms for the study of platelet-vessel wall interactions, Thrombosis Research, vol.133, issue.4, pp.525-531, 2014.
DOI : 10.1016/j.thromres.2013.12.039

G. Lamberti, Bioinspired Microfluidic Assay for In Vitro Modeling of Leukocyte???Endothelium Interactions, Analytical Chemistry, vol.86, issue.16, pp.8344-8351, 2014.
DOI : 10.1021/ac5018716

M. E. Fay, Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts, Proc. Natl. Acad. Sci. USA, 1987.
DOI : 10.1111/j.1365-2141.1977.tb00646.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776450

S. Weinbaum, J. M. Tarbell, and E. R. Damiano, The Structure and Function of the Endothelial Glycocalyx Layer, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.121-167, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151959

A. Pries, T. Secomb, and P. Gaehtgens, The endothelial surface layer, Pfl??gers Archiv - European Journal of Physiology, vol.440, issue.5, pp.653-666, 2000.
DOI : 10.1007/s004240000307

F. E. Curry and R. H. Adamson, Endothelial Glycocalyx: Permeability Barrier and Mechanosensor, Annals of Biomedical Engineering, vol.105, issue.4, pp.828-839, 2012.
DOI : 10.1007/s10439-011-0429-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042904

A. Marki, J. D. Esko, A. R. Pries, and K. Ley, Role of the endothelial surface layer in neutrophil recruitment, Journal of Leukocyte Biology, vol.98, issue.4, pp.503-515, 2015.
DOI : 10.1189/jlb.3MR0115-011R

J. M. Tarbell, S. I. Simon, and F. E. Curry, Mechanosensing at the Vascular Interface, Annual Review of Biomedical Engineering, vol.16, issue.1, pp.505-532, 2014.
DOI : 10.1146/annurev-bioeng-071813-104908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450720

A. Pries and T. Secomb, Microvascular blood viscosity in vivo and the endothelial surface layer, AJP: Heart and Circulatory Physiology, vol.289, issue.6, pp.2657-2664, 2005.
DOI : 10.1152/ajpheart.00297.2005

E. Damiano, The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells through Capillaries, Microvascular Research, vol.55, issue.1, pp.77-91, 1998.
DOI : 10.1006/mvre.1997.2052

S. Reitsma, D. W. Slaaf, H. Vink, M. A. Van-zandvoort, and M. G. Egbrink, The endothelial glycocalyx: composition, functions, and visualization, Pfl??gers Archiv - European Journal of Physiology, vol.279, issue.Pt 1, pp.345-359, 2007.
DOI : 10.1007/s00424-007-0212-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915585

A. H. Salmon and S. C. Satchell, Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability, The Journal of Pathology, vol.172, issue.4, pp.562-574, 2012.
DOI : 10.1002/path.3964

D. R. Potter and E. R. Damiano, The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo Is Absent In Vitro, Circulation Research, vol.102, issue.7, pp.770-776, 2008.
DOI : 10.1161/CIRCRESAHA.107.160226

D. Chappell, The Glycocalyx of the Human Umbilical Vein Endothelial Cell: An Impressive Structure Ex Vivo but Not in Culture, Circulation Research, vol.104, issue.11, pp.1313-1317, 2009.
DOI : 10.1161/CIRCRESAHA.108.187831

E. E. Ebong, F. P. Macaluso, D. C. Spray, and J. M. Tarbell, Imaging the Endothelial Glycocalyx In Vitro by Rapid Freezing/Freeze Substitution Transmission Electron Microscopy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.8, pp.1908-1915, 2011.
DOI : 10.1161/ATVBAHA.111.225268

A. Barker, Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy, Phys. Chem. Chem. Phys., vol.17, issue.5, pp.1006-1011, 2004.
DOI : 10.1039/B312189E

Y. Zeng and J. M. Tarbell, The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress, PLoS ONE, vol.14, issue.1, 2014.
DOI : 10.1371/journal.pone.0086249.g012

J. Alroy, V. Goyal, and E. Skutelsky, Lectin histochemistry of mammalian endothelium, Histochemistry, vol.34, issue.6, pp.603-607, 1987.
DOI : 10.1007/BF00489554

H. Kataoka, Fluorescent imaging of endothelial glycocalyx layer with wheat germ agglutinin using intravital microscopy, Microscopy Research and Technique, vol.9, issue.1, pp.31-37, 2016.
DOI : 10.1002/jemt.22602

A. H. Salmon, Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction, Journal of the American Society of Nephrology, vol.23, issue.8, pp.1339-1350, 2012.
DOI : 10.1681/ASN.2012010017

R. Vargas-pinto, H. Gong, A. Vahabikashi, and M. Johnson, The Effect of the Endothelial Cell Cortex on Atomic Force Microscopy Measurements, Biophysical Journal, vol.105, issue.2, pp.300-309, 2013.
DOI : 10.1016/j.bpj.2013.05.034

G. Bugliarello and J. W. Hayden, Detailed Characteristics of the Flow of Blood In Vitro, Transactions of the Society of Rheology, vol.7, issue.1, pp.209-230, 1963.
DOI : 10.1122/1.548964

H. Wang and Y. Wang, Flow in microchannels with rough walls: flow pattern and pressure drop, Journal of Micromechanics and Microengineering, vol.17, issue.3, pp.586-596, 2007.
DOI : 10.1088/0960-1317/17/3/022

E. Tuck and A. Kouzoubov, A laminar roughness boundary condition, Journal of Fluid Mechanics, vol.76, issue.-1, pp.59-70, 1995.
DOI : 10.1063/1.866563

URL : https://digital.library.adelaide.edu.au/dspace/bitstream/2440/511/1/hdl_511.pdf

W. Yen, B. Cai, M. Zeng, J. M. Tarbell, and B. M. Fu, Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels, Microvascular Research, vol.83, issue.3, pp.337-346, 2012.
DOI : 10.1016/j.mvr.2012.02.005

H. Vink and B. Duling, Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries, Circulation Research, vol.79, issue.3, pp.581-589, 1996.
DOI : 10.1161/01.RES.79.3.581

S. Devaraj, J. Yun, G. Adamson, J. Galvez, and I. Jialal, C-reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction, Cardiovascular Research, vol.84, issue.3, pp.479-484, 2009.
DOI : 10.1093/cvr/cvp249

A. Pries, Microvascular blood flow resistance: role of endothelial surface layer, Am. J. Physiol. Heart Circ. Physiol, vol.273, pp.2272-2279, 1997.
DOI : 10.1152/ajpheart.00297.2005

N. Tateishi, Y. Suzuki, M. Soutani, and N. Maeda, Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: Cell-free layer and flow resistance, Journal of Biomechanics, vol.27, issue.9, pp.1119-1125, 1994.
DOI : 10.1016/0021-9290(94)90052-3

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, Temporal and spatial variations of cell-free layer width in arterioles, AJP: Heart and Circulatory Physiology, vol.293, issue.3, pp.1526-1535, 2007.
DOI : 10.1152/ajpheart.01090.2006

S. Kim, P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson, The cell-free layer in microvascular blood flow, Biorheology, vol.46, pp.181-189, 2009.

S. Dietzel, Label-Free Determination of Hemodynamic Parameters in the Microcirculaton with Third Harmonic Generation Microscopy, PLoS ONE, vol.454, issue.6, p.99615, 2014.
DOI : 10.1371/journal.pone.0099615.s003

Y. Suzuki, N. Tateishi, M. Soutani, and N. Maeda, Flow Behavior of Erythrocytes in Microvessels and Glass Capillaries: Effects of Erythrocyte Deformation and Erythrocyte Aggregation, International Journal of Microcirculation, vol.16, issue.4, pp.187-194, 1996.
DOI : 10.1159/000179172

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, Lift and Down-Gradient Shear-Induced Diffusion in Red Blood Cell Suspensions, Physical Review Letters, vol.110, issue.10, p.108101, 2013.
DOI : 10.1103/PhysRevLett.110.108101

URL : https://hal.archives-ouvertes.fr/hal-00809337

H. Zhao, E. S. Shaqfeh, and V. Narsimhan, Shear-induced particle migration and margination in a cellular suspension, Physics of Fluids, vol.74, issue.2, p.11902, 2012.
DOI : 10.1080/10739680802279394

D. A. Fedosov, B. Caswell, A. S. Popel, and G. Karniadakis, Blood Flow and Cell-Free Layer in Microvessels, Microcirculation, vol.29, issue.2, pp.615-628, 2010.
DOI : 10.1111/j.1549-8719.2010.00056.x

Z. Shen, Inversion of hematocrit partition at microfluidic bifurcations, Microvascular Research, vol.105, pp.40-46, 2016.
DOI : 10.1016/j.mvr.2015.12.009

URL : https://hal.archives-ouvertes.fr/hal-01463682

Y. Rival, A. Delmaschio, M. Rabiet, E. Dejana, and A. Duperray, Inhibition of platelet endothelial cell adhesion molecule-1 synthesis and leukocyte transmigration in endothelial cells by the combined action of TNF-alpha and IFN-gamma, J. Immunol, vol.157, pp.1233-1241, 1996.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844

M. Custaud, ) for stimulating discussions and suggestions at the early stage of the project, LadhyX laboratory