Y. Bejot, A. Catteau, M. Caillier, O. Rouaud, J. Durier et al., Trends in Incidence, Risk Factors, and Survival in Symptomatic Lacunar Stroke in Dijon, France, From 1989 to 2006: A Population-Based Study, Incidence, Risk Factors, and Survival in Symptomatic Lacunar Stroke, pp.1945-1951, 1989.
DOI : 10.1161/STROKEAHA.107.510933

. Anesthesia, P. Gorelick, A. Scuteri, S. Black, C. Decarli et al., Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association, American Heart Association Stroke Council, Council on Epidemiology and Prevention, pp.2672-2713, 2011.

L. Pantoni, Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges, The Lancet Neurology, vol.9, issue.7, pp.689-701, 2010.
DOI : 10.1016/S1474-4422(10)70104-6

J. Wardlaw, C. Smith, and M. Dichgans, Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging, The Lancet Neurology, vol.12, issue.5, pp.483-497, 2013.
DOI : 10.1016/S1474-4422(13)70060-7

J. Wardlaw, E. Smith, G. Biessels, C. Cordonnier, F. Fazekas et al., Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration, The Lancet Neurology, vol.12, issue.8, pp.822-838, 2013.
DOI : 10.1016/S1474-4422(13)70124-8

B. Patel and H. Markus, Magnetic Resonance Imaging in Cerebral Small Vessel Disease and its Use as a Surrogate Disease Marker, International Journal of Stroke, vol.63, issue.1, pp.47-59, 2011.
DOI : 10.1016/j.pscychresns.2008.11.006

D. Jones, D. Lythgoe, M. Horsfield, A. Simmons, S. Williams et al., Characterization of White Matter Damage in Ischemic Leukoaraiosis with Diffusion Tensor MRI, Stroke, vol.30, issue.2, pp.393-397, 1999.
DOI : 10.1161/01.STR.30.2.393

F. Fazekas, S. Ropele, C. Enzinger, F. Gorani, A. Seewann et al., MTI of white matter hyperintensities, Brain, vol.128, issue.12, pp.2926-2932, 2005.
DOI : 10.1093/brain/awh567

R. Schmidt, H. Schmidt, J. Haybaeck, M. Loitfelder, S. Weis et al., Heterogeneity in age-related white matter changes, Acta Neuropathologica, vol.71, issue.Suppl 2, pp.171-185, 2011.
DOI : 10.1007/s00401-011-0851-x

W. Wen, P. Sachdev, X. Chen, and K. Anstey, Gray matter reduction is correlated with white matter hyperintensity volume: A voxel-based morphometric study in a large epidemiological sample, NeuroImage, vol.29, issue.4, pp.1031-1039, 2006.
DOI : 10.1016/j.neuroimage.2005.08.057

A. Gouw, A. Seewann, W. Van-der-flier, F. Barkhof, A. Rozemuller et al., Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations, Journal of Neurology, Neurosurgery & Psychiatry, vol.82, issue.2, pp.126-135, 2011.
DOI : 10.1136/jnnp.2009.204685

URL : https://hal.archives-ouvertes.fr/hal-00584605

Y. Yamamoto, L. Craggs, M. Baumann, H. Kalimo, and R. Kalaria, Review: Molecular genetics and pathology of hereditary small vessel diseases of the brain, Neuropathology and Applied Neurobiology, vol.29, issue.1, pp.94-113, 2011.
DOI : 10.1111/j.1365-2990.2010.01147.x

A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat et al., Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia, Nature, vol.383, issue.6602, pp.707-710, 1996.
DOI : 10.1038/383707a0

H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-lasserve, and M. Bousser, CADASIL, The Lancet Neurology, vol.8, issue.7, pp.643-653, 2009.
DOI : 10.1016/S1474-4422(09)70127-9

URL : https://hal.archives-ouvertes.fr/hal-00349728

A. Joutel and F. Faraci, Cerebral Small Vessel Disease: Insights and Opportunities From Mouse Models of Collagen IV-Related Small Vessel Disease and Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy, Stroke, vol.45, issue.4, pp.1215-1221, 2014.
DOI : 10.1161/STROKEAHA.113.002878

H. Chabriat, C. Levy, H. Taillia, M. Iba-zizen, K. Vahedi et al., Patterns of MRI lesions in CADASIL, Neurology, vol.51, issue.2, pp.452-457, 1998.
DOI : 10.1212/WNL.51.2.452

A. Joutel, M. Monet-leprêtre, C. Gosele, C. Baron-menguy, A. Hammes et al., Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease, Journal of Clinical Investigation, vol.120, issue.2, pp.433-445, 2010.
DOI : 10.1172/JCI39733DS1

A. Joutel, Pathogenesis of CADASIL, BioEssays, vol.7, issue.1, pp.73-80, 2011.
DOI : 10.1002/bies.201000093

A. Matsuo, G. Lee, K. Terai, K. Takami, W. Hickey et al., Unmasking of an unusual myelin basic protein epitope during the process of myelin degeneration in humans: a potential mechanism for the generation of autoantigens, Am J Pathol, vol.150, pp.1253-1266, 1997.

H. Pohl, C. Porcheri, T. Mueggler, L. Bachmann, G. Martino et al., Genetically Induced Adult Oligodendrocyte Cell Death Is Associated with Poor Myelin Clearance, Reduced Remyelination, and Axonal Damage, Journal of Neuroscience, vol.31, issue.3, pp.1069-1080, 2011.
DOI : 10.1523/JNEUROSCI.5035-10.2011

M. Traka, K. Arasi, R. Avila, J. Podojil, A. Christakos et al., A genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination, Brain, vol.133, issue.10, pp.3017-3029, 2010.
DOI : 10.1093/brain/awq247

H. Neumann, M. Kotter, and R. Franklin, Debris clearance by microglia: an essential link between degeneration and regeneration, Brain, vol.132, issue.2, pp.288-295, 2009.
DOI : 10.1093/brain/awn109

M. Vargas and B. Barres, Why Is Wallerian Degeneration in the CNS So Slow?, Annual Review of Neuroscience, vol.30, issue.1, pp.153-179, 2007.
DOI : 10.1146/annurev.neuro.30.051606.094354

B. Trapp, J. Peterson, R. Ransohoff, R. Rudick, S. Mörk et al., Axonal Transection in the Lesions of Multiple Sclerosis, New England Journal of Medicine, vol.338, issue.5, pp.278-285, 1998.
DOI : 10.1056/NEJM199801293380502

B. Trapp and P. Stys, Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis, The Lancet Neurology, vol.8, issue.3, pp.280-291, 2009.
DOI : 10.1016/S1474-4422(09)70043-2

M. Baudrimont, F. Dubas, A. Joutel, E. Tournier-lasserve, and M. Bousser, Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study, Stroke, vol.24, issue.1, pp.122-125, 1993.
DOI : 10.1161/01.STR.24.1.122

A. Viswanathan, F. Gray, M. Bousser, M. Baudrimont, and H. Chabriat, Cortical Neuronal Apoptosis in CADASIL, Stroke, vol.37, issue.11, pp.2690-2695, 2006.
DOI : 10.1161/01.STR.0000245091.28429.6a

J. Rash, Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system, Neuroscience, vol.168, issue.4, pp.982-1008, 2010.
DOI : 10.1016/j.neuroscience.2009.10.028

D. Menichella, M. Majdan, R. Awatramani, D. Goodenough, E. Sirkowski et al., Genetic and Physiological Evidence That Oligodendrocyte Gap Junctions Contribute to Spatial Buffering of Potassium Released during Neuronal Activity, Journal of Neuroscience, vol.26, issue.43, pp.10984-10991, 2006.
DOI : 10.1523/JNEUROSCI.0304-06.2006

S. Lutz, Y. Zhao, M. Gulinello, S. Lee, C. Raine et al., Deletion of Astrocyte Connexins 43 and 30 Leads to a Dysmyelinating Phenotype and Hippocampal CA1 Vacuolation, Journal of Neuroscience, vol.29, issue.24, pp.7743-7752, 2009.
DOI : 10.1523/JNEUROSCI.0341-09.2009

C. Neusch, N. Rozengurt, R. Jacobs, H. Lester, and P. Kofuji, Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination, J Neurosci, vol.21, pp.5429-5438, 2001.

J. Blanz, M. Schweizer, M. Auberson, H. Maier, A. Muenscher et al., Leukoencephalopathy upon Disruption of the Chloride Channel ClC-2, Journal of Neuroscience, vol.27, issue.24, pp.6581-6589, 2007.
DOI : 10.1523/JNEUROSCI.0338-07.2007

M. Olsen and H. Sontheimer, buffering to cell differentiation, Journal of Neurochemistry, vol.37, issue.Suppl., pp.589-601, 2008.
DOI : 10.1111/j.1471-4159.2008.05615.x

M. Van-der-knaap, I. Boor, and R. Estévez, Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis, The Lancet Neurology, vol.11, issue.11, pp.973-985, 2012.
DOI : 10.1016/S1474-4422(12)70192-8

C. Depienne, M. Bugiani, C. Dupuits, D. Galanaud, V. Touitou et al., Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study, The Lancet Neurology, vol.12, issue.7, pp.659-668, 2013.
DOI : 10.1016/S1474-4422(13)70053-X

URL : https://hal.archives-ouvertes.fr/inserm-00842764

M. Shibata, R. Ohtani, M. Ihara, and H. Tomimoto, White Matter Lesions and Glial Activation in a Novel Mouse Model of Chronic Cerebral Hypoperfusion, Stroke, vol.35, issue.11, pp.2598-2603, 2004.
DOI : 10.1161/01.STR.0000143725.19053.60

L. Pantoni, J. Garcia, and J. Gutierrez, Cerebral White Matter Is Highly Vulnerable to Ischemia, Stroke, vol.27, issue.9, pp.1641-1647, 1996.
DOI : 10.1161/01.STR.27.9.1641

P. Stys, Anoxic and Ischemic Injury of Myelinated Axons in CNS White Matter: From Mechanistic Concepts to Therapeutics, Journal of Cerebral Blood Flow & Metabolism, vol.9, pp.2-25, 1998.
DOI : 10.1097/00004647-199801000-00002

T. Mathiisen, K. Lehre, N. Danbolt, and O. Ottersen, The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction, Glia, vol.6, issue.Suppl 1, pp.1094-1103, 2010.
DOI : 10.1002/glia.20990

K. Toyama, N. Koibuchi, K. Uekawa, Y. Hasegawa, K. Kataoka et al., Apoptosis Signal-Regulating Kinase 1 Is a Novel Target Molecule for Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.34, issue.3, pp.616-625, 2013.
DOI : 10.1161/ATVBAHA.113.302440

Y. Yamamoto, M. Ihara, C. Tham, R. Low, J. Slade et al., Neuropathological Correlates of Temporal Pole White Matter Hyperintensities in CADASIL, Stroke, vol.40, issue.6, pp.2004-2011, 2009.
DOI : 10.1161/STROKEAHA.108.528299

M. Duering, E. Csanadi, B. Gesierich, E. Jouvent, D. Hervé et al., Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease, Brain, vol.136, issue.9, pp.2717-2726, 2013.
DOI : 10.1093/brain/awt184

P. Pugh, S. Ahmed, M. Smith, N. Upton, and A. Hunter, A behavioural characterisation of the FVB/N mouse strain, Behavioural Brain Research, vol.155, issue.2, pp.283-289, 2004.
DOI : 10.1016/j.bbr.2004.04.021