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Abstract

Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson’s disease

(PD). In this study we investigated changes in rat STN neuronal activity after 28 days following the injection of 6-OHDA in the

substantia nigra pars compacta (SNc). This drug provoked a lesion of SNc that induced a dopamine (DA) depletion assessed by

changes in rotating capacity in response to apomorphine injection and by histological analysis. By means of extracellular recordings

and waveshape spike sorting it was possible to analyze simultaneous spike trains and compute the crosscorrelations. Based on the

analysis of the autocorrelograms we classified four types of firing patterns: regular (Poissonian-like), oscillatory (in the range 4-

12 Hz), bursty and cells characterized by a long refractoriness. The distribution of unit types in the control (n=61) and lesioned

(n=83) groups was similar, as well as the firing rate. In 6-OHDA treated rats we observed a significant increase (from 26% to

48%) in the number of pairs with synchronous firing. These data suggest that the synchronous activity of STN cells, provoked by

loss of DA cells in SNc, is likely to be among the most significant dysfunctions in the basal ganglia of Parkinsonian patients. We

raise the hypothesis that in normal conditions, DA maintains a balance between funneling information via the hyperdirect cortico-

subthalamic pathway and parallel processing through the parallel cortico-basal ganglia-subthalamic pathways, both of which are

necessary for selected motor behaviors.
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1. Introduction

The subthalamic nucleus (STN) is a part of the cortico-basal

ganglia-thalamocortical circuit and abnormal activity of STN

plays a crucial role in the pathophysiology of Parkinson’s dis-

ease (PD) (DeLong and Wichmann, 2007), which is a progres-

sive neurodegenerative disorder manifested by tremor, rigidity,

akinesia and bradykinesia. Deep Brain Stimulation (DBS) of

STN in Parkinsonian patients, which produces a reversible sup-

pression of its activity, alleviates most of the neurological PD

symptoms (Benabid et al., 1994; Limousin et al., 1998). Bilat-

eral STN DBS improved behavioral performance in 6-OHDA

lesioned rats (Li et al., 2010).

The STN receives topographically organized inputs from the

cerebral cortex, and it provides the major glutamatergic exci-

tation to the output nuclei of the basal ganglia (BG), which

are the substantia nigra pars reticulata (SNr) (Villa and Loren-

zana, 1997) and internal part of the globus pallidus (GPi) (en-

topeduncular nucleus in rodents, EPN) (Parent and Hazrati,

1995a,b). Since cortico-basal ganglia circuits are organized in

parallel channels, sensory information flow from functionally

distinct cortical areas remains segregated within the striatum

and through its direct projections to BG output structures (Utter

and Basso, 2008). Experimental data indicate that such segre-

gation is only partly maintained in the STN (Kolomiets et al.,

2001). However, the STN is in a strategic position to exert a

prominent control over the BG-related motor functions since

it integrates the somatic motor information from various cor-

tical/subcortical brain areas (including the motor cortex, tha-

lamus and pedunculopontine nucleus) (Takada et al., 1988).

Figure 1 illustrates the cortico-BG-thalamocortical circuit in-

fluenced by dopamine (DA) neurons of substantia nigra pars

compacta (SNc).

Understanding the mechanism of dopamine (DA) influence

on the neural circuit involving the BG and STN is important

for understanding disturbances in motor behavior and the de-

velopment of possible therapies for PD. The functional role

of DA is complex due to the heterogeneity of neurons within

the STN and BG nuclei, presence of dopaminergic D1/D5 or

D2/D3 receptors on diverse cell types and their terminals and

opposite modulatory effects provoked by DA on different types

of pre- and postsynaptic receptors (Sil’kis, 2005). Injection of

DA or of D1 receptor agonists into the STN induced an increase

in firing rate of the majority of STN neurons in both normal

and 6-OHDA rats, but systemic administration of apomorphine

(which is a non-selective DA agonist of both D1-like and D2-

like receptors) provoked a decrease in the firing rate of STN

neurons in rats with 6-OHDA lesions (Ni et al., 2001).

Investigation in rat and nonhuman primate models (Bergman

et al., 1994; Vila et al., 2000; Tai et al., 2003; Breit et al., 2007)

and human PD patients (Pogosyan et al., 2010) showed that the

death of DA cells in the SNc may provoke changes of the fir-
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Figure 1: GPe and GPi, external and internal segment of the globus pallidus; D1

and D2, dopaminergic receptors; S-N and S-P, striatonigral and striatopallidal

cells; SNr and SNc, substantia nigra pars reticulata and compacta; STN, sub-

thalamic nucleus; PfN, parafascicular thalamic nucleus, PPNd and PPNc, pars

dissipate and compacta of pedunculopontine nucleus; VL, ventral lateral nu-

cleus; VTA, ventral tegmental area. Connections ending with an arrow (green)

correspond to excitatory (Glu) projections; ending with a filled circle (red)

correspond to inhibitory projections (GABAergic); ending with a filled dia-

mond (blue) indicate the modulatory influence exerted by DA projections of

SNc/VTA.

ing rate and firing pattern of STN neurons and characteristic

changes in motor behavior. However, due to the complex or-

ganization of BG and the variety of receptors it is difficult to

determine the net effects produced by 6-OHDA or MPTP le-

sion of DA cells in SNc. This is particularly true given the wide

range of anesthetics used in acute studies cited in the literature.

In this study, we investigated the changes in rodent STN neu-

ronal activity using multielectrode recordings in the STN per-

formed 28 days after 6-OHDA injection in the SNc. It is im-

portant to mention that we performed our recordings under Eq-

uithesin anesthesia. The choice of this drug is due to the fact

that the other commonly used general anesthetics for rodents

(mainly ketamine and urethane) have been reported to exert a

strong influence upon the discharge pattern of extracellularly

recorded units participating to the cortico-BG-thalamocortical

circuit (Villa and Lorenzana, 1997; Ruskin et al., 2003; Hutchi-

son et al., 2004; Chetrit et al., 2009).

We report that in our experimental condition the main effect

of 6-OHDA lesion is a significant increase in the synchronous

activity of STN cells, which we believe will provoke the main

effect exerted by STN in PD models.

2. Materials and Methods

2.1. Subjects and surgical procedure

Experiments were performed in male Wistar rats weigh-

ing 300 − 350 g. They were kept under controlled condi-

tions of light, temperature and humidity, with food and wa-

ter available ad libitum. All animal experiments were car-

ried out in accordance with the UK Animals (Scientific Pro-

cedures) Act, 1986 and associated guidelines, the EEC Coun-

cil Directives (86/609/EEC, OJ L 358, 1, 12 December, 1987)

and the Guide for the Care and Use of Experimental Ani-

mals (Canadian Council on Animal Care). Rats received at-

ropine sulfate (0.4 mg/kg, ip) immediately prior to surgery as

a prophylactic against respiratory distress. All surgical wounds

were infiltrated with Scandicaine 0,5% (AstraZeneca) for lo-

cal anesthesia. General anesthesia was induced by Equithesin

(3ml/kg, i.p.) (chloral hydrate 4.24 mg, sodium pentobarbital

0.97 mg, and magnesium sulfate MgSO4 2.13 mg in 100 ml so-

lution with 11% ethanol, 42% propylene glycole v/v) at a dose

corresponding to 130 mg/kg chloral hydrate and 30 mg/kg pen-

tobarbital (Preda et al., 2008). During the anesthesia the body

temperature was monitored and maintained in the range 38–

39◦C by means of a heating pad.

2.2. 6-hydroxydopamine lesion of the SNc

The subjects (n=8) received one injection of 6µl of solution

in the left substantia nigra pars compacta (SNc) aimed at target

stereotaxic coordinates A 3.2; L +2.2; V 7.2 mm (from lambda

and dura) (Paxinos and Watson, 1986). The injected solution

contained 12µg 6-OHDA hydrobromide (Sigma, Paris, France)

dissolved in 6µl of 0.9% NaCl with 0.1% ascorbic acid (Jouve

et al., 2010). It is generally adviced to inject desipramine or

pargyline prior to 6-OHDA administration to protect noradren-

ergic neurons (Breese and Traylor, 1971) but this practice has

been questioned (Debeir et al., 2005). There is a nonlinear dose

dependent effect of 6-OHDA on noradrenergic neurons, and

more recent work has shown that desipramine is not needed at

the lower doses of 6-OHDA used in current study (Jouve et al.,

2010). Notice that even in case of minor noradrenergic degener-

ation following 6-OHDA injection, the animal model would be

closer to human PD where same degeneration of catcholaminer-

gic cells is likely to be associated to the pathological state (Pil-

lon et al., 1989; Mavridis et al., 1991; Delaville et al., 2011).

For control subjects (n=8), an equal volume of vehicle (6µl

saline with 0.1% ascorbic acid) was injected. The 6-OHDA

solution were kept on ice (4◦C) and protected from light to min-

imize oxidation. The injection was made using a stainless steel

cannula connected via a polyethylene catheter to a Hamilton

microsyringe which was controlled by an infusion pump at a

flow rate of 0.1µl/min. At the end of each injection, the syringe

was kept in place for additional 5 minutes before being very

slowly retracted from the brain, in no less than 5 more minutes.

2.3. Rotational behavior

Three weeks after the 6-OHDA-induced lesions were per-

formed, the rats were screened for rotation response to sub-

cutaneous injection of apomorphine (0.5 mg/kg, s.c., Sigma)

(Casas et al., 1999). Five minutes after the apomorphine injec-

tion DA-lesioned rats showed more than 20 rotations per 5 min

to the controlateral side. One subject did not match this cri-

terion and was discarded from further study. It has previously
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been demonstrated that rats satisfying this criterion are charac-

terized by striatal DA depletion greater than 95% (Papa et al.,

1994).

2.4. Electrophysiological recordings

General anesthesia was induced by Equithesin (3ml/kg, i.p.).

The pedal withdrawal reflex was periodically checked and sup-

plemental doses of Equithesin were provided during the whole

recording session if necessary. Extracellular single unit record-

ings in STN (3.6 - 4.2 mm posterior to bregma, L 2.3-3.7 mm,

V 6.5-8.5 mm from the dura), (Paxinos and Watson, 1986) ipsi-

lateral to the side of injection in SNc (in this study always the

left hemisphere), were performed with glass-coated platinum-

plated tungsten microelectrodes having an impedance in the

range 0.5 − 2 MΩ measured at a frequency of 1 kHz (Fred-

erick Haer & Co, Bowdoinham, Maine, USA). Signals from

the microelectrodes were amplified, filtered (400 Hz−20 kHz),

viewed on an oscilloscope, and digitally recorded in WAV for-

mat (44100 Hz sampling rate, 16 bit resolution) for computer-

ized offline analysis. Spike sorting of the electrode signal files,

based on a template matching algorithm, was able to separate

up to three spikes recorded from the same channel (Asai et al.,

2005). The time of spike discharges were digitally stored at a

time resolution of 1 ms for later processing.

The first recording session started approximately 90 min af-

ter the end of the surgical preparation. The data were gathered

during spontaneous activity, i.e. in the absence of any operator-

induced stimulation, for an interval of 5 − 10 min. All record-

ings started at least 15 min after any supplementary dose of

anesthetic and terminated at least 20 min before a new injec-

tion, thus assuming the recording conditions corresponded to a

steady level of anesthesia.

2.5. Histological and immunohistological examinations

Upon completion of the recording session (lasting in total

5 − 8 h), electrolytic lesions were placed at specific depths of

the electrode track using 10 current pulses of 8 µA for 7 s at

regular intervals of 10 seconds. Subjects were sacrificed by

transcardial perfusion with 100 ml 0.9% NaCl immediately fol-

lowed by 500 ml of fixative solution (4% paraformaldehyde in

phosphate buffer 0.1M, pH 7.3). The brains were removed af-

ter perfusion and cut into 40 µm sections using a microtome.

Sections including SNc were examined for immunohistochem-

ical staining of tyrosine hydroxylase (TH). In sections from 6-

OHDA treated rats this analysis was aimed at determining the

extent of the SNc lesion. Brain slices were immunoreacted with

a primary, polyclonal antibody against rat tyrosine hydroxylase

(TH, Abcam PLC, Cambridge, UK) and then with a biotiny-

lated goat anti-rabbit IgG (Vector Labs, Burlingame, CA) sec-

ondary antibody. The signal was amplified using avidin and

biotinylated horseradish peroxidase using an Elite ABC Vectas-

tain Kit (Vector, Burlingame, CA) (Park et al., 2007). Sections

including STN and basal ganglia from all subjects were stained

with cresyl violet for the reconstruction of the electrode tracks

and localization of the electrolytic lesions.

2.6. Statistical analysis

Spike trains were analyzed by time series renewal density

histograms (Abeles, 1982). Using this technique, all histograms

were scaled in rate units (spikes/s) and smoothed after convo-

lution with a moving Gaussian-shaped bin of 5 ms width. For

each histogram, the 99% confidence limits were calculated, as-

suming that spike occurrences followed a Poisson distribution.

Firing rates of STN neurons of both groups of rats were com-

pared by Mann-Whitney’s U-test because of the limited sample

sizes we could not test properly the normality of the distribu-

tions. A one-tailed Fisher’s exact t-test was used to compare

the number of each cell type identified and the proportion of

significant cross-correlations in both groups of rats.

3. Results

3.1. Effect of 6-OHDA-induced dopamine cell lesion

Consistent rotational response to the systemic injection of

apomorphine (0.5 mg/kg) was observed in 7 out of 8 treated

a

*

SNc

b

Figure 2: 6-OHDA lesion and reconstruction of the electrode track. Scale bars:

1 mm. (a) Coronal section stained for tyrosine hydroxylase (TH) showing the

substantia nigra pars compacta (SNc) at interaural stereotaxic coordinate ap-

proximately equal to Ia=2.9 (Paxinos and Watson, 1986). Note the lack of

TH staining in the SNc of the lesioned hemisphere (left) compared to the non-

lesioned hemisphere (right). (b) Coronal section, stained with cresyl violet, of

the subthalamic nucleus of a control rat in the left hemisphere illustrating the

microelectrode penetration at interaural stereotaxic coordinate approximately

equal to Ia=5.6. The entrance of the electrode is indicated by arrow and an

asterisk is placed to the left of the site of the electrolytic lesion made at the end

of the session. A second lesion is visible dorsally in the lateral dorsal thalamic

nucleus.

3



rats after 21 days from 6-OHDA injection. All rats that were

characterized by a positive rotational behavior showed also a

complete loss of TH-immunoreactive neurons restricted to the

substantia nigra ipsilateral to the injected hemisphere, as exem-

plified by the microphotographs in Figure 2a.

3.2. Electrophysiological recordings

Extracellular single units were recorded in 15 rats anes-

thetized with Equithesin (7 lesioned and 8 control) . We per-

formed a total of 25 electrode tracks (13 tracks in the control

group and 12 tracks in the treated group). A total of 144 single

units (n=61 in the control group and n=83 in the treated group),

localized in STN, were characterized by stable firing rate and a

stable autocorrelogram, i.e. no significant difference between

the begin and the end of the recording session. An additional

94 single units were recorded in the same experiments, but ei-

ther they did not match the above-mentioned criteria or their

location was not in the STN after histological check. Figure 2b

illustrates an example of an electrolytic lesion in STN (record-

ing performed in the left hemisphere) and a second lesion per-

formed in the lateral dorsal thalamic nucleus for measurement

of tissue retraction necessary for an accurate reconstruction of

the recording sites.

3.2.1. Properties of individual neurons

The analysis of the autocorrelograms allowed us to define

4 types of firing patterns of the spontaneous activity of STN

cells. Units characterized by a significant refractory period

were termed “initial prolonged through” (IPT) cells (Fig. 3a).

Units that showed a tendency to fire in bursts (“bursting cells”,

BC) were characterized by a hump in the autocorrelogram near

time zero (Fig. 3b). Units that presented an autocorrelogram

with dampened periodic oscillatory activity were termed “oscil-

latory cells” (OSC) (Fig. 3c). Units with a flat autocorrelogram

formed the “regular” (REG) type class (Fig. 3d).

In the control group type REG units were the most abundant

(40%, n=24) followed by the IPT (23%), BC (21%) and OSC

(16%) which were almost equally represented. In 6-OHDA le-

sioned rats the distribution of the four cell types (Table 1) was

not statistically different from the controls (two sided Fischer’s

exact test, not significant). However, we cannot rule out that

Table 1: Firing rates (median, mean±S.E.M.) of the STN units grouped by cell

types in control and 6-OHDA treated rats recorded under general anesthesia

induced by Equithesin.

Cell Type IPT BC OSC REG

Control group

N 61 14 13 10 24

(100%) (23%) (21%) (16%) (40%)

Firing rate 6.7 1.3 5.1 1.7

(spikes/s) (6.9±2.3) (2.5±1.5) (6.1±2.6) (2.6±1.0)

6-OHDA treated group

N 83 26 24 10 23

(100%) (31%) (29%) (12%) (28%)

Firing rate 6.2 2.0 4.5 2.7

(spikes/s) (6.5±2.5) (2.8±1.5) (6.7±4.7) (2.9±1.7)
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Figure 3: Example of the four specific types of spontaneous firing pattern ob-

served in STN. Autocorrelograms (auto renewal density histograms) with lag

(ms) on the abscissa and rate (spike/s) on the ordinate. Abscissa is scaled to

400 ms for all plots. The histograms are smoothed by Gaussian shaped bin

of 5 ms calculated according to Abeles (1982). The dashed lines correspond

to 99% confidence limits. (a) Initial prolonged through cell (IPT), firing at

5.9 spikes/s; (b) Bursting cell (BC), firing at 1.9 spikes/s; (c) Oscillatory cell

(OSC) with a period of 62 ms, firing at 7.0 spikes/s. (d) Regular cell (REG),

firing at 1.7 spikes/s;

lack of statistical significance is due to the limited size of our

samples; there may have been a trend for a decrease in the rel-

ative proportion of REG cells and an increase of IPT and BC

cells. The firing rate of IPT and OSC was significantly higher

than that of BC and REG types, for both groups of rats (Mann

Whitney’s U-test; U = 609, z = 2.07, p < 0.05 for the controls

and U = 992.5, z = 3.02, p < 0.01 for the lesioned). However,

the DA depletion did not alter the firing rate of either cell type

(Mann-Whitney’s U-test, p > 0.05 for either cell type).

3.2.2. Interaction between pairs of cells

We could record overall 100 pairs of cells located in the STN,

42 in normal and 58 in 6-OHDA treated rats. All cell pairs were

simultaneously recorded from the same electrode tip. The inter-

action types were classified according to the shape of the cross-

correlogram densities (CRD) calculated according to Abeles

(1982). The independence of firing of a pair of units corre-

sponded to a flat cross-correlogram with statistical fluctuations

within the limits of significance (e.g., Fig. 4f). Correlograms

with a symmetrical hump centered near zero delay, often re-

ferred to as “common input” (CI), indicate that the pair of cells

tended to discharge in synchrony (e.g., Fig. 4c).

The classes of correlograms showing significant deviations

from flatness were more frequently (p < 0.05) observed in 6-

OHDA treated rats (38/58, 66%) than in control subjects (17/42,

40%) (Fig. 5). Most of the significant interactions were of CI

type, namely 11/42 (26%) in the control group and 28/58 (48%)

in the 6-OHDA treated group. The other curves with significant

deviations from flatness were grouped together in the “other”

classes of interactions.
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Figure 4: Autocorrelograms and crosscorrelogram of a cell pair recorded in a

treated rat (panels a,b,c) and of a cell recorded in a control rat (panels d,e,f).

The peak centered near time zero of panel (c) shows synchronous firing of the

cells (a,b), referred to as “common input” (CI) type. The flat curve in panel

(f) shows no-interaction between cells (d,e). The curves are smoothed by a

Gaussian shaped bin of 5 ms. The firing rates of c#1 (a) and c#2 (b) are 1.6 and

1.9 spikes/s, respectively. The firing rates of c#1 (d) and c#2 (e) are 9.2 and

1.1 spikes/s, respectively.
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Figure 5: Distribution of crosscorrelogram types (“No Interaction”, “Common

Input-synchronization”, and “Other Interactions” referred to significant inter-

actions other than synchronicity) between pairs of STN units recorded with the

same electrode. The ordinate axis is in percentage. The raw numbers of correl-

ograms are indicated by n and N.

4. Discussion

In the 6-OHDA treated rats of the present study we have

demonstrated that the lack of DA does not significantly change

the rate and type of firing patterns of STN neurons. We found

that cells with initial through in their autocorrelograms (IPT)

and cells with oscillatory activity (OSC) were characterized by

a similar rate of firing (approximately equal to 6.6 spikes/s

on average for control and treated rats) which was about twice

higher than the rate of the other cell types (approximately equal

to 2.7 spikes/s on average for control and treated rats). The cell

types IPT and OSC represented together 39% and 43% of STN

units in control and treated rats, respectively. Within this group,

the lesion of SNc tended to increase the relative number of IPT

firing pattern and to decrease the relative number of OSC. The

observation about IPT and OSC might be associated with an

increase in recurrent and possibly synchronous feedforward in-

hibition provided by the loop STN-GPe-STN (Fig. 1) and by

the facilitation of the inhibitory interneurons within the STN.

The loop STN-GPi-STN can also support recurrent inhibition

(Fig. 1).

The stronger STN firing the more effective would be the ex-

citatory effect on the GPe and GPi and subsequent recurrent

inhibition of STN neurons as suggested by administration of

the D1/D2 agonist apomorphine (Ruskin et al., 2003; Chetrit

et al., 2009). In this case the net effect on the firing rate would

very small, if any, given an increase in the strength of inhibi-

tion of STN neurons following a rise in their activity. In or-

der to understand our results we must also consider the inter-

dependency of the activity of STN and GPe given their strong

interconnections. STN and GPe could constitute a kind of cen-

tral pacemaker modulated by striatal inhibition of GPe neurons

responsible for synchronized oscillatory activity in the normal

and pathological BG (Plenz and Kital, 1999). DA denervation

of the striatum and extrastriatal BG is likely to alter recurrent

activity within this circuit thus leading to pathological activ-

ity that resonates throughout the BG and motor system (Bevan

et al., 2006). The activity of GPe is strongly dependent on fir-
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ing of striatopallidal neurons which mainly express D2 recep-

tors, and give rise to the indirect pathway through the BG. We

assume that this pathway is the one that determines mainly the

activity of STN neurons. In case of loss of DA in the striatum,

the STN could be disinhibited via the indirect pathway due to

stronger activity of striatopallidal cells and suppression of fir-

ing of the GABAergic GPe cells projecting to the STN (Sil’kis,

2005). This hypothesis is supported by the fact that a high DA

concentration is necessary for the activation of D2 receptors on

striatopallidal cells (Williams and Millar, 1990). which in turn

would affect STN activity according to the intensity of DA cell

lesion.

Our results are partially in disagreement with previous stud-

ies that reported an increase in the firing rate of STN neurons

with more irregular and bursty-firing patterns of STN neurons

as well as significant decrease in relative amount of tonic neu-

rons (Breit et al., 2007). In addition, many existing studies

show contrasting tendencies to increasing or to decreasing fir-

ing rate in STN after lesion of the SNc (Hollerman and Grace,

1992; Hassani et al., 1996; Vila et al., 2000; Ni et al., 2001;

Magill et al., 2001). We observed a decrease in the relative

number of OSC cell types, in contrast with an increase in the

incidence of slow oscillations (0.3-2.5 Hz) reported by Walters

et al. (2007) after dopamine cell lesion in urethane-anesthetized

rats. A possible source of discrepancy with previous studies

may arise from the use of different anesthesia. We avoided

the use of ketamine because we had previously observed that

this non-competitive antagonist of NMDA receptors produces a

massive change of firing patterns in the SNr of control animals

(Villa and Lorenzana, 1997). We have also avoided the use of

urethane because of urethane-induced slow wave cortical activ-

ity that alters significantly the analysis of correlations between

spike trains (Manns et al., 2000a,b; Jones, 2004; Kasanetz et al.,

2008). Our finding that IPT and regular spiking neurons were

the commonest types of firing under Equithesin anesthesia ap-

pears in agreement with recordings performed in the STN of

unanesthetized 6-OHDA treated rats that shown also a decrease

in the number of oscillatory units (Kreiss et al., 1997; Allers

et al., 2000). This indicates that the active metabolites of Eq-

uithesin are unlikely to exert a strong influence upon the dis-

charge patterns of STN units. Accordingly, Equithesin anesthe-

sia could be viewed as a good control condition for studies in

anesthetized rats.

The main finding of this study was that in the 6-OHDA

treated rats pairs of simultaneously recorded adjacent STN units

fired significantly more often in synchrony. A significant in-

crease in cross-correlations between STN neurons has also been

observed following a lesion of GPe without 6-OHDA treatment

(Ryan et al., 1992). This result is comparable with ours because

a lesion of GPe decreases STN inhibition, and DA deficiency

leads to STN disinhibition via the indirect pathway through

the BG (Fig. 1) . In the rat the neurons of STN are charac-

terized by an important dendritic field around the cell bodies,

thus suggesting that excitatory recurrent collaterals could rep-

resent the element of circuitry subserving the synchronization

of closely spatially related neurons (Hammond et al., 1983).

Strong synchronization in STN cell firing could also modify

BRADYKINESIAAKINESIATREMORRIGIDITY

SYNCHRONOUS
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Figure 6: Dependencies between human symptoms and firing pattern parame-

ters. Adapted from Chibirova (2006).

propagation of signals from the neocortex to the output BG nu-

clei. It is known that hyperdirect cortico-subthalamic pathway

may funnel the information whereas the indirect cortico-striato-

subthalamic pathway may process the information through par-

allel loops (Parent et al., 2000). Indeed, excitatory responses to

stimulation of diverse cortical areas were found in distinct stri-

atal territories, and none of the cells responded to two cortical

stimulation sites (Kolomiets et al., 2001). In contrast, the ex-

istence of specific patterns of convergence of information flow

from functionally distinct cortical areas in the STN allows in-

teractions between parallel channels (Kolomiets et al., 2003;

Bar-Gad et al., 2003).

It is widely believed that Parkinsonian symptoms are most

likely caused by abnormal synchronous oscillating neuronal ac-

tivity within the BG (Bergman and Deuschl, 2002; Avila et al.,

2010). Akinesia and hypokinesia could be caused by abnor-

mal hypoactivity of the GPe neurons and subsequent exces-

sive inhibition of BG targets (Wichmann and DeLong, 1996).

Recordings in human STN of PD patients during DBS neuro-

surgery (Chibirova, 2006) showed that the same firing patterns

observed in our study (i.e., IPT, BC, OSC and REG represented

33%, 19%, 15%, 33%, respectively) in a proportion similar to

the one in 6-OHDA treated rats (Table1). Chibirova (2006)

demonstrated that the clinical symptoms were associated to spe-

cific features in the firing pattern observed in the STN cells of

PD patients (Fig. 6). Motor impairments typically associated to

clinical symptoms in human PD patients have been observed in

rodents treated with MPTP or 6-OHDA. A complete lesion of

SNc by 6-OHDA injection impaired dramatically (by 80%) the

stepping of the contralateral paw (Barnéoud et al., 2000). An-

imals with more than 95% bilateral SNc lesion demonstrated

bradykinesia symptoms (Sakai and Gash, 1994) and ≈75% DA

cells loss produced forelimb akinesia manifested in stepping

deficit (Tseng et al., 2005). It is important to note that akinesia

induced by 6-OHDA could be restored to normal locomotion

by DBS of the STN, which caused a decrease in firing rate and

burst firing in the contralateral side of STN (Shi et al., 2006) and

stepping performance in MPTP-treated mice was significantly

improved by administration of L-DOPA (Blume et al., 2009).

Animal models of PD can never reproduce the entire range of

symptoms observed in human patients but they have proven to

be valuable for the investigation of the subsequent mechanisms.

6



It is interesting to compare our results, which emphasize the

increase in STN synchronous activity in 6-OHDA treated rats,

with those of Chibirova (2006) who found a significant asso-

ciation between synchronous firing in the STN of PD patients

with akinesia and bradykinesia but not with tremor and rigid-

ity (Figure 6). Given the complexity of the physiopathologi-

cal mechanisms which generate parkinsonian symptomatology

the assumption that each class of clinical signs (tremor, akine-

sia, rigidity, dyskinesia, bradykinesia) is produced by a specific

and separate mechanism was questioned (Gross et al., 1999).

We support the hypothesis that synchronous activity of STN

neurons is correlated with akinesia because it could promote

increase in SNr cell firing due to simultaneous glutamate re-

lease from numerous STN terminals in the SNr and its high

concentration in synaptic cleft must promote increase in SNr

cell firing. Increased glutamatergic innervation of the SNr is

known to contribute to the motor deficits in PD, whereas sup-

pression of glutamate release by injection of agonists of group

III mGlu receptors into the SNr exerts functional protection

against 6-OHDA lesion (Austin et al., 2010). The same proce-

dure reversed reserpine-induced akinesia (Austin et al., 2010)

indirectly suggesting the important role of glutamate concen-

tration in the SNr for akinesia. It has been proposed that the

normal dopaminergic system supports segregation of the func-

tional subcircuits of the BG (Bergman et al., 1998) and that

the BG-thalamocortical loop dynamically modulates the degree

of correlation of neuronal activity in order to select the proper

motor behavior (Yasoshima et al., 2005; Gale et al., 2009). We

suggest that dopaminergic input is necessary to maintain a bal-

ance between funneling and parallel processings, and changes

in DA concentration exert modulatory role upon switching be-

tween one to the other mode of transmission.

In conclusion, the finding of increased synchronicity between

spatially adjacent STN neurons in 6-OHDA treated rats and the

careful analysis of the cell types defined by their firing patterns

offer a new insight to the mechanisms of motor disturbances in

PD.
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