J. Cohn, R. Ferrari, and N. Sharpe, Cardiac remodeling???concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling, Journal of the American College of Cardiology, vol.35, issue.3, pp.569-582, 2000.
DOI : 10.1016/S0735-1097(99)00630-0

B. Jugdutt, Ventricular Remodeling After Infarction and the Extracellular Collagen Matrix: When Is Enough Enough?, Circulation, vol.108, issue.11, pp.1395-1403, 2003.
DOI : 10.1161/01.CIR.0000085658.98621.49

L. Bolognese, A. Neskovic, G. Parodi, G. Cerisano, and P. Buonamici, Left Ventricular Remodeling After Primary Coronary Angioplasty: Patterns of Left Ventricular Dilation and Long-Term Prognostic Implications, Circulation, vol.106, issue.18, pp.2351-2357, 2002.
DOI : 10.1161/01.CIR.0000036014.90197.FA

C. Savoye, O. Equine, O. Tricot, O. Nugue, and B. Segrestin, Left ventricular remodeling after anterior wall acute myocardial infarction in modern clinical practice, 2006.

A. Verma, A. Meris, H. Skali, J. Ghali, and J. Arnold, Prognostic Implications of Left Ventricular Mass and Geometry Following Myocardial Infarction, JACC: Cardiovascular Imaging, vol.1, issue.5, pp.582-591, 2008.
DOI : 10.1016/j.jcmg.2008.05.012

V. Segers and R. Lee, Stem-cell therapy for cardiac disease, Nature, vol.18, issue.7181, pp.937-942, 2008.
DOI : 10.1038/nature06800

S. Aggarwal and M. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood, vol.105, issue.4, pp.1815-1822, 2005.
DOI : 10.1182/blood-2004-04-1559

W. Tse, J. Pendleton, W. Beyer, M. Egalka, and E. Guinan, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation, Transplantation, vol.75, issue.3, pp.389-397, 2003.
DOI : 10.1097/01.TP.0000045055.63901.A9

N. Nagaya, K. Kangawa, T. Itoh, T. Iwase, and S. Murakami, Transplantation of Mesenchymal Stem Cells Improves Cardiac Function in a Rat Model of Dilated Cardiomyopathy, Circulation, vol.112, issue.8, pp.1128-1135, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.500447

L. Li, Y. Zhang, Y. Li, Y. B. Xu, and Y. , Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure, Transplant International, vol.39, issue.Suppl. 1, pp.1181-1189, 2008.
DOI : 10.1111/j.1432-2277.2008.00742.x

A. Maurel, K. Azarnoush, L. Sabbah, N. Vignier, L. Lorc-'h et al., Can Cold or Heat Shock Improve Skeletal Myoblast Engraftment in Infarcted Myocardium?, Transplantation, vol.80, issue.5, pp.660-665, 2005.
DOI : 10.1097/01.tp.0000172178.35488.31

C. Toma, M. Pittenger, K. Cahill, B. Byrne, and P. Kessler, Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart, Circulation, vol.105, issue.1, pp.93-98, 2002.
DOI : 10.1161/hc0102.101442

M. Niagara, H. Haider, S. Jiang, and M. Ashraf, Pharmacologically Preconditioned Skeletal Myoblasts Are Resistant to Oxidative Stress and Promote Angiomyogenesis via Release of Paracrine Factors in the Infarcted Heart, Circulation Research, vol.100, issue.4, pp.545-555, 2007.
DOI : 10.1161/01.RES.0000258460.41160.ef

Y. Tang, Y. Tang, Y. Zhang, K. Qian, and L. Shen, Improved Graft Mesenchymal Stem Cell Survival in Ischemic Heart With a Hypoxia-Regulated Heme Oxygenase-1 Vector, Journal of the American College of Cardiology, vol.46, issue.7, pp.1339-1350, 2005.
DOI : 10.1016/j.jacc.2005.05.079

K. Christman and R. Lee, Biomaterials for the Treatment of Myocardial Infarction, Journal of the American College of Cardiology, vol.48, issue.5, pp.907-913, 2006.
DOI : 10.1016/j.jacc.2006.06.005

G. Vunjak-novakovic, N. Tandon, A. Godier, R. Maidhof, and A. Marsano, Challenges in Cardiac Tissue Engineering, Tissue Engineering Part B: Reviews, vol.16, issue.2, pp.169-187, 2010.
DOI : 10.1089/ten.teb.2009.0352

Z. Ye, Y. Zhou, H. Cai, and W. Tan, Myocardial regeneration: Roles of stem cells and hydrogels, Advanced Drug Delivery Reviews, vol.63, issue.8, pp.688-697, 2011.
DOI : 10.1016/j.addr.2011.02.007

K. Christman, A. Vardanian, Q. Fang, R. Sievers, and H. Fok, Injectable Fibrin Scaffold Improves Cell Transplant Survival, Reduces Infarct Expansion, and Induces Neovasculature Formation in Ischemic Myocardium, Journal of the American College of Cardiology, vol.44, issue.3, pp.654-660, 2004.
DOI : 10.1016/j.jacc.2004.04.040

J. Leor, S. Tuvia, V. Guetta, F. Manczur, and D. Castel, Intracoronary Injection of In Situ Forming Alginate Hydrogel Reverses Left Ventricular Remodeling After Myocardial Infarction in Swine, Journal of the American College of Cardiology, vol.54, issue.11, pp.1014-1023, 2009.
DOI : 10.1016/j.jacc.2009.06.010

X. Jiang, T. Wang, X. Li, D. Wu, and Z. Zheng, Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction, Journal of Biomedical Materials Research Part A, vol.316, issue.2, pp.472-477, 2009.
DOI : 10.1002/jbm.a.32118

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-228, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

X. Bourges, P. Weiss, A. Coudreuse, G. Daculsi, and G. Legeay, General properties of silated hydroxyethylcellulose for potential biomedical applications, Biopolymers, vol.15, issue.281, pp.232-238, 2002.
DOI : 10.1002/bip.10053

URL : https://hal.archives-ouvertes.fr/inserm-00198796

C. Merceron, S. Portron, M. Masson, J. Lesoeur, and B. Fellah, The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells After Subcutaneous Transplantation With an Injectable Hydrogel, Cell Transplantation, vol.20, issue.10, pp.1575-1588, 2011.
DOI : 10.3727/096368910X557191

C. Mias, E. Trouche, M. Seguelas, F. Calcagno, and F. Dignat-george, Ex Vivo Pretreatment with Melatonin Improves Survival, Proangiogenic/Mitogenic Activity, and Efficiency of Mesenchymal Stem Cells Injected into Ischemic Kidney, Stem Cells, vol.9, issue.7, pp.1749-1757, 2008.
DOI : 10.1634/stemcells.2007-1000

URL : https://hal.archives-ouvertes.fr/inserm-00409190

E. Karaoz, A. Aksoy, S. Ayhan, A. Sariboyaci, and F. Kaymaz, Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers, Histochemistry and Cell Biology, vol.32, issue.5, pp.533-546, 2009.
DOI : 10.1007/s00418-009-0629-6

J. Singelyn and K. Christman, Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices, Journal of Cardiovascular Translational Research, vol.13, issue.9, pp.478-486, 2010.
DOI : 10.1007/s12265-010-9202-x

A. Fatimi, J. Tassin, S. Quillard, M. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.533-543, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

A. Fatimi, J. Tassin, R. Turczyn, M. Axelos, and P. Weiss, Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization, Acta Biomaterialia, vol.5, issue.9, pp.3423-3432, 2009.
DOI : 10.1016/j.actbio.2009.05.030

URL : https://hal.archives-ouvertes.fr/inserm-00507127

C. Vinatier, D. Magne, P. Weiss, C. Trojani, and N. Rochet, A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-6651, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465

C. Vinatier, D. Magne, A. Moreau, O. Gauthier, and O. Malard, Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel, Journal of Biomedical Materials Research Part A, vol.31, issue.1, pp.66-74, 2007.
DOI : 10.1002/jbm.a.30867

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

A. Engler, C. Carag-krieger, C. Johnson, M. Raab, and H. Tang, Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating, Journal of Cell Science, vol.121, issue.22, pp.3794-3802, 2008.
DOI : 10.1242/jcs.029678

B. Aguado, W. Mulyasasmita, J. Su, K. Lampe, and S. Heilshorn, Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers, Tissue Engineering Part A, vol.18, issue.7-8, pp.806-815, 2011.
DOI : 10.1089/ten.tea.2011.0391

C. Trojani, P. Weiss, J. Michiels, C. Vinatier, and J. Guicheux, Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel, Biomaterials, vol.26, issue.27, pp.5509-5517, 2005.
DOI : 10.1016/j.biomaterials.2005.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00110471

S. Poulsen, Clinical aspects of left ventricular diastolic function assessed by Doppler echocardiography following acute myocardial infarction, Dan Med Bull, vol.48, pp.199-210, 2001.

N. Landa, L. Miller, M. Feinberg, R. Holbova, and M. Shachar, Effect of Injectable Alginate Implant on Cardiac Remodeling and Function After Recent and Old Infarcts in Rat, Circulation, vol.117, issue.11, pp.1388-1396, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.727420

K. Christman, H. Fok, R. Sievers, Q. Fang, and R. Lee, Fibrin Glue Alone and Skeletal Myoblasts in a Fibrin Scaffold Preserve Cardiac Function after Myocardial Infarction, Tissue Engineering, vol.10, issue.3-4, pp.403-409, 2004.
DOI : 10.1089/107632704323061762

S. Dobner, D. Bezuidenhout, P. Govender, P. Zilla, and N. Davies, A Synthetic Non-degradable Polyethylene Glycol Hydrogel Retards Adverse Post-infarct Left Ventricular Remodeling, Journal of Cardiac Failure, vol.15, issue.7, pp.629-636, 2009.
DOI : 10.1016/j.cardfail.2009.03.003

A. Rane, J. Chuang, A. Shah, D. Hu, and N. Dalton, Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left Ventricular Remodeling after Myocardial Infarction, PLoS ONE, vol.26, issue.6, p.21571, 2011.
DOI : 10.1371/journal.pone.0021571.g006

A. Rane and K. Christman, Biomaterials for the Treatment of Myocardial Infarction, Journal of the American College of Cardiology, vol.58, issue.25, pp.2615-2629, 2011.
DOI : 10.1016/j.jacc.2011.11.001

M. Berry, A. Engler, Y. Woo, T. Pirolli, and L. Bish, Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance, AJP: Heart and Circulatory Physiology, vol.290, issue.6, pp.2196-2203, 2006.
DOI : 10.1152/ajpheart.01017.2005

W. Dai, S. Hale, B. Martin, J. Kuang, and J. Dow, Allogeneic Mesenchymal Stem Cell Transplantation in Postinfarcted Rat Myocardium: Short- and Long-Term Effects, Circulation, vol.112, issue.2, pp.214-223, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.527937

Y. Imanishi, A. Saito, H. Komoda, S. Kitagawa-sakakida, and S. Miyagawa, Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats, Journal of Molecular and Cellular Cardiology, vol.44, issue.4, pp.662-671, 2008.
DOI : 10.1016/j.yjmcc.2007.11.001

M. Elnakish, F. Hassan, D. Dakhlallah, C. Marsh, and I. Alhaider, Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality, Stem Cells International, vol.57, issue.200, p.646038, 2012.
DOI : 10.1093/europace/eul184

M. Zhang, D. Methot, V. Poppa, Y. Fujio, and K. Walsh, Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies, Journal of Molecular and Cellular Cardiology, vol.33, issue.5, pp.907-921, 2001.
DOI : 10.1006/jmcc.2001.1367

S. Morrison and A. Spradling, Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life, Cell, vol.132, issue.4, pp.598-611, 2008.
DOI : 10.1016/j.cell.2008.01.038

URL : http://doi.org/10.1016/j.cell.2008.01.038

X. Zhang, H. Wang, X. Ma, A. Adila, and B. Wang, Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds, Experimental Biology and Medicine, vol.17, issue.12, pp.1505-1515, 2010.
DOI : 10.1161/01.CIR.0000124062.31102.57

T. Wang, X. Jiang, Q. Tang, X. Li, and T. Lin, Bone marrow stem cells implantation with ??-cyclodextrin/MPEG???PCL???MPEG hydrogel improves cardiac function after myocardial infarction, Acta Biomaterialia, vol.5, issue.8, pp.2939-2944, 2009.
DOI : 10.1016/j.actbio.2009.04.040

P. Boor and V. Ferrans, Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions, Am J Pathol, vol.121, pp.39-54, 1985.
DOI : 10.1016/0300-483x(87)90144-2

J. Lehoczky-mona and E. Mccandless, Ischemic Induction of Chondrogenesis in Myocardium, Arch Pathol, vol.78, pp.37-42, 1964.

S. Laib, B. Fellah, A. Fatimi, S. Quillard, and C. Vinatier, The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials, vol.30, issue.8, pp.1568-1577, 2009.
DOI : 10.1016/j.biomaterials.2008.11.031

URL : https://hal.archives-ouvertes.fr/inserm-00352650

C. Mias, O. Lairez, E. Trouche, J. Roncalli, and D. Calise, Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac Ventricular Fibrosis After Myocardial Infarction, Stem Cells, vol.294, issue.11, pp.2734-2743, 2009.
DOI : 10.1002/stem.169

URL : https://hal.archives-ouvertes.fr/inserm-00410344

W. Sherman, T. Martens, J. Viles-gonzalez, and T. Siminiak, Catheter-based delivery of cells to the heart, Nature Clinical Practice Cardiovascular Medicine, vol.112, issue.1, pp.57-64, 2006.
DOI : 10.1038/ncpcardio0446

S. Fernandes, J. Amirault, G. Lande, J. Nguyen, and V. Forest, Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias, Cardiovascular Research, vol.69, issue.2, pp.348-358, 2006.
DOI : 10.1016/j.cardiores.2005.10.003

R. Lang, M. Bierig, R. Devereux, F. Flachskampf, and E. Foster, Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography???s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology, Journal of the American Society of Echocardiography, vol.18, issue.12, pp.1440-1463, 2005.
DOI : 10.1016/j.echo.2005.10.005

E. Folland, A. Parisi, P. Moynihan, D. Jones, and C. Feldman, Assessment of left ventricular ejection fraction and volumes by real- time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques, Circulation, vol.60, issue.4, pp.760-766, 1979.
DOI : 10.1161/01.CIR.60.4.760

R. Kanashiro-takeuchi, K. Tziomalos, L. Takeuchi, A. Treuer, and G. Lamirault, Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction, Proceedings of the National Academy of Sciences, vol.107, issue.6, pp.2604-2609, 2010.
DOI : 10.1073/pnas.0914138107

J. Takagawa, Y. Zhang, M. Wong, R. Sievers, and N. Kapasi, Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches, Journal of Applied Physiology, vol.102, issue.6, pp.2104-2111, 2007.
DOI : 10.1152/japplphysiol.00033.2007