G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1038/nature05485

I. Manabe, Chronic Inflammation Links Cardiovascular, Metabolic and Renal Diseases, Circulation Journal, vol.75, issue.12, pp.2739-2748, 2011.
DOI : 10.1253/circj.CJ-11-1184

D. Fedor and D. S. Kelley, Prevention of insulin resistance by n, p.3, 2009.

Y. A. Carpentier, L. Portois, and W. J. Malaisse, n-3 fatty acids and the metabolic syndrome, Am J Clin Nutr, vol.83, pp.1499-1504, 2006.

A. P. Simopoulos, The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases, Experimental Biology and Medicine, vol.233, issue.6, pp.674-688, 2008.
DOI : 10.3181/0711-MR-311

. Anderson, High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degeneration, J Lipid Res, vol.50, pp.807-819, 2009.

H. Esterbauer, R. J. Schaur, and H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radical Biology and Medicine, vol.11, issue.1, pp.81-128, 1991.
DOI : 10.1016/0891-5849(91)90192-6

M. Guichardant, S. Bacot, P. Moliere, and M. Lagarde, Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.75, issue.3, pp.179-182, 2006.
DOI : 10.1016/j.plefa.2006.05.006

M. Lagarde and M. Guichardant, Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals, J Lipid Res, vol.48, pp.816-825, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139399

M. Guichardant, P. Taibi-tronche, L. B. Fay, and M. Lagarde, Covalent modifications of aminophospholipids by 4-hydroxynonenal, Free Radical Biology and Medicine, vol.25, issue.9, pp.1049-1056, 1998.
DOI : 10.1016/S0891-5849(98)00149-X

M. P. Mattson, Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders, Experimental Gerontology, vol.44, issue.10, 2009.
DOI : 10.1016/j.exger.2009.07.003

M. Iwata, S. Toi, M. Kawaguchi, T. Yamamoto, and M. Kobayashi, Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis, Brain Res, vol.1019, pp.170-177, 2004.

L. Soulere, Y. Queneau, and A. Doutheau, An expeditious synthesis of 4-hydroxy-2(E)-nonenal (4-HNE), its dimethyl acetal and of related compounds, Chemistry and Physics of Lipids, vol.150, issue.2, pp.239-243, 2007.
DOI : 10.1016/j.chemphyslip.2007.07.003

R. Mendes, C. Cardoso, and C. Pestana, Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test, Food Chemistry, vol.112, issue.4, pp.1038-1045, 2009.
DOI : 10.1016/j.foodchem.2008.06.052

E. Seljeskog, T. Hervig, M. A. Mansoor-nourooz-zadeh, J. , J. Tajaddini-sarmadi et al., A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit, Clinical Biochemistry, vol.39, issue.9, pp.947-954, 1994.
DOI : 10.1016/j.clinbiochem.2006.03.012

Y. Riahi, G. Cohen, O. Shamni, and S. Sasson, Signaling and cytotoxic functions of 4-hydroxyalkenals, E879-E886. 24. Calzada, C., R. Colas, N. Guillot, M. Guichardant, M. Laville, E. Vericel, and M, 2010.
DOI : 10.1152/ajpendo.00508.2010

L. Surh, J. , S. Lee, and H. Kwon, Subgram daily supplementation with docosahexaenoic acid protects lowdensity lipoproteins from oxidation in healthy men 4-hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products, Atherosclerosis Food Addit Contam, vol.208, issue.24, pp.467-472, 2007.

K. Uchida, Histidine and lysine as targets of oxidative modification, Amino Acids, vol.25, issue.3-4, pp.249-257, 2003.
DOI : 10.1007/s00726-003-0015-y

. Stadtman, Michael addition-type 4-hydroxy-2-nonenal adducts in modified lowdensity lipoproteins: markers for atherosclerosis, Biochemistry, vol.33, pp.12487-12494, 1994.

R. M. Catalioto, C. A. Maggi, and S. Giuliani, Intestinal Epithelial Barrier Dysfunction in Disease and Possible Therapeutical Interventions, Current Medicinal Chemistry, vol.18, issue.3, pp.398-426, 2011.
DOI : 10.2174/092986711794839179

W. A. Dejong, J. W. Buurman, K. Greve, and . Lenaerts, Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals, J Pathol, vol.225, pp.276-284, 2011.

M. J. Koslowski, J. Beisner, E. F. Stange, and J. Wehkamp, Innate antimicrobial host defense in small intestinal Crohn's disease, International Journal of Medical Microbiology, vol.300, issue.1, pp.34-40, 2010.
DOI : 10.1016/j.ijmm.2009.08.011

D. Goudoever, I. B. Tibboel, and . Renes, Epithelial functions of the residual bowel after surgery for necrotising enterocolitis in human infants, J Pediatr Gastroenterol Nutr, vol.49, pp.31-41, 2009.

R. S. Esworthy, L. Yang, P. H. Frankel, and F. F. Chu, Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice, Gastroenterology J Nutr, vol.119, issue.135, pp.420-430, 2005.

F. J. Munoz, J. Sanchez-muniz, and . Benedi, Fasting status and thermally oxidized sunflower oil ingestion affect the intestinal antioxidant enzyme activity and gene expression of male Wistar rats, J Agric Food Chem, vol.58, pp.2498-2504, 2010.

J. Varady, K. Eder, and R. Ringseis, Dietary oxidized fat activates the oxidative stress-responsive transcription factors NF-??B and Nrf2 in intestinal mucosa of mice, European Journal of Nutrition, vol.106, issue.8, pp.601-609, 2011.
DOI : 10.1007/s00394-011-0181-8

M. Ni, Y. Zhang, and A. S. Lee, Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting, Biochemical Journal, vol.23, issue.2, pp.181-188, 2011.
DOI : 10.1016/j.fertnstert.2008.12.132

S. Oyadomari and M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress, Cell Death and Differentiation, vol.11, issue.4, pp.381-389, 2004.
DOI : 10.1038/sj.cdd.4401373

. Haller, Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation, Gastroenterology, vol.132, pp.190-207, 2007.

F. H. Greig, S. Kennedy, and C. M. Spickett, Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation, Free Radical Biology and Medicine, vol.52, issue.2, pp.266-280, 2011.
DOI : 10.1016/j.freeradbiomed.2011.10.481

. Hydroperoxides, g lipid) 1.6 ±0.9 a 1.3 ±0.1 a 3.7 ±0.1 b 5.8 ±0.1 c a,b,c,d Means in a row superscripted by different letters are significantly different (P<0.05), Data are mean ± SEM for n=3. Abbreviations: FA, fatty acids; MUFA, monounsaturated fatty acids; SFA, saturated fatty acids