E. Alcamo, L. Chirivella, M. Dautzenberg, G. Dobreva, and I. Farinas, Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex, Neuron, vol.57, issue.3, pp.364-377, 2008.
DOI : 10.1016/j.neuron.2007.12.012

O. Britanova, R. De-juan, A. Cheung, K. Kwan, and M. Schwark, Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex, Neuron, vol.57, issue.3, pp.378-392, 2008.
DOI : 10.1016/j.neuron.2007.12.028

L. Porter and E. White, Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse, The Journal of Comparative Neurology, vol.7, issue.3, pp.279-289, 1983.
DOI : 10.1002/cne.902140306

C. Yorke, . Jr, V. Caviness, and . Jr, Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods, The Journal of Comparative Neurology, vol.17, issue.2, pp.233-245, 1975.
DOI : 10.1002/cne.901640206

L. Paul, W. Brown, R. Adolphs, J. Tyszka, and L. Richards, Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity, Nature Reviews Neuroscience, vol.31, issue.4, pp.287-299, 2007.
DOI : 10.1038/nrn2107

L. Richards, C. Plachez, and T. Ren, Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human, Clinical Genetics, vol.323, issue.1, pp.276-289, 2004.
DOI : 10.1111/j.1399-0004.2004.00354.x

T. Shu and L. Richards, Cortical axon guidance by the glial wedge during the development of the corpus callosum, J Neurosci, vol.21, pp.2749-2758, 2001.

T. Shu, V. Sundaresan, M. Mccarthy, and L. Richards, Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo, J Neurosci, vol.23, pp.8176-8184, 2003.

T. Shu, K. Butz, C. Plachez, R. Gronostajski, and L. Richards, Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice, J Neurosci, vol.23, pp.203-212, 2003.

T. Shu, A. Puche, and L. Richards, Development of midline glial populations at the corticoseptal boundary, Journal of Neurobiology, vol.102, issue.1, pp.81-94, 2003.
DOI : 10.1002/neu.10252

J. Silver and M. Ogawa, Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges, Science, vol.220, issue.4601, pp.1067-1069, 1983.
DOI : 10.1126/science.6844928

J. Silver, M. Edwards, and P. Levitt, Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain, The Journal of Comparative Neurology, vol.74, issue.3, pp.415-436, 1993.
DOI : 10.1002/cne.903280308

K. Smith, Y. Ohkubo, M. Maragnoli, M. Rasin, and M. Schwartz, Midline radial glia translocation and corpus callosum formation require FGF signaling, Nature Neuroscience, vol.53, issue.6, pp.787-797, 2006.
DOI : 10.1038/nn1705

M. Hankin and J. Silver, Development of intersecting CNS fiber tracts: The corpus callosum and its perforating fiber pathway, The Journal of Comparative Neurology, vol.164, issue.2, pp.177-190, 1988.
DOI : 10.1002/cne.902720203

J. Silver, S. Lorenz, D. Wahlsten, and J. Coughlin, Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways, The Journal of Comparative Neurology, vol.76, issue.1, pp.10-29, 1982.
DOI : 10.1002/cne.902100103

T. Ren, A. Anderson, W. Shen, H. Huang, and C. Plachez, Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.124, issue.2, pp.191-204, 2006.
DOI : 10.1002/ar.a.20282

T. Shu, Y. Li, A. Keller, and L. Richards, The glial sling is a migratory population of developing neurons, Development, vol.130, issue.13, pp.2929-2937, 2003.
DOI : 10.1242/dev.00514

B. Riederer and G. Innocenti, MAP2 Isoforms in Developing Cat Cerebral Cortex and Corpus Callosum, European Journal of Neuroscience, vol.41, issue.12, pp.1376-1386, 1992.
DOI : 10.1111/j.1460-9568.1992.tb00163.x

B. Riederer, P. Berbel, and G. Innocenti, Neurons in the corpus callosum of the cat during postnatal development, European Journal of Neuroscience, vol.23, issue.8, pp.2039-2046, 2004.
DOI : 10.1002/cne.10476

W. Andrews, A. Liapi, C. Plachez, L. Camurri, and J. Zhang, Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain, Development, vol.133, issue.11, pp.2243-2252, 2006.
DOI : 10.1242/dev.02379

A. Bagri, O. Marin, A. Plump, J. Mak, and S. Pleasure, Slit Proteins Prevent Midline Crossing and Determine the Dorsoventral Position of Major Axonal Pathways in the Mammalian Forebrain, Neuron, vol.33, issue.2, pp.233-248, 2002.
DOI : 10.1016/S0896-6273(02)00561-5

A. Fazeli, S. Dickinson, M. Hermiston, R. Tighe, and R. Steen, Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene, Nature, vol.386, issue.6627, pp.796-804, 1997.
DOI : 10.1038/386796a0

Z. Hu, X. Yue, G. Shi, Y. Yue, and D. Crockett, Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor, J Neurosci, vol.23, pp.10963-10970, 2003.

T. Keeble, M. Halford, C. Seaman, N. Kee, and M. Macheda, The Wnt Receptor Ryk Is Required for Wnt5a-Mediated Axon Guidance on the Contralateral Side of the Corpus Callosum, Journal of Neuroscience, vol.26, issue.21, pp.5840-5848, 2006.
DOI : 10.1523/JNEUROSCI.1175-06.2006

S. Mendes, M. Henkemeyer, and D. Liebl, Multiple Eph Receptors and B-Class Ephrins Regulate Midline Crossing of Corpus Callosum Fibers in the Developing Mouse Forebrain, Journal of Neuroscience, vol.26, issue.3, pp.882-892, 2006.
DOI : 10.1523/JNEUROSCI.3162-05.2006

M. Piper, C. Plachez, O. Zalucki, T. Fothergill, and G. Goudreau, Neuropilin 1-Sema Signaling Regulates Crossing of Cingulate Pioneering Axons during Development of the Corpus Callosum, Cerebral Cortex, vol.19, issue.suppl 1, pp.11-21, 2009.
DOI : 10.1093/cercor/bhp027

T. Ren, J. Zhang, C. Plachez, S. Mori, and L. Richards, Diffusion Tensor Magnetic Resonance Imaging and Tract-Tracing Analysis of Probst Bundle Structure in Netrin1- and DCC-Deficient Mice, Journal of Neuroscience, vol.27, issue.39, pp.10345-10349, 2007.
DOI : 10.1523/JNEUROSCI.2787-07.2007

T. Serafini, S. Colamarino, E. Leonardo, H. Wang, and R. Beddington, Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System, Cell, vol.87, issue.6, pp.1001-1014, 1996.
DOI : 10.1016/S0092-8674(00)81795-X

C. Gu, E. Rodriguez, D. Reimert, T. Shu, and B. Fritzsch, Neuropilin-1 Conveys Semaphorin and VEGF Signaling during Neural and Cardiovascular Development, Developmental Cell, vol.5, issue.1, pp.45-57, 2003.
DOI : 10.1016/S1534-5807(03)00169-2

URL : http://doi.org/10.1016/s1534-5807(03)00169-2

J. Gorski, T. Talley, M. Qiu, L. Puelles, and J. Rubenstein, Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage, J Neurosci, vol.22, pp.6309-6314, 2002.

L. Puelles, E. Kuwana, E. Puelles, A. Bulfone, and K. Shimamura, Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx, 2000.

K. Yun, S. Potter, and J. Rubenstein, Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon, Development, vol.128, pp.193-205, 2001.

N. Tamamaki, Y. Yanagawa, R. Tomioka, J. Miyazaki, and K. Obata, Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse, The Journal of Comparative Neurology, vol.326, issue.1, pp.60-79, 2003.
DOI : 10.1002/cne.10905

S. Casarosa, C. Fode, and F. Guillemot, Mash1 regulates neurogenesis in the ventral telencephalon, Development, vol.126, pp.525-534, 1999.

C. Fode, Q. Ma, S. Casarosa, S. Ang, and D. Anderson, A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons, Genes Dev, vol.14, pp.67-80, 2000.

H. Ozaki and D. Wahlsten, Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse, The Journal of Comparative Neurology, vol.74, issue.2, pp.197-206, 1998.
DOI : 10.1002/(SICI)1096-9861(19981019)400:2<197::AID-CNE3>3.0.CO;2-4

B. Rash and L. Richards, A role for cingulate pioneering axons in the development of the corpus callosum, The Journal of Comparative Neurology, vol.124, issue.2, pp.147-157, 2001.
DOI : 10.1002/cne.1170

P. Clarke, Developmental cell death: morphological diversity and multiple mechanisms, Anatomy and Embryology, vol.181, issue.3, pp.195-213, 1990.
DOI : 10.1007/BF00174615

R. Tuttle, Y. Nakagawa, J. Johnson, O. Leary, and D. , Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash- 1-deficient mice, Development, vol.126, pp.1903-1916, 1999.

D. Bagnard, M. Lohrum, D. Uziel, A. Puschel, and J. Bolz, Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections, Development, vol.125, pp.5043-5053, 1998.

D. Bagnard, N. Thomasset, M. Lohrum, A. Puschel, and J. Bolz, Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones, J Neurosci, vol.20, pp.1030-1035, 2000.

H. Chen, A. Chedotal, Z. He, C. Goodman, and M. Tessier-lavigne, Neuropilin-2, a Novel Member of the Neuropilin Family, Is a High Affinity Receptor for the Semaphorins Sema E and Sema IV but Not Sema III, Neuron, vol.19, issue.3, pp.547-559, 1997.
DOI : 10.1016/S0896-6273(00)80371-2

G. Meyer and A. Goffinet, Prenatal development of reelin-immunoreactive neurons in the human neocortex, The Journal of Comparative Neurology, vol.380, issue.1, pp.29-40, 1998.
DOI : 10.1002/(SICI)1096-9861(19980720)397:1<29::AID-CNE3>3.0.CO;2-K

G. Meyer, J. Soria, J. Martinez-galan, B. Martin-clemente, and A. Fairen, Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex, The Journal of Comparative Neurology, vol.397, issue.4, pp.493-518, 1998.
DOI : 10.1002/(SICI)1096-9861(19980810)397:4<493::AID-CNE4>3.3.CO;2-S

S. Anderson, D. Eisenstat, L. Shi, and J. Rubenstein, Interneuron Migration from Basal Forebrain to Neocortex: Dependence on Dlx Genes, Science, vol.278, issue.5337, pp.474-476, 1997.
DOI : 10.1126/science.278.5337.474

S. Anderson, O. Marin, C. Horn, K. Jennings, and J. Rubenstein, Distinct cortical migrations from the medial and lateral ganglionic eminences, Development, vol.128, pp.353-363, 2001.

S. Butt, M. Fuccillo, S. Nery, S. Noctor, and A. Kriegstein, The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype, Neuron, vol.48, issue.4, pp.591-604, 2005.
DOI : 10.1016/j.neuron.2005.09.034

O. Marin and J. Rubenstein, A long, remarkable journey: Tangential migration in the telencephalon, Nature Reviews Neuroscience, vol.73, issue.11, pp.780-790, 2001.
DOI : 10.1038/35097509

S. Nery, G. Fishell, and J. Corbin, The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations, Nature Neuroscience, vol.5, issue.12, pp.1279-1287, 2002.
DOI : 10.1038/nn971

H. Wichterle, D. Turnbull, S. Nery, G. Fishell, and A. Alvarez-buylla, In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain, Development, vol.128, pp.3759-3771, 2001.

G. Lopez-bendito, A. Cautinat, J. Sanchez, F. Bielle, and N. Flames, Tangential Neuronal Migration Controls Axon Guidance: A Role for Neuregulin-1 in Thalamocortical Axon Navigation, Cell, vol.125, issue.1, pp.127-142, 2006.
DOI : 10.1016/j.cell.2006.01.042

Y. Sato, T. Hirata, M. Ogawa, and H. Fujisawa, Requirement for earlygenerated neurons recognized by monoclonal antibody lot1 in the formation of lateral olfactory tract, J Neurosci, vol.18, pp.7800-7810, 1998.

N. Tomioka, N. Osumi, Y. Sato, T. Inoue, and S. Nakamura, Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract, J Neurosci, vol.20, pp.5802-5812, 2000.

D. Sretavan, E. Pure, M. Siegel, and L. Reichardt, Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons, Science, vol.269, issue.5220, pp.98-101, 1995.
DOI : 10.1126/science.7541558

D. Rio, J. Heimrich, B. Borrell, V. Forster, E. Drakew et al., A role for Cajal-Retzius cells and reelin in the development of hippocampal connections, Nature, vol.385, pp.70-74, 1997.

T. Takahashi, F. Nakamura, J. Z. Kalb, R. Strittmatter, and S. , Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors, Nature Neuroscience, vol.1, issue.6, pp.487-493, 1998.
DOI : 10.1038/2203

A. Bechara, H. Nawabi, F. Moret, A. Yaron, and E. Weaver, FAK???MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse, The EMBO Journal, vol.45, issue.11, pp.1549-1562, 2008.
DOI : 10.1038/emboj.2008.86

URL : https://hal.archives-ouvertes.fr/hal-00288319

A. Yaron, P. Huang, H. Cheng, and M. Tessier-lavigne, Differential Requirement for Plexin-A3 and -A4 in Mediating Responses of Sensory and Sympathetic Neurons to Distinct Class 3 Semaphorins, Neuron, vol.45, issue.4, pp.513-523, 2005.
DOI : 10.1016/j.neuron.2005.01.013

S. Giordano, S. Corso, P. Conrotto, S. Artigiani, and G. Gilestro, The Semaphorin 4D receptor controls invasive growth by coupling with Met, Nature Cell Biology, vol.4, issue.9, pp.720-724, 2002.
DOI : 10.1038/ncb843

J. Swiercz, T. Worzfeld, and S. Offermanns, ErbB-2 and Met Reciprocally Regulate Cellular Signaling via Plexin-B1, Journal of Biological Chemistry, vol.283, issue.4, pp.1893-1901, 2008.
DOI : 10.1074/jbc.M706822200

T. Toyofuku, H. Zhang, A. Kumanogoh, N. Takegahara, and F. Suto, Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2, Genes & Development, vol.18, issue.4, pp.435-447, 2004.
DOI : 10.1101/gad.1167304

L. Feiner, A. Webber, C. Brown, M. Lu, and L. Jia, Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption, Development, vol.128, pp.3061-3070, 2001.

F. Guillemot, L. Lo, J. Johnson, A. Auerbach, and D. Anderson, Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons, Cell, vol.75, issue.3, pp.463-476, 1993.
DOI : 10.1016/0092-8674(93)90381-Y

A. Hadjantonakis, M. Gertsenstein, M. Ikawa, M. Okabe, and A. Nagy, Generating green fluorescent mice by germline transmission of green fluorescent ES cells, Mechanisms of Development, vol.76, issue.1-2, pp.79-90, 1998.
DOI : 10.1016/S0925-4773(98)00093-8

S. Anderson, M. Qiu, A. Bulfone, D. Eisenstat, and J. Meneses, Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons, Neuron, vol.19, issue.1, pp.27-37, 1997.
DOI : 10.1016/S0896-6273(00)80345-1

V. Borrell and O. Marin, Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling, Nature Neuroscience, vol.278, issue.10, pp.1284-1293, 2006.
DOI : 10.1038/nn1764

N. Flames, J. Long, A. Garratt, T. Fischer, and M. Gassmann, Short- and Long-Range Attraction of Cortical GABAergic Interneurons by Neuregulin-1, Neuron, vol.44, issue.2, pp.251-261, 2004.
DOI : 10.1016/j.neuron.2004.09.028

V. Castellani, A. Chedotal, M. Schachner, C. Faivre-sarrailh, and G. Rougon, Analysis of the L1-Deficient Mouse Phenotype Reveals Cross-Talk between Sema3A and L1 Signaling Pathways in Axonal Guidance, Neuron, vol.27, issue.2, pp.237-249, 2000.
DOI : 10.1016/S0896-6273(00)00033-7

URL : https://hal.archives-ouvertes.fr/hal-00180568

C. Metin, D. Deleglise, T. Serafini, T. Kennedy, and M. Tessier-lavigne, A role for netrin-1 in the guidance of cortical efferents, Development, vol.124, pp.5063-5074, 1997.

N. Ba-charvet, K. Brose, K. Marillat, V. Kidd, T. Goodman et al., Slit2-Mediated Chemorepulsion and Collapse of Developing Forebrain Axons, Neuron, vol.22, issue.3, pp.463-473, 1999.
DOI : 10.1016/S0896-6273(00)80702-3

D. Junghans, S. Chauvet, E. Buhler, K. Dudley, and T. Sykes, The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival, Development, vol.131, issue.18, pp.4425-4434, 2004.
DOI : 10.1242/dev.01313

S. Chauvet, S. Cohen, Y. Yoshida, L. Fekrane, and J. Livet, Gating of Sema3E/PlexinD1 Signaling by Neuropilin-1 Switches Axonal Repulsion to Attraction during Brain Development, Neuron, vol.56, issue.5, pp.807-822, 2007.
DOI : 10.1016/j.neuron.2007.10.019

URL : https://hal.archives-ouvertes.fr/hal-00302587

S. Garel, F. Marin, M. Mattei, C. Vesque, and A. Vincent, Family ofEbf/Olf-1-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system, Developmental Dynamics, vol.222, issue.3, pp.191-205, 1997.
DOI : 10.1002/(SICI)1097-0177(199711)210:3<191::AID-AJA1>3.0.CO;2-B

C. Metin and P. Godement, The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons, J Neurosci, vol.16, pp.3219-3235, 1996.

U. Schambra, J. Lauder, and J. Silver, Atlas of the prenatal mouse brain, 1992.
DOI : 10.1007/978-0-387-47093-1

H. Cheng, A. Bagri, A. Yaron, E. Stein, and S. Pleasure, Plexin-A3 Mediates Semaphorin Signaling and Regulates the Development of Hippocampal Axonal Projections, Neuron, vol.32, issue.2, pp.249-263, 2001.
DOI : 10.1016/S0896-6273(01)00478-0