G. Kelloff, J. Hoffman, and B. Johnson, Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development, Clinical Cancer Research, vol.11, issue.8, pp.2785-2808, 2005.
DOI : 10.1158/1078-0432.CCR-04-2626

D. Visvikis, C. Rest, C. Costa, D. Bomanji, J. Gacinovic et al., Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET, European Journal of Nuclear Medicine, vol.28, issue.9, pp.1326-1335, 2001.
DOI : 10.1007/s002590100566

G. Lucignani and S. Larson, Doctor, what does my future hold? The prognostic value of FDG-PET in solid tumours, European Journal of Nuclear Medicine and Molecular Imaging, vol.115, issue.22, 2010.
DOI : 10.1007/s00259-010-1428-y

R. Wahl, H. Jacene, Y. Kasamon, and M. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.122-150, 2009.
DOI : 10.2967/jnumed.108.057307

Y. Seol, B. Kwon, and M. Song, Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy, Acta Oncologica, vol.53, issue.2, pp.201-209, 2010.
DOI : 10.2967/jnumed.107.039610

S. Hyun, J. Choi, and Y. Shim, Prognostic Value of Metabolic Tumor Volume Measured by 18F-Fluorodeoxyglucose Positron Emission Tomography in Patients with Esophageal Carcinoma, Annals of Surgical Oncology, vol.34, issue.1, pp.115-137, 2010.
DOI : 10.1245/s10434-009-0719-7

S. Larson, Y. Erdi, and T. Akhurst, Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-171, 1999.
DOI : 10.1016/S1095-0397(99)00016-3

R. Francis, M. Byrne, and A. Van-der-schaaf, Early Prediction of Response to Chemotherapy and Survival in Malignant Pleural Mesothelioma Using a Novel Semiautomated 3-Dimensional Volume-Based Analysis of Serial 18F-FDG PET Scans, Journal of Nuclear Medicine, vol.48, issue.9, pp.1449-1458, 2007.
DOI : 10.2967/jnumed.107.042333

T. Cazaentre, F. Morschhauser, and M. Vermandel, Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.suppl, pp.494-504, 2010.
DOI : 10.1007/s00259-009-1275-x

E. Erdi, O. Mawlawi, and S. Larson, Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, Cancer, vol.34, issue.S12, pp.2505-2509, 1997.
DOI : 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F

J. Daisne, M. Sibomana, and A. Bol, Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, Radiotherapy and Oncology, vol.69, issue.3, pp.247-250, 2003.
DOI : 10.1016/S0167-8140(03)00270-6

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of Different Methods for Delineation of 18F-FDG PET-Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non-Small Cell Lung Cancer, J Nucl Med, vol.46, issue.8, pp.1342-1350, 2005.

K. Biehl, F. Kong, and F. Dehdashti, 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?, J Nucl Med, vol.47, pp.1808-1812, 2006.

E. Naqa, I. Yang, D. Apte, and A. , Concurrent multimodality image segmentation by active contours for radiotherapy treatment planninga), Medical Physics, vol.14, issue.12, pp.4738-4749, 2007.
DOI : 10.1016/S0167-8140(01)00444-3

D. Montgomery, A. A. Zaidi, and H. , Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model, Medical Physics, vol.3, issue.2, pp.722-736, 2007.
DOI : 10.1118/1.2432404

X. Geets, J. Lee, and A. Bol, A gradient-based method for segmenting FDG-PET images: methodology and validation, European Journal of Nuclear Medicine and Molecular Imaging, vol.10, issue.Suppl 2, pp.1427-1438, 2007.
DOI : 10.1007/s00259-006-0363-4

M. Hatt, A. Turzo, and C. Roux, A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-893, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

M. Hatt, P. Bailly, A. Turzo, C. Roux, and D. Visvikis, PET functional volume segmentation: a robustness study, 2008 IEEE Nuclear Science Symposium Conference Record, pp.4335-4339, 2008.
DOI : 10.1109/NSSMIC.2008.4774243

H. Minn, A. Clavo, R. Grenman, and R. Wahl, In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamouscell carcinoma of the head and neck, J Nucl Med, vol.36, pp.252-258, 1995.

C. Nahmias and L. Wahl, Reproducibility of Standardized Uptake Value Measurements Determined by 18F-FDG PET in Malignant Tumors, Journal of Nuclear Medicine, vol.49, issue.11, pp.1804-1808, 2008.
DOI : 10.2967/jnumed.108.054239

N. Paquet, A. Albert, J. Foidart, and R. Hustinx, Within patient variability of FDG standardised uptake values in normal tissues, J Nucl Med, vol.45, pp.784-788, 2004.